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Abstract

Superconducting quantum multilevel systems coupled to resonators have recently been considered in

some applications such as microwave lasing and high-fidelity quantum logical gates. In this work, using an

rf-SQUID type phase qudit coupled to a microwave co-planar waveguide resonator, we study both theoreti-

cally and experimentally the energy spectrum of the system when the qudit level spacings are varied around

the resonator frequency by changing the magnetic flux applied to the qudit loop. We show that the exper-

imental result can be well described by a theoretical model that extends from the usual two-level Jaynes-

Cummings system to the present four-level system. It is also shown that due to the small anharmonicity

of the phase device a simplified model capturing the leading state interactions fits the experimental spectra

very well. Furthermore we use the Lindblad master equation containing various relaxation and dephasing

processes to calculate the level populations in the simpler qutrit-resonator system, which allows a clear un-

derstanding of the dynamics of the system under the microwave drive. Our results help to better understand

and perform the experiments of coupled multilevel and resonator systems and can be applied in the case of

transmon or Xmon qudits having the similar anharmonicity as the present phase device.

PACS numbers: 42.50.Ct, 42.50.Pq, 03.67.Lx, 85.25.Cp
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I. INTRODUCTION

Superconducting qubit and resonator systems1 are the key elements of superconducting quan-

tum circuits which have wide applications in solid-state quantum computing2–4 and quantum

simulation5. For example, quantum nondemolition measurements of the qubit state can be realized

via a coupled three-dimensional resonator or one-dimensional transmission line resonator whose

transmission/reflection characteristics depend critically on the qubit state6–8. The coupled qubit

and resonator systems, due to their unique properties, have also emerged as fundamental building

blocks of the superconducting quantum simulators for the studies of a number of model Hamilto-

nians in condensed-matter physics, ranging from quantum Ising chains9,10, Holstein polarons11, to

Mott insulator-superfluid quantum phase transitions12.

In addition to the qubits, superconducting three-level systems, namely qutrits, have been used

in many quantum optics studies13 such as Autler-Townes splitting (ATS), electromagnetically in-

duced transparency (EIT), and coherent population transfer14–20. These processes have the po-

tential for building devices like photon filters, routers, and switches in various superconducting

quantum circuit applications16,21. It is interesting to note that ATS and EIT have also been investi-

gated in the coupled qubit and resonator systems in which the dressed states of the coupled system

are adopted.22,23.

Recently there are many studies in which the coupled qutrit- and qudit (i.e., a four-level device)-

resonator systems are involved24–29. Yang et al. discussed the generation of entangled states in the

qutrit-resonator system24. Peng and coworkers realized experimentally the two-mode correlated

emission lasing in resonators coupled via a fully controllable superconducting flux qutrit25. Hua

et al. proposed a controlled phase gate having high fidelity and short operation time with two

superconducting resonators coupled to a transmon qutrit26. The circuit-QED implementations of

controlled phase gate27 and heralded near-deterministic controlled Toffoli gate28 were also pro-

posed based on superconducting qudits coupled to the resonator. Furthermore, the creation of

N-photon NOON states was realized in the multi-coupled qutrit-resonator system29. Note that also

more than the qubit two levels (or qutrit three levels) are found necessary in explaining the exper-

iments such as ATS15, geometric phase realization30, and a protocol for demonstrating quantum

supremacy31, and quantum state leakage and transition out of the qubit subspace are encountered in

both the qubit32 and qubit-resonator33 systems. In all these cases, it is imperative to have an accu-

rate description of the energy spectrum of the coupled superconducting qutrit- and qudit-resonator
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FIG. 1: (Color online) (a) Schematic of the coupled rf-SQUID type phase qudit (red) and resonator (blue)

system. The qudit has a Josephson critical current Ic, shunt capacitance Cq, and loop inductance Lq while

the resonator is characterized by its effective inductance Lr and capacitance Cr. They are coupled by a

capacitance Cc. The flux bias provides both dc and rf components of Φext = Φdc + Φr f (t). (b) Energy

potential and level diagram of a superconducting phase qudit. (c) Energy level diagram of a resonator.

systems when their level spacings are varied in the vicinity of the resonator frequency, as well

as the state population and transition in response to the microwave driving. So far, a detailed

theoretical treatment and its comparison with experiment are still lacking.

In this work, we investigate, both theoretically and experimentally, the energy spectrum of the

coupled superconducting four-level qudit-resonator system (the three-level qutrit-resonator system

is naturally included). We use an rf-SQUID type phase qudit so its level spacings can be conve-

niently tuned by changing the applied magnetic flux bias [see Fig. 1(a)]. The experimental spectra

are measured with increasing microwave power so that multi-photon processes are involved and

populations up to the third-excited level are detected [see Fig. 1(b)]. We show that the calculated

energy spectra from a theoretical model taking account of the multi-level structure of the qudit-

resonator system agree well with the experimental results. We then consider a simplified model

based on the small anharmonicity of the phase type device, which provides a straightforward pic-

ture of the state interactions and also a good fit to the experimental data. Furthermore, we use the
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Lindblad master equation containing various relaxation and dephasing processes to calculate the

population at each energy level of the qutrit-resonator system, which allows a clear understanding

of the dynamics of the system under microwave driving. Finally, we present examples that our

results can help to better understand and perform some experiments of the coupled multilevel and

resonator systems.

In the following, we will first present our theoretical formulation (section II) and a description

of the experiment (section III), followed by the results and discussions of the experiment and

numerical calculations (section IV). The final section V summarizes our main findings.

II. THEORY

The Hamiltonian of the coupled qudit-resonator system subject to a microwave field [see

Fig. 1(a) for the definition of various system parameters] can be written as

H = Hq + Hr + Hc

= H0
q −ΦqΦr f (t)/Lq + Hr + Hc

= H0 −ΦqΦr f (t)/Lq , (1)

with the subscripts q, r, and c denoting the qudit, the resonator, and their coupling, respectively.

In Eq. (1), Φq is the qudit’s flux variable and we separate the time-dependent microwave drive

Φr f (t)=A cos(ωt) term of -ΦqΦr f (t)/Lq from Hq so that in the absence of microwave drive the

qudit-resonator system’s Hamiltonian H0 = H0
q + Hr + Hc is time independent.

Details of the derivation and further discussion are presented in Appendix A. In short, by in-

troducing the creation and annihilation operators for the qudit, its Hamiltonian H0
q , which has an

anharmonic cubic potential, can be written as (~=1 will be used hereafter for simplicity):

H0
q = ωq

(

a†qaq +
1

2

)

+ η
(

a†q + aq

)3
(2)

where ωq is the Josephson plasma frequency and η is a small quantity compared to ωq. H0
q can be

diagonalized to obtain the qudit energy levels En corresponding to the eigenstates |n〉q (n = 0, 1, 2,

...), as shown in Fig. 1(b). Similarly, the Hamiltonian of the resonator can be written as:

Hr = ωr

(

a†r ar +
1

2

)

, (3)
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where ωr is the resonator frequency, with the energy levels ǫn = ωr(n + 1/2) corresponding to the

Fock states |n〉r (n = 0, 1, 2, ...) as shown in Fig. 1(c). Finally the interaction Hamiltonian reads:

Hc = g
(

a†qar + a†r aq

)

(4)

where g is the qudit-resonator coupling strength.

The total Hamiltonian H0 = H0
q +Hr+Hc of the qudit-resonator system, without the microwave

drive, is written in Eq. (A10) in the matrix form in the subspace { |00〉, |01〉, |10〉, |02〉, |11〉, |20〉,

|03〉, |12〉, |21〉, |30〉 }, where |mn〉 ≡ |m〉r |n〉q. We note that all of the nonzero off-diagonal elements

in Eq. (A10) contain the small parameter α = η/ωq. For the qudit with small anharmonicity, we

have a small α, so the system Hamiltonian H0 in Eq. (A10) is approximated as α→ 0 to be

H′0 =
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(5)

Eq. (5) captures the most fundamental interactions among the basis states of the system as shown

in Fig. 2, which will be discussed below.

For the master equation simulation, we take into account the time-dependent Hamiltonian H′

= H′
0
− ΦqΦr f (t)/Lq. For simplicity and without loss of generality, the simpler qutrit-resonator

system with 6×6 Hamiltonian matrix spanned in the smaller subspace formed by |00〉, |01〉, |10〉,

|02〉, |11〉, |20〉 will be considered, whose detailed discussion is given in Appendix B. Denoting

various qutrit-microwave and resonator-microwave detunings as ∆p = ω10 − ω, ∆c = ω21 − ω,

∆r = ωr − ω, where ωi j is the qutrit level spacings, and perform a rotating-wave approximation to
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FIG. 2: (Color online) Energy level diagram of the coupled qudit and resonator system. The levels are

shown for three different resonant cases of ω10 = ωr (1-photon), ω20 = 2ωr (2-photon), and ω30 = 3ωr

(3-photon), respectively.

drop terms oscillating with frequency 2ω, we arrive at:

HRWA =
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, (6)

in whichΩ = χ0/2, and χ0 is defined from −ΦqΦr f (t)/Lq = χ(t)(a
†
q+aq)/

√
2 and χ(t) = χ0 cos(ωt) .

Eq. (6) indicates that in addition to the state-to-state interactions given in Eq. (5) and Fig. 2, the

microwave further introduces couplings between the |00〉 and |10〉, |10〉 and |20〉, and |01〉 and |11〉

states with coupling strengths proportional to Ω.

The Lindblad master equation has the usual form:

ρ̇ = −i[HRWA, ρ] +
∑

l

D[Al]ρ , (7)

where ρ is the density matrix of the coupled qutrit-resonator system and D[Al]ρ is the Lindblad
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operators containing various relaxation and dephasing processes:

D[Al]ρ = (2AlρA
†
l
− A

†
l
Alρ − ρA†l Al)/2 . (8)

The operators Al can generally be written as Ai j=
√
γi j| j〉〈i|, Aϕi=

√

2γϕi|i〉〈i|, and Aκ=
√
κar for

the qutrit energy relaxation, dephasing, and photon decay in the resonator, respectively. Here γi j

denotes the relaxation rate from qutrit level i to level j and γϕi is the dephasing rate of qutrit level

i. Explicit expressions for these operators can be found in Appendix B.

III. EXPERIMENT

In the present work, we used an Al-junction-based rf-SQUID type phase qudit34,35 which was

coupled to a coplanar waveguide (CPW) resonator, as is shown schematically in Fig. 1. The qudit

was described by three parameters: The junction’s critical current Ic and capacitance Cq, and the

SQUID loop inductance Lq. The CPW resonator had the effective parameters of capacitance Cr

and inductance Lr, with a coupling capacitor Cc connecting to the qudit. The flux bias provided

both dc and rf components of Φext = Φdc + Φr f (t) for tuning the qudit level spacings and per-

forming the state manipulation, respectively. The 3-junction dc-SQUID was used for the qudit

state readout. The sample was mounted on an oxygen-free copper platform thermally anchored to

the mixing chamber of an Oxford cryogen-free dilution refrigerator which was cooled to T ≈ 10

mK. The qudit control and measurement circuit included various filtering, attenuation, and ampli-

fication, and a trilayer µ-metal shield was used outside the OVC (outer vacuum chamber) of the

refrigerator36–38.

The resonator had a measured fundamental frequency of fr = ωr/2π = 6.205 GHz, and the

qudit-resonator coupling strength was g/2π ∼ 18 MHz. In the experiment, we changed the flux

bias such that the qudit level spacings vary in the vicinity of ωr and its energy spectra from single-

or multi-photon excitation were traced out under increasing microwave power. By fitting the

theoretical results to the experimental data, the qudit parameters in Fig. 1(a) were adjusted around

designed values39 and found to be Ic = 1.21 µA, Cq = 1280 fF, Lq = 814 pH, while the resonator

had the parameters Cr = 809 fF, Lr = 808 pH, and Cc = 5.5 fF considering ωr = 1/
√

LrCr and Z0

= (π/2)
√

Lr/Cr = 50 Ω. The corresponding Josephson energy and charging energy of the phase

device are EJ ≈ 601 GHz and EC ≈ 15 MHz, respectively.

For the master equation simulation, we measured the relaxation and dephasing parameters at
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TABLE I: Experimental relaxation, dephasing, and decay parameters for the phase qutrit-resonator system

measured at the flux bias of Φdc = 0.7053 Φ0
40,41.

Parameter γ10(sec−1) γ21(sec−1) γϕ1(sec−1) γϕ2(sec−1) κ (sec−1)

2.8×106 5.1×106 8.1×106 16.2×106 3.5×105

a given flux bias Φdc = 0.7053 Φ0 with level spacings of f10 = ω10/2π = 5.555 GHz and f21 =

ω21/2π = 5.393 GHz, which were away from fr. The measured energy relaxation times in this

case were T10 = 1/γ10 = 353 ns and T21 = 1/γ21 = 196 ns, respectively, while the dephasing

time determined from Ramsey interference experiment was Tϕ1=1/γϕ1=124 ns40. The time decay

of the photon state in the resonator was also measured, which leads to a Tr = 1/κ = 2.866 µs.

These relaxation and decay parameters, which were used in the master equation simulations, are

summarized in Table I41.

IV. RESULTS AND DISCUSSIONS

To measure the energy spectrum of the coupled qudit-resonator system, we apply a continuous

single-tone microwave, namely a microwave pulse with duration much greater than T1 . For a given

level of microwave power, the dc flux bias and the microwave frequency in the neighborhood of the

resonator frequency fr are varied while the populations at the qudit excited states are monitored.

The magnitude of the readout pulse is chosen such that the population of all the excited states

(P1 + P2 + P3) except that of the ground state (P0) is measured. Figs. 3(a)-(c) show the measured

results at three different microwave power levels. In Fig. 3(a), with low microwave power, the

familiar avoided crossing is seen, which results from the dressed states formed from |0〉r |1〉q and

|1〉r|0〉q when the qudit level spacing ω10 is varied in the neighborhood of the resonator frequency

ωr (see Fig. 1 for the uncoupled state labeling). Here only the first excited states of the qudit and

resonator are involved at low microwave power. As the microwave power is increased, it can be

seen in Fig. 3(b) that more spectral lines appear, as indicated by the white arrows. These spectral

lines should arise from certain dressed states formed by different higher-excited uncoupled qudit-

resonator states. In this case, the avoided crossing is located at a different qudit flux bias compared

to that in Fig. 3(a). As is shown in Fig. 3(c), still new spectral lines appear, pointed again by the

white arrows, when the microwave power is further increased.
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FIG. 3: (Color online) Left panels: Experimental spectroscopic scans as a function of flux bias for three

microwave driving powers. (a) -100 dBm; (b) -95 dBm; (c) -70 dBm. Right panels: Dressed state energy

levels. Experimental (symbols) and theoretical (solid lines) spectral lines involving the first (d), the second

(e), and the third (f) excited states of the qudit and resonator system shown in Fig. 2. Experimental data

are taken from the spectra in (a)-(c) while the theoretical ones in (e) and (f) are the calculated results

divided by a factor of 2 and 3, respectively. Note that the horizontal scales are different in (d), (e), and (f).

The straight broken lines show the uncoupled qudit and resonator levels as indicated. The circle, squares,

upward triangles, and downward triangle indicate the nearby bare states interaction strengths of g/π,
√

2g/π,

√
3g/π, and 2g/π, respectively (see Fig. 2). Single and double arrows indicate weaker interactions between

two states via one and two intermediate states, respectively.

A. Energy spectrum of the qudit-resonator system

To understand how each of the spectral lines in Figs. 3(a)-(c) forms and their origins, we cal-

culate the eigen energy levels and eigenvectors by solving the eigenvalue equation of the coupled

9



qudit-resonator system, in which the applied microwave field is first disregarded as mentioned

above. In Figs. 3(d)-(f), we show the calculated energy spectra (solid lines) using the Hamilto-

nian H0 in Eq. (A10) and the qudit-resonator parameters discussed above. In Fig. 3(d), the peak

position of the experimental spectral lines in Fig. 3(a) (pointed by two downward arrows) are

plotted as solid squares, which agree very well with the calculated results. As discussed above,

these spectral lines are from the dressed sates of the uncoupled |0〉r |1〉q and |1〉r|0〉q when the qudit

level spacing ω10 varies in the neighborhood of the resonator frequency ωr. The downward-arrow

pointed experimental lines in Figs. 3(b) and (c) with increasing microwave powers are also plotted

as symbols in Figs. 3(e) and (f), respectively. The two upward-arrow pointed lines in Figs. 3(b)

and (c) are found to be a single spectrum appearing under different microwave powers and, from

the comparison between the data and numerical calculation discussed below, should be grouped

into one spectral line in Fig. 3(e) (middle spectrum represented by the symbols).

The solid lines in Figs. 3(e) and (f) are the calculated energy levels using H0, but with the mag-

nitudes divided by 2 and 3, respectively. We see that the experimental data are fitted very well by

the respective calculated results, which indicates that the experimental spectral lines in Figs. 3(b)

and (c) pointed by the arrows are resulted from 2- and 3-photon processes with increasing mi-

crowave powers, respectively.

From the previously determined system parameters we find that the calculated coefficient η in

the anharmonic term in Eq. (2) is small compared to the harmonic term ωq. At the flux bias of Φdc

= 0.6810Φ0, for instance, we have the calculated η/2π ≈ 91.5 MHz and ωq/2π ≈ 6.29 GHz, which

lead to the parameter α = η/ωq ∼ 0.015. The qudit-resonator coupling strength g/2π is calculated

to be 17.3 MHz, which is much smaller compared to both ωq and ωr. With these parameters,

we find that the calculated spectra using the approximated Hamiltonian H′0 (as α → 0) given by

Eq. (5), when plotted also in Fig. 3, are almost indistinguishable from the solid lines calculated

using H0 [slight difference only visible in some parts of the lines in Fig. 3(f)], which indicates a

good approximation of H0 by H′0 for the present qudit device with small anharmonicity.

The Hamiltonian H′
0

in Eq. (5) provides a clear physical picture of the main interactions in

the coupled qudit-resonator system. In Fig. 2, we show the energy level diagram of the system

with the interactions in the limit of α→ 0. The levels are aligned in the single-, two-, and three-

photon resonant cases of ω10 = ωr, ω20 = 2ωr, and ω30 = 3ωr, where the qudit level spacings

increases as the dc flux bias decreases toward 0.5 Φ0. With this, the observed qudit-resonator

spectral lines in Figs. 3(a)-(c) can be explained with a good approximation as follows. In Fig. 3(d),
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the dressed spectral lines (soild lines) result from the interaction of the |1〉r|0〉q (dashed line) and

|0〉r|1〉q (dotted line) bare states with the coupling strength of g/π as symbolized by a circle in the

figure. Similarly, in Fig. 3(e), the dressed spectral lines (soild lines) resulting from the interactions

between the |2〉r|0〉q (dashed line) and |1〉r|1〉q (dotted line) bare states, and between the |1〉r|1〉q
(dotted line) and |0〉r|2〉q (dashed-dotted line) bare states have the coupling strength of

√
2g/π as

indicated by two squares. A common feature of these results is that each bare states pair forming

the dressed state splitting has direct interactions within the pair, namely the states within the pair

are linked by single-photon transitions, which can be seen clearly in Eq. (5) and Fig. 2.

The avoided crossing indicated by the arrow in Fig. 3(e) has a smaller splitting that seems to

originate from the interaction between |2〉r|0〉q (dashed line) and |0〉r|2〉q (dotted line) bare states.

However, in addition to its small size, the splitting is different since there is no single-photon

transition linking the two bare states. To further explain the result, we consider the 3×3 submatrix

in Eq. (5) spanned in the |02〉, |11〉, |20〉 subspace (namely in the 4th to 6th rows and columns). If

we look at the particular flux bias indicated by the arrow in Fig.3 (e), the three eigenvalues of the

submatrix are found to be a and (a + b ± δ)/2, where a = ǫ0 + E2 = ǫ2 + E0, b = ǫ1 + E1, and δ =
√

(a − b)2 + 16g2. The corresponding eigenvectors are [−1 0 1] and [1 (b − a ± δ)/2
√

2g 1]

(unnormalized), respectively. Hence one of the dressed state energies equals that of the |0〉r|2〉q and

|2〉r|0〉q bare states at their degeneracy point, while the other two locate at the points shifted upward

and downward respectively by an amount of δ/2 from the average value of the bare state energies

a and b. The normalized eigenvectors can be written explicitly as [0.350 0.869 0.350], [−0.707

0 0.707], and [0.614 −0.495 0.614] for the three dressed states with decreasing energies in

Fig.3 (e). The dressed state with highest energy is therefore a superposition of three bare states

|0〉r|2〉q, |1〉r|1〉q, and |2〉r |0〉q, with a prevailing contribution from the |1〉r|1〉q state of 75.5%. While

the middle dressed state is a superposition of the |0〉r|2〉q and |2〉r|0〉q states, the lowest one still

has a 24.5% contribution from the |1〉r|1〉q state, which is therefore involved in the small splitting

seemingly originating from the |2〉r |0〉q and |0〉r|2〉q states due to the absence of single-photon

linkage between them. As a comparison, the three dressed-state eigenvectors at the flux biases

corresponding to the left and right avoided crossings indicated by the two squares in Fig. 3(e),

arranged with decreasing energies, are [0.662 0.734 0.152], [−0.746 0.628 0.218], [0.065

−0.258 0.964] and [0.661 0.734 0.154], [0.747 −0.626 −0.223], [0.067 −0.263 0.963],

respectively. So the dressed-state pair at the left (right) avoided crossing has an overwhelming

contribution of > 95% from their corresponding bare states of |1〉r|1〉q and |0〉r|2〉q (|2〉r |0〉q and
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|1〉r|1〉q).

Similar explanations can also be made for the data in Fig. 3(f), in which four higher-excited

bare states are involved and three single-photon linkages with two different strengths of
√

3g/π

and 2g/π (see Fig. 2) lead to the three splittings that are indicated by up- and down-triangles,

respectively. Two smaller splittings, indicated by two single arrows, result approximately from

interactions taking account of an additional third bare state, similar to the result discussed above

for Fig. 3(e). In Fig. 3(f), the smallest splitting indicated by the double arrows originates from the

interactions where a fourth bare state needs to be considered.

B. Master equation solutions

In order to have a better understanding of the level population distribution and the intensity of

the experimental spectral lines in Figs. 3(a)-(c), we take into account the microwave field applied

in the measurement as well as various relaxation, dephasing, and decay processes, considering

the simpler qutrit-resonator system as an example. Such a dynamical system can be described in

terms of the Lindblad master equation, from which it is possible to discuss the contributions from

different energy level populations to the spectral lines shown in Figs. 3(a)-(c) (note that all the

excited states populations are measured in the experimental data).

In Fig. 4 we show the calculated qutrit excited-states population P1 + P2 using the relaxation,

dephasing, and decay parameters listed in Table I. It can seen that the results in Fig. 4(a) reproduce

very well the experimental data in Fig. 3(a). With a similar factor of the microwave power increase,

the numerical results in Fig. 4(b) also reproduce those in Fig. 3(b), indicating a good agreement

between the theory and experiment. A slight difference in the latter case is that the experimental

spectral line at a higher microwave power level shown in Fig. 3(c) and pointed by a upward arrow

starts to appear (though not clearly) in the calculated spectra in Fig. 4(b) at the lower microwave

power level.

The result in Fig. 4(a) is calculated at a low microwave power level where single photon exci-

tation is involved. In this case, the population P2 at the second-excited state is approximately zero

and for the data at the center of avoided crossing, as pointed by an arrow, the dressed states are the

equal superpositions of the bare states |1〉r|0〉q and |0〉r |1〉q. The spectral line is therefore composed

of two peaks with equal height and width. Away from the avoided crossing, the height and width

of the two peaks will change in opposite directions, with one peak evolving to the |1〉r|0〉q state
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FIG. 4: (Color online) Calculated spectra a function of flux bias at the microwave driving powers of (a)

Ω/2π = 1.1 MHz and (b) Ω/2π = 3.5 MHz. The arrow in (a) indicates the resonant point. Three vertical

dashed lines in (b) indicate the cuts at flux biases of Φdc = 0.6766, 0.6786, and 0.6806 Φ0, respectively.

showing decreasing qutrit population P1 while the other to the |0〉r |1〉q state showing increasing

P1 [see Fig. 3(d)]. These are confirmed by the master equation simulations, from which it is also

seen that the process as well as the line shapes is influenced by the coherence times of the coupled

qutrit-resonator system.

The solid lines in Fig. 5 from (a) to (c) are the data in Fig. 4(b) along the three cuts indicated

by the vertical dashed lines from left to right, respectively, while symbols are the corresponding

experimental results in Fig. 3(b). The dashed lines are the calculated second-excited state popu-

lation P2. The three cuts correspond to the positions of the three avoided crossings denoted by

the left square, the arrow, and the right square in Fig. 3(e). At this higher microwave power level,

we see that P2 has significant contributions at certain frequencies resulting from the two-photon

excitation. The spectral peaks from the single photon excitation discussed above become higher

and broader under higher microwave power driving. These peaks, as indicated by upward arrows

in Fig. 5, still have predominant P1 (also P0, note that P0+P1+P2=1) contributions, with the ratio

P2/(P1+P2) below 0.03. Other peaks are contributed by P1, P2, and also P0 of the dressed states
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FIG. 5: (Color online) Calculated spectra at the microwave driving powers of Ω/2π = 3.5 MHz (lines). (a)

Φdc = 0.6766 Φ0, (b) Φdc = 0.6786 Φ0, and (c)Φdc = 0.6806 Φ0, corresponding to the three cuts in Fig. 4(b).

Symbols are the experimental data measured at microwave power of -95 dBm.

formed by the bare states |2〉r|0〉q, |1〉r|1〉q, and |0〉r|2〉q as shown in Fig. 3(e). We point out that

when the system’s coherence times increase, the spectral peaks will become sharper, namely their

height and width will increase and decrease, respectively.

C. Applications

There are a number of studies in which the coupled qutrit-resonator or qudit-resonator systems

are involved24–29,33. Our results can provide better understanding and control of the experiments.

For instance, the creation of N-photon NOON states was studied in a coupled qutrit-resonator

system29. In this experiment, two qutrits q1 and q2 are both coupled to a bus resonator C while

14



they are individually coupled to the storage resonators A and B, respectively. The NOON states in

A and B with N up to 3 are experimentally demonstrated. We show that the preparation of such

states can be visualized and better controlled with the help of our results such as those shown in

Figs. 2 and 3.

The NOON state preparation with arbitrary N starts by exciting q1 to its first excited state,

which is then half-swapped to C by bringing them into resonance. This process follows basically a

route in Fig. 2 from |00〉 to |01〉 (excitation, off-resonance) and then to |10〉 (swap, on-resonance),

with the swap being performed at the point indicated by the circle in Fig. 3(d). After this, q1 is set

off-resonance while q2 is brought to resonance with C and the state in C is fully swapped to q2, thus

generating a Bell state in the coupled q1 and q2. Then, for the N=3 NOON state, each qutrit goes

through a route from |01〉 to |02〉 (excitation, off-resonance) to |11〉 (swap, on-resonance) to |12〉

(excitation, off-resonance) to |21〉 (swap, on-resonance) in Fig. 2, with the two swaps performed

at the points indicated by the left square in Fig. 3(e) and down-triangle in Fig. 3(f), respectively.

Finally both qutrits follow the route from |21〉 to |30〉 in Fig. 2 by swapping at the point indicated

by the right up-triangle in Fig. 3(f), thus creating the N=3 NOON state. In this experiment, suitable

qutrits bias points can be easily known from Figs. 3(d)-(f) and state coupling strength from Fig. 2,

which is critical for determining the swap time.

The coupled qubit-resonator system is often used for the quantum state measurement6–8. Very

recent works have found that such measurements can induce state transitions out of the two-level

subspace of the qubit if the measurement microwave power (or the number of photons) in the res-

onator is increased to a high level33. The excitation to the fifth excited states was observed and

explained using Jaynes-Cummings model with terms usually ignored in the rotating wave approx-

imation. Within our theoretical framework, a reverse process can readily be considered: What will

be the photon number in the resonator when the qutrit or qudit is driven with increasingly higher

microwave power? In Fig. 6, we show the calculated results of the average photon number N in

the resonator (see Appendix B) versus qudit flux bias and microwave frequency at two microwave

powers of Ω/2π = 1.1 and 3.5 MHz, which correspond to the power levels in Fig. 4. In the case

of Fig. 6(a), it can be seen that although the microwave is applied directly to the qudit only, there

will be considerable excitation of photons in the resonator when the microwave frequency is near

the frequencies of both the resonator (ωr) and qudit (ω10).

This may not be surprising since the qudit and resonator form a coupled system. In the inset

of Fig. 6, we show the probabilities P̃1 and P̃2 of having one and two photons in the resonator
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FIG. 6: (Color online) Calculated average photon number N in the resonator versus qudit flux bias and

microwave frequency at the microwave powers of (a) Ω/2π = 1.1 MHz and (b) Ω/2π = 3.5 MHz, cor-

responding to those in Fig. 4. Inset shows the probabilities P̃1 and P̃2 with one and two photons in the

resonator along the dashed line in (a). Note that N = P̃1 + 2P̃2 (see Appendix B).

at a flux bias of Φdc = 0.6770 Φ0 [along the dashed line in Fig. 6(a)]. Note that N = P̃1 + 2P̃2.

P̃1 shows two peaks near ωr and ω10 while P̃2 has one peak near ωr. In Fig. 6(b), more photon

spectral lines can be seen as the microwave power increases. In this case, more qudit energy levels

and multi-photon processes are involved.

V. SUMMARY

We systematically studied the energy spectrum of the coupled superconducting phase qudit-

resonator system where the qudit level spacings were varied around the resonator frequency by

changing the applied magnetic flux bias. The experimental spectra were measured with increas-

ing microwave power so that the emergence of multi-photon processes were clearly observed and

populations up to the third-excited level of the qudit were detected. Using the experimentally

determined sample parameters, the calculated spectra of the qudit-resonator system fitted the ex-
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perimental data very well. In particular, due to the small anharmonicity of the phase device a

simplified theoretical model capturing the leading order qudit-resonator interactions was proposed

to account for the experimental results. The Lindblad master equation was also used to calcu-

late the level populations for the case of the qutrit-resonator system, which provided a detailed

description of the dynamics of the system under the microwave excitation. These results are use-

ful to understand and perform experiments in coupled multilevel-resonator systems, and are also

applicable to artificial atoms with weak anharmonicity such as the transmon and Xmon devices.
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Appendix A: The eigenvalue problem of the qudit-resonator system

The Hamiltonian of the coupled qudit-resonator system (see Fig. 1 for various parameters and

symbols) can be written as

H = Hq + Hr + Hc (A1)

with the subscripts q, r, and c denoting the qudit, the resonator, and their coupling, respectively:

Hq =
1

2

Q2
q

C′q
+

(

Φq −Φext

)2

2Lq

− EJ cos

(

2π
Φq

Φ0

)

≈
1

2

Q2
q

C′q
+

(

Φq −Φdc

)2

2Lq

− EJ cos

(

2π
Φq

Φ0

)

−
ΦqΦr f (t)

Lq

≡ H0
q −
ΦqΦr f (t)

Lq

, (A2)

Hr =
1

2

Q2
r

C′r
+
Φ2

r

2Lr

, (A3)

Hc =
QqQr

C′c
, (A4)
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in which Φ0 is the flux quantum, EJ = (Φ0/2π)Ic, Φr f (t)=A cos(ωt) represents the applied mi-

crowave field with ω being the microwave frequency, and Φq,r and Qq,r are the canonically conju-

gate variables. In particular, they represent the flux and charge in the case of the qudit. C′q, C′r and

C′c are defined by

C′q = (CrCc +CcCq + CqCr)/(Cr + Cc) ,

C′r = (CrCc + CcCq +CqCr)/(Cq + Cc) ,

C′c = (CrCc +CcCq + CqCr)/Cc .

It can be seen that as Cc → 0, we have C′q → Cq, C′r → Cr, and C′c → CqCr/Cc. Now we consider

the time-independent part of the Hamiltonian:

H0 = H0
q + Hr + Hc . (A5)

Expanding the qudit potential as Taylor series around the local minimum, H0
q in Eq. (A2) can be

written as15:

H0
q =

1

2

Q2
q

C′q
+
Φ2

q

2L∗
J

+
Φ3

q

2Φ0L∗
(A6)

where

L∗J = LJ/λ

L∗ = 3Lq/π (2λ + ξ)

λ =
[

2 + π (1 − 4Φdc/Φ0) β−1 + β−2
]1/2

ξ = 4πΦdc/Φ0 − 2β−1 − π,

with LJ = Φ0/ (2πIc), and β =
(

2πLqIc

)

/Φ0. Introducing the creation and annihilation operators

a
†
q and aq for the harmonic part of Eq. (A6), defined by

Φq =

√

1

2C′qωq

(

a†q + aq

)

, Qq =

√

C′qωq

2

(

a†q − aq

)

where ωq =

√

1/L∗
J
C′q is the Josephson plasma frequency, we can write the Hamiltonian of the

qudit as:

H0
q = ωq

(

a†qaq +
1

2

)

+ η
(

a†q + aq

)3
(A7)
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where η =
(

1/2C′qωq

)3/2
/2Φ0L∗. The qudit Hamiltonian H0

q in Eq. (A7) can be diagonalized,

which leads to the bottom four eigenvalues of E0 = ωq/2 − 11η2/ωq, E1 = 3ωq/2 − 71η2/ωq,

E2 = 5ωq/2 − 191η2/ωq, and E3 = 7ωq/2 − 371η2/ωq.

In the similar way, using the creation and annihilation operators:

Φr =

√

1

2C′rωr

(

a†r + ar

)

,Qr =

√

C′rωr

2

(

a†r − ar

)

,

the Hamiltonian of the resonator can be written as:

Hr = ωr

(

a†r ar +
1

2

)

(A8)

where ωr =
√

1/LrC′r. Finally the interaction Hamiltonian reads:

Hc = g
(

a†qar + a†r aq

)

, (A9)

where g =
√

ωqC′q/2
√

ωrC′r/2/C
′
c is the coupling strength. In the present experiment the measured

energy spectra of the coupled system show the spectral lines of the dressed states resulting from up

to the third excited states of both the qudit and resonator components. To explain these results we

write the time-independent Hamiltonian H0 in the matrix form in the subspace { |00〉, |01〉, |10〉,

|02〉, |11〉, |20〉, |03〉, |12〉, |21〉, |30〉 }, with the two indices in each base vector denoted for the

eigenstates of Hr and H0
q respectively:

H0 =













































































































































ǫ0 + E0 0 −3αg 0 3α2g

0 ǫ0 + E1 (1 + 116
3
α2)g 0 −9αg

−3αg (1 + 116
3
α2)g ǫ1 + E0 3

√
2αg 0

0 0 3
√

2αg ǫ0 + E2 (
√

2 + 560
3

√
2α2)g

3α2g −9αg 0 (
√

2 + 560
3

√
2α2)g ǫ1 + E1

0 0 −3
√

2αg 0 (
√

2 + 116
3

√
2α2)g

0 0 −11
√

6α2g 0 3
√

6αg

−
√

2αg −36
√

2α2g 0 −15αg 0

0 0 3
√

2α2g 0 −9
√

2αg

0 0 0 0 0

19



0 0 −
√

2α 0 0

0 0 −36
√

2α2g 0 0

−3
√

2αg −11
√

6α2g 0 3
√

2α2g 0

0 0 −15αg 0 0

(
√

2 + 116
3

√
2α2)g 3

√
6αg 0 −9

√
2αg 0

ǫ2 + E0 0 3
√

2αg 0 −3
√

3αg

0 ǫ0 + E3 (
√

3 + 1660
3
α2)g 0 0

3
√

2αg (
√

3 + 1660
3
α2)g ǫ1 + E2 (2 + 1120

3
α2)g 0

0 0 (2 + 1120
3
α2)g ǫ2 + E1 (

√
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3
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3α2)g

−3
√

3αg 0 0 (
√

3 + 116
3

√
3α2)g ǫ3 + E0













































































































































(A10)

where ǫn = ωr(n + 1/2) and α = η/ωq. The eigenvalues of the coupled qudit-resonator system can

be obtained by solving Eq. (A10).

Appendix B: The Lindblad master equation

The Lindblad master equation has the form:

ρ̇ = −i[H, ρ] +
∑

l

D[Al]ρ , (B1)

where ρ is the density matrix of the coupled qutrit-resonator system, H is the total Hamiltonian

including the time-dependent driving microwave term:

H = H0 −ΦqΦr f (t)/Lq , (B2)

andD[Al]ρ is the Lindblad operators containing various relaxation and dephasing processes:

D[Al]ρ = (2AlρA
†
l
− A

†
l
Alρ − ρA†l Al)/2 . (B3)

The second term on the right-hand side of Eq. (B2) can be written as −ΦqΦr f (t)/Lq = χ(t)(a
†
q +

aq)/
√

2 with

χ(t) = −
Φr f (t)

L

√

1

C′qωq

= χ0 cos(ωt) . (B4)

To discuss the qutrit we restrict ourselves in the subspace { |00〉, |01〉, |10〉, |02〉, |11〉, |20〉 } and

replace H0 with H′
0

given in Eq. (5) so the Hamiltonian H becomes H′ = H′
0
−ΦqΦr f (t)/Lq, which
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is expressed in the 6×6 matrix form:

H′ =















































































0 χ/
√

2 0 0 0 0

χ/
√

2 ω10 g χ 0 0

0 g ωr 0 χ/
√

2 0

0 χ 0 ω10 + ω21

√
2g 0

0 0 χ/
√

2
√

2g ωr + ω10

√
2g

0 0 0 0
√

2g 2ωr















































































, (B5)

in which ω10=E1 − E0 and ω21=E2 − E1. If we perform a unitary transformation

H′′ = U†H′U − i(∂U†/∂t)U (B6)

with

U =















































































1 0 0 0 0 0

0 e−iωt 0 0 0 0

0 0 e−iωt 0 0 0

0 0 0 e−i2ωt 0 0

0 0 0 0 e−i2ωt 0

0 0 0 0 0 e−i2ωt















































































, (B7)

which brings the system to a doubly rotating reference frame with frequencies of ω and 2ω, we

have

H′′ =





































































































0
(

1 + ei2ωt
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χ0/2
√

2 0 0 0 0

(

e−i2ωt + 1
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√

2 ω10 − ω g
(
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(

1 + ei2ωt
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√

2 0
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(

e−i2ωt + 1
)

χ0/2 0 (ω10 + ω21) − 2ω
√

2g 0

0 0
(

e−i2ωt + 1
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χ0/2
√

2
√

2g (ωr + ω10) − 2ω
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2g

0 0 0 0
√

2g 2ωr − 2ω





































































































.

(B8)

Furthermore, if we define ∆p = ω10 −ω, ∆c = ω21 −ω, ∆r = ωr −ω, and perform a rotating-wave

approximation to drop terms oscillating with frequency 2ω, we arrive at:
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HRWA =
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2 ∆p g Ω 0 0

0 g ∆r 0 Ω/
√

2 0

0 Ω 0 ∆p + ∆c
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(B9)

in which Ω = χ0/2.

The operators Al in Eq. (B3) can generally be written as Ai j=
√
γi j| j〉〈i|, Aϕi=

√

2γϕi|i〉〈i|, and

Aκ=
√
κar for the qutrit energy relaxation, dephasing, and photon decay in the resonator, respec-

tively. Here γi j denotes the relaxation rate from qutrit level i to level j and γϕi is the dephasing rate

of qutrit level i. These parameters are all related to the experimentally measurable ones through

γ10 = 1/T10, γ21 = 1/T21, γϕ1 = 1/Tϕ1, γϕ2 = 1/Tϕ2, κ = 1/Tr. The operators Al for these processes

can therefore be written in the matrix form as:

A10 =
√
γ10















































































0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0















































































, (B10)

A21 =
√
γ21
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0 0 0 1 0 0
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0 0 0 0 0 0

0 0 0 0 0 0
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, (B11)
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Aϕ1
=
√
γϕ1
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, (B12)

Aϕ2
=
√
γϕ2
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, (B13)

Aκ =
√
κ
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. (B14)

We note that in Eq. (B10) there are two nonzero matrix elements, which correspond to the cases

when the resonator is in the zero or one photon state. In Eq. (B11) the second nonzero element

corresponding the the one photon state of the resonator does not appear due to the smaller subspace

we have considered. Similar situation occurs for Eqs. (B12) and (B13), respectively.

In the same subspace { |00〉, |01〉, |10〉, |02〉, |11〉, |20〉 }, the density matrix can be written as:

ρ =















































































ρ00 ρ01 ρ02 ρ03 ρ04 ρ05

ρ10 ρ11 ρ12 ρ13 ρ14 ρ15

ρ20 ρ21 ρ22 ρ23 ρ24 ρ25

ρ30 ρ31 ρ32 ρ33 ρ34 ρ35

ρ40 ρ41 ρ42 ρ43 ρ44 ρ45

ρ50 ρ51 ρ52 ρ53 ρ54 ρ55















































































. (B15)
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Using Eqs. (B9)-(B15), one is able to find the steady state solution of ρ from Eq. (B1). The

qutrit level populations are finally given by

P0 = ρ00 + ρ22 + ρ55 ,

P1 = ρ11 + ρ44 , (B16)

P2 = ρ33 .

Since the probabilities of having one and two photons in the resonator are P̃1 = ρ22 + ρ44 and

P̃2 = ρ55, respectively, the average number of photons in the resonator is

N = ρ22 + ρ44 + 2ρ55 , (B17)

or

N = P̃1 + 2P̃2 . (B18)
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11 Feng Mei, Vladimir M. Stojanović, Irfan Siddiqi, and Lin Tian, Phys. Rev. B 88, 224502 (2013).

12 Kangjun Seo and Lin Tian, Phys. Rev. B 91, 195439 (2015).

13 J. Q. You and F. Nori, Nature 474, 589 (2011).
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