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We study the intrinsic fully-gapped odd-parity superconducting order in doped nodal-loop ma-
terials with a torus-shaped Fermi surface. We show that the mirror symmetry, which protects the
nodal loop in the normal state, also protects the superconducting state as a topological crystalline
superconductor. As a result, the surfaces preserving the mirror symmetry host gapless Majorana
cones. Moreover, for a Weyl loop system (two-fold degenerate at the nodal loop), the surfaces that
break the mirror symmetry (those parallel to the bulk nodal loop) contribute a Chern (winding)
number to the quasi-two-dimensional system in a slab geometry, which leads to a quantized thermal
Hall effect and a single Majorana zero mode bound at a vortex line penetrating the system. This
Chern number can be viewed as a higher-order topological invariant, which supports hinge modes
in a cubic sample when mirror symmetry is broken. For a Dirac loop system (four-fold degenerate
at the nodal loop), the fully gapped odd-parity state can be either time-reversal symmetry-breaking
or symmetric, similar to the A- and B- phases of 3He. In a slab geometry, the A-phase has a Chern
number two, while the B-phase carries a nontrivial Z2 invariant. We discuss the experimental
relevance of our results to nodal-loop materials such as CaAgAs.

I. INTRODUCTION

Over the past few years, the study of topological band
structures has been extended from gapped systems to
gapless systems, which exhibit topologically protected
gap closing nodes. Other than the well-known Weyl
and Dirac semimetals (For reviews, see e.g., Refs. 1 and
2), where gapless points form isolated points in mo-
mentum space, another particularly interesting case is
when the gapless points form a closed loop3–15. These
so-called nodal-loop semimetals have recently been pro-
posed to exist in e.g., Ca3P2

11, TlTaSe2
12, CaAgP and

CaAgAs16. In the case of CaAgAs, magneto-transport
properties13,17 and direct measurement of angle-resolved
photoemission spectroscopy (APPES)18,19 show evidence
of a single nodal loop near the Fermi level. Depending on
the band structure, the nodal loop can either be two-fold
degenerate or four-fold degenerate, commonly referred to
as Weyl loop and Dirac loop, respectively. The nodal
loop can be thought of as sources of Berry curvature
in momentum space, thus a closed loop surrounding the
nodal line has Berry phase of π. As a result of the non-
trivial topology, there exist degenerate two-dimensional
(2D) energy bands that are localized on surfaces paral-
lel to the nodal loop whose momentum range is confined
by the projection of the nodal loop, also known as the
“drumhead bands”20–23. Another remarkable feature of
the nodal-ring band structure is the torus-shaped Fermi
surface (FS) if the Fermi level is not exactly at the nodal
point (neutrality). There is currently great theoretical
and experimental interest in searching and exploring ex-
otic properties in these materials24,25.

While most studies on nodal-loop materials focus on
the band structure in the free-electron limit, a natural
extension is to consider interaction effects25–29. One par-

ticularly interesting direction is superconducting orders
which develop at low temperatures30. For the Weyl loop
case, it was found that due to the nontrivial (pseudo)-
spin texture on the torus FS, the leading superconducting
instability is toward a chiral p-wave pairing26,31, which
leads to a full gap. Given the nontrivial band structure
and the px+ ipy order, it is interesting to ask what is the
topology of the nodal loop superconductor. Via argu-
ments in analogy with the 2D px+ ipy superconductivity
and numerical calculations, a previous work by one of
us32 suggested that the p-wave order induces topological
superconductivity on the surface drumhead bands. How-
ever, unlike a true 2D px+ipy superconductor, which has
a trivial phase and topological phase depending on chem-
ical potential, it was argued that the drumhead supercon-
ductor is always in the topological phase. Thus nodal-
loop materials provide a new direction for the search of
novel topological superconductors. Nonetheless, a full
understanding of the topological characterization of the
chiral p-wave order is still lacking. In particular, we note
that the chiral p-wave order, which breaks time-reversal
symmetry, belongs to class D of the Altland-Zirnbauer
symmetry classes33. However, in three-dimensions, the
topological classification of class D is empty (always triv-
ial). This then brings into question how the surface topo-
logical supercondoctor fits into the “ten-fold way” clas-
sification table34–36. In this paper we provide such a
systematic analysis.

The main results of our work are summarized as fol-
lows. For a Weyl loop semimetal, crystalline symmetries,
for example a mirror symmetry Rz in the perpendicu-
lar direction to the nodal loop (hereafter referred to as
the z-direction) can be invoked to make the nodal loop
stable21. Importantly, we find that the same mirror re-
flection symmetry also ensures the nontrivial topology in
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the superconducting state. Using the classification ta-
ble37–40, we find that the Weyl loop superconductor be-
longs to class “D+R+”, and it has a Z classification char-
acterized by a mirror Chern number νkz=0,π. We obtain
νkz=0 = 1 for the p-wave state, which implies that the
Weyl loop superconductor is in a topological phase with
the Z topological index equals one. The non-trivial topol-
ogy of such a phase leads to gapless Majorana cones on
mirror symmetric open surfaces (say yz and xz planes).

On the other hand, the two xy surfaces parallel to the
nodal loop break mirror symmetry and are gapped. We
show that for a system in a slab geometry along z direc-
tion, each surface contributes a Chern number of ±1/2
and we verify this numerically41. We thus predict a quan-
tized thermal Hall effect corresponding to Chern number
C = 1. Moreover, a vortex line penetrating the system
in the z-direction carries a single Majorana mode. We
study the wave function of the vortex core bound state.
With mirror symmetry, the vortex line Majorana wave
function is smeared along the vortex line. In the presence
of a mirror symmetry breaking term ∼ E, the resulting
vortex core Majorana mode becomes localized at either
top or bottom surface. We analytically and numerically
solve the Bogoliubov-de-Gennes (BdG) equation to ver-
ify this. The dependence of the wave function profile on
small symmetry breaking effects offers an interesting po-
tential application of controlling Majorana zero modes
via applying an electric field (i.e. gating).

Similarly, one can show that in a cube geometry,
with broken mirror symmetry, the xz and yz surfaces
are gapped, and carry non-zero ±1/2 Chern numbers.
Hence, there are chiral modes formed as domain-wall
states between surfaces with opposite Chern numbers. In
this case, the modes are localized at the top or bottom
hinges42–47 of the system. The Chern number C = 1 can
be viewed as a higher-order topological invariant identi-
fied in Ref. 46, and in this sense the nodal loop super-
conductor is a higher-order topological superconductor
with mirror symmetry. We show that this Chern number
C = 1 is stable against a mirror symmetry breaking field
E, as long as the Fermi surface remains torus-shaped, and
obtain a global phase diagram as a function of chemical
potential µ and electric field E (shown in Fig. 4), and
specify the topological regions.

We extend our analysis to Dirac-loop superconductors,
which is at this stage more relevant to experimental ma-
terials (for example CaAgP and CaAgAs). In the ab-
sence of spin-orbit coupling, Dirac-loop semimetal can
be thought of as two copies of Weyl-loop semimetals with
spin-up and spin-down respectively. With a proper pair-
ing mechanism, for example via a short-range repulsive
interaction31, one may still expect the leading instability
to be towards spin-triplet and orbit-triplet p-wave states,
which is fully gapped. Similar to the superfluid 3He, we
discuss the topology of the time-reversal breaking phase
(denoted as A-phase) and time-reversal invariant phase
(B-phase). The A-phase of the Dirac loop supercon-
ductor fits in the same topological classification of class

D+R+, now with νkz=0 = 2 resulting in two Majorana
cones on each mirror symmetric surface. For a slab ge-
ometry parallel to the nodal loop, there is a total Chern
number C = 2, which leads to a quantized thermal Hall
effect. The B-phase can be thought of as a px + ipy
order for one spin species and px − ipy for the other,
which are related by time-reversal. Topologically it fits
in class DIII+R++, which has a Z2 classification, and we
show that our B-phase indeed is topological. In a quasi-
2D slab geometry, it carries a Z2 topological invariant
(which can also be viewed as a second-order topological
invariant46). Hence, the vortex-line core binds two Ma-
jorana zero modes which are related and protected by
time-reversal symmetry.

The rest of the paper is organized as follows. In Sec.
II we focus on the topological crystalline superconductiv-
ity in doped Weyl loop materials. We first address the
structure of the superconducting order, and then analyze
its topology both in the bulk and for a quasi-2D slab ge-
ometry. In Sec. III we analyze the topological crystalline
superconductivity in doped Dirac loop materials. We dis-
cuss both the A-phase and the B-phase and their topol-
ogy, as well as the effect of spin-orbit coupling. In Sec.
IV we present the conclusions and discuss the relevance
of our results to experiments.

II. CHIRAL p-WAVE WEYL LOOP
SUPERCONDUCTORS

A. Superconductivity in a doped Weyl loop
semimetal

We first consider the case where the nodal loop is
formed by two bands crossing along a loop in the Bril-
louin zone. To be more specific, let us consider the fol-
lowing two-band Hamiltonian as a minimal model

H =
∑

k

c†k

[
k2
x + k2

y − k2
F

2m
σ1 + vzkzσ2 − µ

]
ck. (1)

where c†k = (c†k1, c
†
k2) is composed of two fermion opera-

tors associated with opposite (pseudo)-spins (which may
be real spin or some orbital degrees of freedom) and µ is
the chemical potential. This model has a loop of Weyl
nodes along the circle k2

x+k2
y = k2

F located in the kz = 0
plane and the Fermi surface is torus-shaped at non-zero
chemical potential µ. The nodal loop is protected by
a mirror reflection symmetry Rz where the symmetry
transformation is given by

Rzc†kRz−1 = Rzc
†
Rzk

(2)

in which Rzk = (kx, ky,−kz) and Rz = σ1.
For a finite system, on the surfaces parallel to the nodal

loop (xy surfaces), there exist the so-called “drumhead”
surface states. These surface states can be derived as the
domain wall zero-mode solutions of an interface with a
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FIG. 1. Low energy band structure of a slab of the nodal-loop
semimetal in the normal phase (6) and (b) superconducting
phase (9). The color code shows the inverse participation ratio
(7) to distinguish topological surface modes localized near top
and bottom surfaces from the delocalized bulk states. The
dashed line in (a) shows the chemical potential µ = 0.2. The
slab consists of 40 layers and t3 = 0. For (b), we set ∆ = 0.4.

trivial insulator H = Mσ1 (M > 0). The resulting bands
are dispersionless

H(k‖) = −µ (3)

and spread within the circle k2
x + k2

y = k2
F (that is the

xy-plane projection of the bulk nodal loop), where they
join the bulk states [see Fig. 1(a)]. The surface states are
found to be pseudospin polarized, i.e., σ3 |Ψ〉 = ± |Ψ〉
on the top and bottom surfaces, respectively. The top
and bottom surface states are degenerate, which is also
protected by the mirror symmetry Rz.

Due to the underlying nodal ring, the torus Fermi
surface has a nontrivial spin texture. As a result, it
is a natural host of unconventional superconducting or-
ders26,31,32. It was found in Ref. 32 that even the usual
s-wave order exhibits line nodes on the Fermi surface.
For a repulsive interaction, the leading superconduct-
ing instability is towards p-wave order31 of the form
H∆ ∼ ck(dk · ~σ)iσ2c−k + H.c, where dk is odd in k.
To fully gap the Fermi surface26,31, the d-vector points
in the y direction, and the p-wave order takes the chiral
form of

H∆ =
∑

k,σ

[
∆(kx + iky)c†kσc

†
−kσ + H.c.

]
. (4)

Consequently, one finds that the effective surface Hamil-
tonian is given by (see Appendix A)32

H(k‖) = ∆(kxτx + kyτy)− µτz, (5)

where τ matrices are defined in the Nambu space. This
resembles the low-energy theory of a px + ipy supercon-
ductor48, and is confirmed by the low-energy dispersion
shown in Fig. 1(b).

Next, we characterize the topological properties of such
superconducting phase and in particular the surface su-
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FIG. 2. Topology of the Fermi surface (FS) of the nodal-loop
semimetal model (6) as a function of chemical potential µ in
the presence of reflection symmetry breaking term E. The
insulating region refers to absence of any Fermi surface. This
phase diagram is plotted for t3 = 0. For t3 6= 0, there will
be minor modifications to the phase boundaries, while the
relative locations of phases do not change.

perconductivity. To better diagnose the topology of the
bulk and surface states, we use a simple microscopic lat-
tice model described by the momentum space Hamilto-

nian Hsm =
∑

k c
†
kHsm(k)ck,

Hsm =(6− t1 − 2 cos kx − 2 cos ky − 2 cos kz)σ1

+ 2t2 sin(kz)σ2 − µ
+ t3(2− cos kx − cos ky), (6)

which reproduces the low energy theory (1) near k =
0. Here, t2 and t1 are a hopping amplitude and a mass
parameter, respectively (for simplicity, we take t1 = t2 =
1 unless otherwise stated). We have also included the t3
term in the Hamiltonian to add a quadratic dispersion
to the flat surface drumhead bands, since it is allowed by
the reflection symmetry Rz.

At a finite chemical potential |µ| < t1, the bulk Fermi
surface is torus-shaped. A typical band structure as a
function of kx at ky = 0 for a slab (finite in z direction) of
the nodal-loop semimetal (6) is plotted in Fig. 1(a). The
drumhead bands appear in the middle of the spectrum
and their corresponding wave functions are localized near
the top and bottom surfaces. To illustrate the localiza-
tion of eigenstates, we compute the inverse participation
ratio (IPR)49,

IPRΨ =
∑

z

|Ψ(z)|4 (7)

where |Ψ(z)|2 =
∑
x,y |Ψ(r)|2 is the squared amplitude of

the wave function in the z-th layer and it is assumed that
the wave function is normalized

∑
r |Ψ(r)|2 = 1. The IPR

is known from the context of Anderson localization and
indicates how localized a state is in the following way: If
a wave function is localized on a single site, IPR will be
close to one and independent of system size. If a wave
function is uniformly delocalized across the system, then
IPR will go to zero as 1/Lz where Lz is the number of
layers. In the case of problem at hand, IPR = 1/2 in the
limit of infinite layers indicates localization near the top
and bottom surfaces. The IPR of eigenstates are shown
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as a color code in Fig. 1(a), which clearly indicates that
the bulk states are delocalized throughout the sample
while the surface bands are very localized.

In order to investigate the stability of topological prop-
erties in the absence of the reflection symmetry (2), it is
instructive to also introduce a symmetry breaking term

HE = Eσ3, (8)

which effectively acts like a mirror-breaking electric field
along the z direction. It gaps out the nodal line, and in-
duces an energy imbalance between the top and bottom
surface drumhead bands (which are labeled by σ3 = ±1).
The topology of the bulk Fermi surface in our model (6)
depends on the chemical potential µ as well as the electric
field E. This dependence is represented by a two-variable
“phase diagram”, shown in Fig. 2. For a negligible t3 (the
inclusion of which does not change the global structure of
the phase diagram, as we have verified), when the chem-
ical potential is small |µ| < t1 the bulk Fermi surface is
a torus, but for larger values |µ| > t1 the Fermi surface
changes topology and becomes topologically equivalent
to a sphere (no longer has a “central hole”). Further-
more, as we add the electric field term (8), the nodal loop
opens a gap and we get an insulating phase whenever the
chemical potential is in the gap |µ| < E. However, as
we increase µ we recover a toroidal Fermi surface in the
regime E < |µ| <

√
1 + E2 and eventually, we obtain a

spherical Fermi surface for larger values |µ| >
√

1 + E2.
The two regions with (electron-like and hole like) torus
FS’s are the regime of interest throughout this work.

As mentioned, in this paper we are interested in
the regime where the Fermi surface is a torus and the
dominant superconductivity is a chiral p-wave pairing.
The corresponding term in the lattice Hamiltonian for
px + ipy superconductivity reads as H∆ = ∆(sin kx +

i sin ky)c†kσc
†
−kσ + H.c. As a result, the full BdG Hamil-

tonian H = Hsm + H∆ =
∑

k ψ
†
kH(k)ψk can be written

as

H(k) =(6− t1 − 2 cos kx − 2 cos ky − 2 cos kz)τzσ1

+ 2t2 sin(kz)τzσ2 − µτzσ0

+ t3(2− cos kx − cos ky)τzσ0

+ ∆(τx sin kx + τy sin ky)σ0, (9)

in the basis ψ†k = (c†k1, c
†
k2, c−k1, c−k2) where τi are Pauli

matrices acting on particle-hole degrees of freedom. Here
we have used the shorthand τασj for the Kronecker prod-
uct τα ⊗ σj . The above Hamiltonian is symmetric un-
der the mirror reflection Rz in (2). The BdG Hamil-
tonian has a particle-hole symmetry by construction,
H(k) = −CH(−k)C−1, where C = τxK and K is the
complex conjugation operator.

Typical eigenvalues of the BdG Hamiltonian (9) as a
function of kx at ky = 0 for a slab (finite in z direction)
is shown in Fig. 1(b). As it is evident from this plot, the
surface states can be clearly distinguished from the bulk

states by IPR.

B. Topology of the chiral p-wave Weyl loop
superconductor

In this section, we discuss the topological properties
of the four-band BdG Hamiltonian (9), both in the bulk
and in a slab geometry parallel to plane of the nodal loop.

1. Topology in the bulk

As we noted earlier, the Hamiltonian (9) with px + ipy
superconducting order breaks time-reversal symmetry
and belongs to class D of the Altland-Zirnbauer symme-
try classes, which has a particle-hole symmetry. However,
if we only consider the particle-hole symmetry, according
to the classification table34–36 in three dimensions there
is only a trivial phase. To characterize the topology, the
mirror reflection symmetry (2) is crucial. Equipped with
Rz, our system falls into in class D+R+ topological crys-
talline superconductors (following the notation of Ref.37,
R± indicates whether the reflection operator Rz com-
mutes or anticommutes with the particle-hole operator
C = τxK). The topological classification of the symmetry
class D+R+ is MZ characterized by a strong topological
index from the mirror Chern numbers37,50. The mirror
Chern number νkz is defined50 as the Chern number at
mirror invariant planes kz = 0 and kz = π for bands with
a given eigenvalue of the mirror operator Rz. The strong
topological index is then obtained by37,

NMZ = sgn(ν0 − νπ)(|ν0| − |νπ|). (10)

For our model (9), the corresponding Hamiltonians at
kz = 0 and π read as (eigenstate with Rz = +1 corre-
sponds to setting σ1 = 1)

HRz=+1
kz=0 =(3− µ− 2 cos kx − 2 cos ky)τz

+ ∆(τx sin kx + τy sin ky), (11)

HRz=+1
kz=π =(7− µ− 2 cos kx − 2 cos ky)τz

+ ∆(τx sin kx + τy sin ky), (12)

which, for the regime of interest |µ| < t1, is identical to
topological and trivial phases of a 2D px + ipy supercon-
ductor, respectively. Hence, |ν0| = 1 and νπ = 0 and the
strong topological index is

|NMZ| = 1. (13)

Thus, the chiral p-wave Weyl loop superconductor is a
topological crystalline superconductor in class D+R+.

This fact in turn implies that every mirror symmet-
ric surface, in the present case xz and yz surfaces, hosts
a gapless Majorana cone which is protected by the mir-
ror symmetry. In Appendix A we compute the effective
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low-energy Hamiltonian for states localized at xz and yz
surfaces. For example, the effective low-energy Hamilto-
nian for xz surface states is given by

h(k) = ∆kxηz − 2t2kzηy, (14)

where ηy,z are Pauli matrices in the basis spanned by two
spinors Ψ with σ1τxΨ = Ψ. A similar conclusion holds
for yz surfaces. The gapless low-energy Hamiltonian in
the superconducting state may be measured by ARPES
experiments.

2. Topology in a slab geometry

Beyond the non-trivial bulk topology, we are interested
in the topology carried by the the drumhead bands on the
top and bottom surfaces in the superconducting state.
These surfaces, which necessarily break the mirror sym-
metry in z-direction, do not host gapless states protected
by the symmetry (see Appendix A), and the bulk topo-
logical index is not sufficient to describe the topology on
these boundary surfaces.

We consider the model Hamiltonian (9) in a slab geom-
etry where the system is terminated along the z-direction
leading to two open surfaces perpendicular to the z-axis.
Using the low energy long-wavelength expansion of the
lattice model (9) near k = 0, we arrive at the effective
surface Hamiltonian (5) to the leading order in µ. Due
to an apparent similarity between the Hamiltonian (5)
and that of a two-dimensional px + ipy superconductor48

with Chern (winding) number C = 1, one may expect
a nontrivial topology coming from the surfaces. On the
other hand, an important difference is that the surface
effective theory does not cover the entire 2D Brillouin
zone and is connected to the bulk bands, and therefore
cannot be treated separately from the bulk.

To provide direct evidence for the topology in analogy
to the px + ipy superconductor, we treat the slab as a
two-dimensional system and compute the Chern number
using the TKNN formula51

C =
2π

iLxLy

∑

k‖

Tr
[
Pk‖εij(∂iPk‖)(∂jPk‖)

]
, (15)

in which k‖ = (kx, ky) refers to the in-plane momen-
tum. kz is no longer well-defined, and the degree of free-
dom of motion in z direction is treated as a band index.
Pk =

∑
ν |uνk〉〈uνk| is the projection operator onto the

occupied states of the Hamiltonian, and ∂i = ∂
∂ki

. Re-

markably, we find that the Chern number is C = −1 (for
−t1 < µ < 0) or C = 1 (for 0 < µ < t1). This means
that the system in a quasi-2D slab geometry indeed be-
haves as a px + ipy superconductor. However, depending
on the sign of the chemical potential µ, for a 2D px + ipy
superconductor there is a trivial “strong pairing” phase
with C = 0 and a topological “weak pairing” phase with
C = 148,52; here both cases are topological since C = ±1.
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FIG. 3. (a) The layer resolved Chern number (17) for various
values of chemical potential corresponding to different shapes
of Fermi surface (see upper panels of Fig. 7). (b) The inverse
participation ratio for the layer resolved Chern number C(z),
characterizing the localization of the distribution in Panel (a).

(c) The surface Chern number as computed by
∑Lz/2

z=0 C(z).
The gray area indicates where the chemical potential µ crosses
the surface bands and there is a surface Fermi contour. The
system thickness is Lz = 20 and we take a 200 × 200 grid to
evaluate the sum over in-plane momenta in Eq. (17). Here,
t3 = 0.5 and ∆ = 0.4.

As a result of the Chern number C = 1, we predict
that the chiral p-wave Weyl loop superconductor exhibits
a quantized thermal Hall effect jTx = σTxy(∂yT ) with48,53

σTxy = ± (πkB)2T

6h
, (16)

where jT is the thermal current and ∂yT is a temperature
gradient.

A natural question here is where the Chern number
“comes from”. To address this, we use a more strin-
gent probe to further determine the contribution of bulk
states as well as surface states to the Chern number. The
“layer-resolved” Chern number41,54 is given by

C(z) =
2π

iL2

∑

k

Tr
[
Pkεij(∂iPk)|z〉〈z|(∂jPk)

]
, (17)

where |z〉〈z| is the projection operator onto the z-th layer.
The results of the layer-resolved Chern number are plot-
ted in Fig. 3. It is evident from Fig. 3(a) that the major
contribution comes from the layers near the boundary
surfaces. We quantify this observation by computing an
inverse participation ratio for Cz, defined similarly to (7)
as

IPRC =
∑

z

|C(z)|2, (18)

noting that
∑
z |C(z)| = 1. The results are shown in
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Fig. 3(b). We see that in the limit Lz → ∞, the IPRC

tends to a constant, which indicates that distribution of
Cz is “localized”. Fig. 3(c) shows the “surface” Chern
number, obtained by summing over the top (bottom) half
number of layers. We conclude that the Chern number
comes equally from the top and bottom surfaces. Physi-
cally, for an infinitesimally small µ, the half surface Chern
number is a result of the gapped Majorana (Dirac) cone
effective low-energy Hamiltonian (5) of the surface states,
and similar results are known for topological insulators
in the presence of infinitesimal time-reversal symmetry
breaking effects41,55. However, the difference here is that
even for a finite µ the surface Chern number is stable.

The origin of this stable half surface Chern number is
tied with mirror symmetry. It turns out that the topolog-
ical gravitational response theory of the superconducting
state is given by a θ-term,

S =
θ

1536π2

∫ √
gεcdefRabcdRbaef , (19)

where Rabcd is the Riemann curvature tensor. The form
of Eq. (19) is the same as that of a 3D time-reversal in-
variant topological superconductor56,57, and is a gravita-
tional analog of magnetoelectric effect in topological insu-
lators55. The θ angle for a non-interacting band structure
can be found by the Berry phase expression55,

θ =
1

2π

∫

BZ

d3k εijkTr

[
ai∂jak − i

2

3
aiajak

]
, (20)

where aµνj = i 〈uµk| ∂j |uνk〉 is the Berry connection de-
fined in terms of the Bloch functions of occupied bands
|uνk〉 and ∂j = ∂/∂kj . From the expression (20), we see
that in the presence of either mirror reflection symmetry,
or time-reversal symmetry, θ is quantized to be 0 or π,
since either symmetries send θ to −θ and θ is 2π periodic.
While time-reversal symmetry is usually invoked in the
context of topological insulators and superconductors for
the quantization of θ, in our model (9), such quantization
is protected by the mirror reflection symmetry (2). Via
a direct computation we find that

θ = π. (21)

By treating the top/bottom surface as a domain wall
between θ = 0 and π, it is straightforward to show55–57

that the boundary is described by a gravitational Chern-
Simons term with a Chern number

Cd,u = ± θ

2π
modulo 1, (22)

where d, u denotes bottom and top surfaces respectively.
The ambiguity of the surface Chern number comes from
the fact that θ is only well-defined modulo 2π. Therefore,
the θ angle accounts for the anomalous surface Chern
number Cu,d = ±1/2 in our case – even if the surface
Majorana cone is gapped by a finite chemical potential µ
term. By mirror symmetry, the top and bottom surfaces

C=0

µ/t110�1

C=1

1

C=-1 C=1

E

E
=

|µ|

E
=

p µ
2 �

1

Point-nodePoint-node

FIG. 4. Global phase diagram on the topology of the chiral p-
wave superconducting state in a doped Weyl-loop semimetal
in the presence of reflection symmetry breaking electric field
E. The topological regions with nonzero Chern numbers are
the same regions as those in which the normal state has a
torus-shaped Fermi surface. This phase diagram is plotted for
t3 = 0. For t3 6= 0, there will be minor modifications to the
phase boundaries, while the relative locations of phases do not
change. Point-node refers to gapless bulk superconductivity
where the bulk gap vanishes at two points along the z-axis.

take the same sign for the surface Chern number, thus
the total Chern number adds up to C = ±1. Each of
the two surfaces contributes to a half of the thermal Hall
coefficient in Eq. (16).

3. Effects of mirror symmetry breaking

So far, we see that mirror symmetry Rz plays an im-
portant role in the topology of the chiral p-wave Weyl
loop superconductor both in the bulk and in a slab ge-
ometry. In this section, we investigate the effect of a
mirror symmetry breaking field E in (9).

With a mirror-breaking E field (8), mirror Chern num-
ber is ill-defined, and thus the mirror-symmetry pro-
tected xz and yz surface states become gapped. We
compute the effective low-energy Hamiltonian of those
surface states in Appendix A. For xz surface, the result
is

hxz(k) = ∆kxηz − 2t2kzηy − Eηx, (23)

where ηx,y,z are Pauli matrices in the basis spanned by
two spinors Ψ with σ1τxΨ = Ψ. For the xy surface states
that are already gapped, an E field simply shift their
energies. We show in Appendix A that the effective low-
energy Hamiltonian of the top/bottom surface state is
given by

hxy(k) = ∆(kxτx + kyτy)− (µ∓ E)τz. (24)

Moreover, we see that there is a gap closing at |E| = |µ|
in either top or bottom surface, indicating an inversion
of the Dirac mass. It is well-known that such a Dirac
mass inversion induces a change in Chern number by
one. Indeed we numerically found that for |E| < |µ|,
the total Chern number remains at |C| = 1, while for
|E| > |µ|, the total Chern number changes to C = 0,
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and the superconducting phase becomes trivial. Note
that this phase boundary at |E| = |µ| also occurs at the
normal state analysis (see Fig. 2), and corresponds to
the transition across which the bulk torus Fermi surface
shrinks and disappears. On the other hand, as we have
found, for larger µ, the torus Fermi surface expands into
a sphere-like topology. With a chiral p-wave supercon-
ducting order, it is easy to show that this phase exhibits
point (Weyl) nodes at (kx, ky) = 0, and the Chern num-
ber is no longer well-defined. This is similar to the A-
phase of 3-He. We find that as long as the normal-state
Fermi surface remains torus-shaped, the Chern number
|C| = 1 is robust and the corresponding quasi-2D phase
is topological. In this sense, the topology of the quasi-2D
system is a property of the torus-shaped Fermi surface.
While we here have only demonstrated this point for a
constant E field, we anticipate that this result holds for
other mirror breaking effects. We shall see another ex-
ample of mirror breaking term in the next section. We
summarize our findings as a global phase diagram for the
superconducting state in Fig. 4.

Without mirror symmetry, the θ = π quantization con-
dition no longer holds. As shown in Fig. 5, we compute
the gradual suppression of θ as E is increased. Finally,
we get θ → 0 as E → ∞ and we reach the atomic limit
where all orbitals are frozen at lattice sites. Even though
θ is no longer quantized, it still leads to a surface thermal
Hall effect. As we showed in (22), the surface Chern num-
ber is defined modulo an integer and non-zero θ shows
up as the anomalous fractional part. In our setup, with
a positive µ, to match with the mirror symmetric case
with θ = π, we have

Cd =
θ

2π
, Cu = 1− θ

2π
, (25)

for E < µ and

Cd =
θ

2π
, Cu = − θ

2π
, (26)

for E > µ after the surface topological phase transition
occurs. We have checked this fact numerically as shown
in Fig. 6(a).

4. Vortex core Majorana zero modes

As a result of the Chern (winding) number C = 1 in
the quasi-2D geometry, one expects a single Majorana
mode bound to the core of a vortex line penetrating the
slab in the z-direction. Note that this is in contrast with
the well-known Fu-Kane superconductor58, which is a s-
wave proximitized topological insulator59. In the latter
case there are two Majorana zero modes each localized
at one end of the vortex line, and can be equivalently
viewed as a quasi-1D topological superconductor in class
D.

We numerically confirm the existence of a single Majo-

0.0 0.2 0.4 0.6 0.8 1.0
E/t1

0.0

0.5

1.0

θ/
π

FIG. 5. The axion angle as a function of electric field E for
the four band model (9) computed by Eq. (20). Note that θ is
independent of µ and we have same curve for different values
of µ as long as |µ| < t1. Here, we set t3 = 0.5.
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0

0.05

0.1

0.15
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0.25

vortex

bulk

(b)

FIG. 6. (a) The evolution of (a) the total Chern number
and surface Chern numbers and (b) the energy spectrum as
a function of electric field E with a fixed µ. In panel (b),
blue curves show the spectrum of the Hamiltonian (9) for a
slab geometry and the red curve indicates the nearest to zero
eigenvalue in the presence of a vortex line. The system closes
the gap and undergoes a topological quantum phase transition
at E/µ = 1. Beyond that, the total Chern number vanishes
and the Majorana zero-mode is lifted. In both panels, we set
t3 = 0.5 and µ = 0.2. In (b), in order to find the Majorana-
zero mode in the presence of a vortex line, sparse diagonal-
ization was done for a system of 123 sites. Furthermore, the
energy spectrum in the slab geometry was computed for an
80× 80× 20 system.

rana vortex-core bound state when a magnetic flux vor-
tex of h/2e is inserted through the sample along the z-
direction for different cases in the regime C = 1. The
energy spectrum for the bulk states and for the lowest
energy vortex-line bound state as a function of E are
shown in Fig. 6(b). We further provide explicit examples
in which we show the Fermi surface and Majorana mode
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wave function for a few different cases in Fig. 7.

In particular, with mirror symmetry (E = 0), we ex-
amined two different cases, with and without a t3 term
in Eq. (9), which adds a quadratic dispersion, and, in
our case, a “surface Fermi contour”, to the normal state
drumhead surface bands. Recalling that a 2D px + ipy
superconductor is topological (trivial) with (without) a
normal state Fermi surface, it would have been tempt-
ing to claim that for our case when t3 = 0 there is no
Majorana mode, and when t3 is tuned to give rise to a
surface Fermi contour there are two Majorana modes,
each localized at a surface. However, with the under-
standing of the Chern number C = 1, we now know that
for both cases there should only be one vortex-core Ma-
jorana mode. This is indeed so, but interestingly, cases
with and without a surface Fermi contour exhibit dif-
ferent profiles of the Majorana wave function. Without
a surface Fermi contour, the Majorana wave function is
smeared throughout the vortex line [see Fig. 7(a)], while
with a surface Fermi surface the Majorana wave function
is more concentrated near the two ends of the vortex line
[see Fig. 7(b)]. It is important to note that for the case
with the surface Fermi contour the “bulk” component
for the vortex-line Majorana bound state does not van-
ish, or decay exponentially – as in that scenario the two
wave packets at the ends of the vortex line would decou-
ple and represent two separate Majorana modes. Instead
the wave function stays as a constant through the bulk
part of the vortex line. Thus for both cases even though
the layer-resolved Chern numbers are localized near the
top and bottom surfaces, the wave function of the Majo-
rana mode always have a non-vanishing bulk component.
This fact indicates that the bound-state spectrum in a
vortex line of infinite length is gapless. This is consistent
with our earlier finding that the side surfaces host gap-
less Majorana cones [see Eq. (14)], since a vortex line can
be viewed as a cylindrical “inner surface” of the sample
with its radius shrunken to zero. The expected form of
chiral boundary Majorana modes is shown in Fig. 9(a).
A typical density profile at zero electric field is plotted in
Fig. 9(c).

If mirror symmetry Rz is broken by an E field, then in
the topological phase the Majorana mode is expected to
be localized at a given end. We confirm this numerically,
as shown in Fig. 7(c,d). Unlike in Fig. 7(a), in these cases
the “bulk” contribution to the Majorana mode does de-
cay exponentially. To confirm the distinction between the
cases with and without an E field on a more quantitative
level, we compute the IPR of the Majorana wave func-
tion (7) as shown in Fig. 8(a). We see that in the limit of
layer number Lz → ∞ the IPRΨ vanishes (|Ψ|2 ∝ 1/Lz
which leads to IPRΨ ∝ 1/Lz) for the case with E = 0 and
tends to a constant for E 6= 0, thus the wave function for
the latter case is localized. As a comparison, we verify
for both cases that the distribution of the layer-resolved
Chern number Cz is “localized” by computing IPRC ; as
shown in Fig. 8(b) IPRC tends to a nonzero constant as
Lz →∞ with and without electric field.

| |2

0

10-2

(c) t3 = 0, E = 0.06 (d) t3 = 0.5, E = 0.06

(b) t3 = 0.5, E = 0(a) t3 = 0, E = 0
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FIG. 7. Upper panels of (a)-(d): Bulk Fermi surface and sur-
face Fermi contour drawn in 3D and 2D Brillouin zones (BZ).
Blank 2D BZ indicates no surface Fermi contour. Lower pan-
els of (a)-(d): Three-dimensional density profile of Majorana
zero modes bound to a h/2e flux vortex inserted into the su-
perconductor at the corresponding t3 and E. Here, we set
µ = 0.1 and ∆ = 0.4. The system size is 123.

The localization of the Majorana wave function in the
presence of an E field can also be understood via simple
calculations. We sketch the key arguments and steps
here, and provide the details in Appendix B. The surface
component of the Majorana bound state can be obtained
from (24) by steps similar to the standard derivation for a
2D px+ipy superconductor. For 0 < E < µ, the resulting
wave function for both surfaces is

γ(r, θ) ∼ exp

[
−
∫ r µ∓ E

∆(r′)
dr′
]
χ(θ), (27)

where (r, θ) are the 2D polar coordinates, and χ(θ) =



9
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Lz

10−2

10−1
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Ψ

(a)
E = 0.0
E = 0.2
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Lz

0.08
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0.16

IP
R C
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FIG. 8. The effect of electric field on the localization as
characterized by the inverse participation ratio for (a) vor-
tex Majorana bound state and (b) layer-resolved Chern num-
ber. The solid lines are guides for eyes and to emphasize the
large Lz behavior. For E = 0.2, both Majorana bound-state
and layer-resolved Chern number are localized and IPR stays
constant as the system size increases. For E = 0.0, Majo-
rana bound-state is delocalized IPRΨ ∝ 1/Lz (blue solid line
in (a)) whereas the layer-resolved Chern number is localized.
Here, we set t3 = 0.5, µ = 0.5, and ∆ = 0.4.

(eiθ, e−iθ)T is a spinor in Nambu space satisfying

τθχ ≡ (cos 2θτx − sin 2θτy)χ = −χ. (28)

One can show that there is another solution with τθχ = χ
has a radial part that diverges at large r, and hence must
be discarded. Still, the form of the wave function in (27,
28) is not normalizable near r → 0.

To resolve this issue one needs to go to large (kx, ky),
which can only be provided by bulk states localized inside
the vortex line. Again drawing analogy with the 2D px+
ipy superconductor, the kz-dispersion of the vortex-line
states can be analytically obtained as

hvl(kz) = 2 sin kzτzσ2 + Eτzσ3, (29)

while the Nambu spinor part χvl of the vortex-line bound
state wave functions should satisfy

τθσ1χvl = −χvl, (30)

similar to (28). The effective low-energy Hamiltonian
hvl(kz) has zero energy solutions that exponentially de-
cay in ±z direction. The state localized near bottom
surface satisfies

σ1χvl = −χvl, (31)

while the one localized near the top surface obeys

σ1χvl = χvl. (32)

Combining Eqs. (30, 31), the bulk vortex-line wave func-
tion with

τθχvl = χvl, (33)

is peaked at the bottom surface, but the other one with

τθχvl = −χvl, (34)

is peaked at the top surface.

We can now connect the bulk part of the vortex line
wave function with the surface part. While Eq. (28) is
satisfied for both surfaces, from Eq. (30) we see that only
near the top surface the surface part and the bulk vortex-
line part of the wave function can smoothly connect to
each other. Therefore the Majorana wave function is lo-
calized at the top end of the vortex line. It is straightfor-
ward to verify that if one reverse the sign of either µ or E,
the localization would be at the bottom surface. Thus, a
chiral p-wave Weyl loop superconductor offers an inter-
esting possibility of controlling the Majorana zero modes
by a small mirror symmetry breaking field E.

Finally, we note that following an analogous procedure
as above, one obtains chiral propagating modes localized
at mirror symmetry breaking (top and bottom) hinges
of a cubic sample42–47 when the reflection symmetry is
broken by a small E field (see Fig. 9(b) and (d)). The
chiral modes can be interpreted as domain-wall states
formed between the gapped boundary surfaces with op-
posite (layer-resolved) Chern numbers C = ±1/2. These
hinge modes have been recently analyzed in the context
of the so-called “higher-order topological insulators and
superconductors”45,46. With a trivial bulk due to broken
mirror symmetry, the cube system can be viewed as a re-
alization of the second-order topological superconductor,
and in this case the second-order topological invariant
is simply the Chern number C = 146. Our results thus
show that nodal-loop semimetals are natural platforms
to realize second-order topological superconductors.

III. p-WAVE DIRAC LOOP
SUPERCONDUCTORS

In the previous section, we have studied the intrin-
sic chiral p-wave order in a doped Weyl loop material
and found that it is topological both in 3D and quasi-2D
configurations. This makes the experimental realization
of Weyl loop semimetal quite appealing. One candidate
material for Weyl loop semimetal is TlTaSe2

12 but there
the Weyl loops are not centered around k = 0, and it is
unclear what the leading superconducting instability is.
On the other hand, to our knowledge, most nodal loop
semimetal candidate materials from first-principle calcu-
lations and experiments exhibit a four-fold degenerate
line node, i.e., a Dirac loop.

Without spin-orbit coupling (which is indeed negligi-
ble in the candidate material CaAgP and small in CaA-
gAs16), a Dirac loop semimetal is nothing but two copies
of Weyl loop semimetals, each copy corresponding to one
spin orientation. A model Hamiltonian can be obtained
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FIG. 9. Schematic profile of chiral Majorana boundary states
in (a) the absence and (b) presence of symmetry breaking
electric field. Case (b) corresponds to hinge modes discussed
in the text. (c) and (d) show 3D density plots of the zero mode
of chiral Majorana states for two scenarios of (a) and (b). In
simulations, the system size is 123 and other parameters are
the same as Fig. 7.

by simply doubling (1),

H =
∑

k

c†k

[
k2
x + k2

y − k2
F

2m
σ1 + vzkzσ2 − µ

]
s0ck, (35)

where c†k = (c†k1↑, c
†
k2↑, c

†
k1↓, c

†
k2↓), s0 is an identity ma-

trix in the spin space, and here σ’s denote an orbital
degree of freedom. Such a Hamiltonian has the same

mirror symmetry Rzc†kRz−1 = σ1c
†
Rzk

, which protects
the nodal loop. This model also has a time-reversal sym-
metry, given by

T c†kT −1 = is2c
†
−k. (36)

A. Superconductivity in a doped Dirac loop
semimetal

Due to the extra spin degree of freedom, the structure
of the superconducting order parameter is more compli-
cated26. Splitting the superconducting order parameter
into a spin part, an orbital part, and a spatial part (in the
absence of spin-orbit coupling), we can classify all pos-
sible superconducting states allowed by fermionic statis-
tics, shown in Table I.

For a repulsive interaction, by the same reasoning as
in the Weyl loop case31, we expect that the leading or-
der instability is toward an odd parity SC order, while
we expect a “conventional” s-wave even parity order to
develop with an attractive interaction. Furthermore, the

orbital-singlet order parameter is given by

c†k∆̂c†−k = c†k,α∆αβ(k)iσ2c
†
−k,β , (37)

where α, β are spin indices. The orbital (σ) part of the
order parameter is similar to that of the s-wave state in
a doped Weyl loop superconductor. The latter state has
been analyzed in Ref. 32, and it was found to exhibit
two line nodes at kz = 0. Similarly, we find that for the
orbital-singlet state, there are two line nodes at kz = 0,
aside from additional nodes given by the zeros of ∆αβ(k).
The appearance of nodal lines lowers the condensation
energy; therefore, we expect the leading superconduct-
ing instability to be toward a spin-triplet, orbital-triplet,
and odd parity state. In the following, we focus on su-
perconducting states that preserves the mirror symmetry
Rz. Again following the analogy in the Weyl loop case
(4), it is easy to show that such a fully gapped state is of
the form

c†k∆̂c†−k = c†k,α∆αβ(k)σ0c
†
−k,β

= c†kd(k) · s (is2) σ0c
†
−k, (38)

where d(k) is odd in k and does not contain odd powers
of kz because of mirror symmetry Rz. It is natural then
to consider the following two cases. Up to a global spin
rotation that equivalently rotates the orientation of d,
the first case is

d(k) ∝ (kx + iky)ŷ. (39)

This is an analog of the A-phase of 3He, and breaks time-
reversal symmetry (36). Following the convention, we
also dub this phase for the Dirac loop superconductor
the A-phase. It is easy to see that the A-phase is simply
two copies of the chiral p-wave Weyl loop superconductor
discussed in the previous section. The second case, again
up to a global spin rotation, corresponds to

d(k) ∝ (kx, ky). (40)

This is an analog of the B-phase of 3He. Hence, we call
this phase the B-phase of the Dirac loop superconduc-
tor. It is straightforward to show that the B-phase cor-
responds to a px + ipy order for the spin-up Weyl loop
copy, and px − ipy order for the spin-down Weyl loop
copy. Since time-reversal (36) flips spin and contains
a complex conjugation, the B-phase is both mirror and
time-reversal symmetric.

While we have provided qualitative arguments on why
the spin-triplet, orbital-triplet and odd parity states, i.e.,
the A-phase and the B-phase are leading instabilities for
a repulsive interaction, it is beyond the scope of this work
to perform a detailed energetic analysis to determine the
superconducting ground state. Below we will focus on
the topological properties of the two phases, which can
be easily elucidated based on our results of the Weyl loop
superconductor.
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B. Topology of the A-phase

The BdG Hamiltonian of the A-phase of the p-wave
Dirac loop superconductor can be expressed as

H =s0 [(6− t1 − 2 cos kx − 2 cos ky − 2 cos kz)τzσ1

+ 2t2 sin(kz)τzσ2 − µτzσ0

+ t3(2− cos kx − cos ky)τzσ0

+∆(τx sin kx + τy sin ky)σ0] , (41)

As mentioned above, it can be regarded simply as two
identical copies of the chiral p-wave Weyl loop supercon-
ductor. For this reason, it is a topological crystalline
superconductor in class D+R+, and here the only differ-
ence is that the strong topological invariant is

|NMZ| = 2, (42)

which stabilizes two gapless Majorana cones on each mir-
ror invariant surface. In a quasi-2D slab geometry the
Chern number is |C| = 2, which supports a thermal Hall
effect with

σTxy = ± (πkB)2T

3h
, (43)

and by the same token, each surface contributes half of
the thermal Hall coefficient. Similar to the Weyl loop
case, this Chern number can also be viewed as a second-
order topological invariant46.

Cases with Chern number |C| = 2 usually are not as-
sociated with vortex core Majorana zero modes. The
reason is that the two would-be zero modes localized in-
side the vortex from the Chern number can couple and
gap out each other. We note here that this issue can be
circumvented by spatially separating the two zero modes
by a mirror breaking term. Consider an additional term
to the BdG Hamiltonian (41)

HB = Bs3σ3, (44)

which breaks both mirror symmetry and time-reversal
symmetry and can be regarded as a staggered Zeeman
coupling term. Effectively, this term generates opposite
E-field terms discussed in Eq. (8) and Sec. II B 3 for the
two spin species, and from the analysis in Sec. II B 3,
there are two Majorana zero modes bound at the vortex
core, localized at the top and bottom ends respectively.
This configuration of Majorana modes is similar to the
case of the Fu-Kane superconductor58, but here the topo-
logical classification is quite different. It remains to be
seen if this term (44) can be realized in materials, e.g.,
from a magnetic order.

TABLE I. Classification of superconducting order parameters
for a doped Dirac loop semimetal in the absence of spin-orbit
coupling.

Spin (s) Orbital (σ) Spatial
Singlet Singlet Odd
Triplet Triplet Odd
Singlet Triplet Even
Triplet Singlet Even

C. Topology of the B-phase

Unlike the A-phase, the B-phase preserves time-
reversal symmetry. The BdG Hamiltonian is given by

H =s0 [(6− t1 − 2 cos kx − 2 cos ky − 2 cos kz)τzσ1

+ 2t2 sin(kz)τzσ2 − µτzσ0

+t3(2− cos kx − cos ky)τzσ0]

+ ∆(s3τx sin kx + τy sin ky)σ0, (45)

and can be viewed as a px + ipy superconductor for spin
up and a px − ipy superconductor for spin down, which
are related by time-reversal symmetry.

From the results in Refs. 37 and 39, the B-phase of the
Dirac loop superconductor belongs to class DIII+R++

(the subscript ++ means that the reflection operator
Rz = σ1 commutes with both time-reversal is2K and
particle-hole symmetry τxK), and is classified by a Z2 in-
variant. Similar to class D+R+, the Z2 invariant for our
case can be read off from the Z2 time-reversal topolog-
ical invariants for mirror-symmetry invariant subsystem
at kz = 0 and kz = π with a given mirror eigenvalue
σ1 = 1. Only the subsystem at kz = 0 turns out to be
nontrivial, given by

HRz=+1
kz=0 =(3− µ− 2 cos kx − 2 cos ky)τz

+ ∆(s3τx sin kx + τy sin ky), (46)

which describes a standard time-reversal invariant 2D
topological superconductor. Hence, the B-phase of the
Dirac loop superconductor is a topological crystalline
superconductor in class DIII+R++. On the mirror-
invariant surfaces, there exist gapless states protected by
both mirror symmetry and time-reversal symmetry.

In a slab geometry, it is easy to show that the quasi-
2D system carries a nontrivial Z2 invariant (not to be
confused with the bulk Z2 invariant), since the slab sys-
tem can be viewed as two copies with Chern numbers
C↑ = −C↓ = 1 which are related by time-reversal sym-
metry. Due to the presence of time-reversal symmetry,
there are two Majorana zero modes for a vortex line pen-
etrating the system in z direction, which are protected by
time-reversal symmetry. This Z2 invariant can be viewed
as a second-order topological invariant46.
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D. Effects of spin-orbit coupling

So far we have assumed our Dirac loop band struc-
ture to be symmetric under mirror reflection given by
(2), which protects the nodal loop. In reality, for exam-
ple in candidate material CaAgAs, there exist spin-orbit
coupling effects that breaks this mirror symmetry and
introduces a (small) gap to the nodal loop. Such a spin-
orbit coupling term turns the nodal-loop semimetal into
a topological insulator at neutrality.

In terms of topology, it is clear that any mirror break-
ing effects invalidates the bulk topological invariants for
both the A-phase and the B-phase, which are only well-
defined with mirror symmetry. However, as we see for
the case of Weyl loop superconductor in the presence of a
mirror breaking E field, the topology in the quasi-2D slab
geometry may still be robust. Indeed, for the A-phase,
as long as the spin-orbit-coupling term does not close a
gap in the bulk or on the surface, the Chern number for
the slab cannot change. For the B-phase, the same cri-
terion applies provided that the time-reversal symmetry
is preserved.

In this section, we examine the interplay between the
superconducting order parameter ∆, which is typically
parametrically smaller than other energy scales of the
problem with the spin-orbit coupling λ that gaps out the
nodal line (but may leave the torus Fermi surface intact).
Our conclusion is that, similar to the Weyl loop case with
an E field, as long as the torus-shaped Fermi surface in
the normal state is maintained, the quasi-2D topology
remains stable even for an infinitesimal superconducting
order parameter, for both A-phase and B-phase.

Let us use the superconducting A-phase as an example.
The lattice Hamiltonian can be written as

H =∆(sin kxτx + sin kyτy) + 2t2 sin kzτzσ2

+ (6− t1 − 2 cos kx − 2 cos ky − 2 cos kz)τzσ1 − µτz
+ λ(sin kxs1σ3 + sin kys2τzσ3), (47)

where σ is an orbital index, s is spin, and τ is the Nambu
matrices. We should note that the realistic Hamiltonian
for CaAgAs is more complicated16 but our analysis here
can be straightforwardly extended to the realistic case.
One can see that in both Hamiltonians, both ∆ and λ
gap out the nodal line for µ = 0, and as such they com-
pete with each other. For ∆ = 0, it is easy to see that
this Hamiltonian actually describes a strong topological
insulator. Since typically the superconducting gap ∆ is
small, a natural question is whether the topology of a
quasi-2D system induced by superconductivity is spoiled
by a finite spin-orbit coupling term.

First, it is clear that the the bulk is always gapped for
an arbitrary magnitude of λ. We will take a slab geom-
etry and look for possible gap closing on the surfaces.
From (47) and similar calculations provided in Appendix

A, we see that the surface Hamilton is given by

hsurf = ∆(kxτx + kyτy)− µτz + λ(kxs1σ3 + kys2τzσ3).

Without either λ or ∆, this is a gapped Dirac cone sys-
tem. In the continuum limit, with both λ or ∆ it has
point nodes along kx direction for ∆ < λ:

Esurf(kx) = ±
√

∆2k2
x + µ2 ± λkx, (48)

and the nodal point occurs at k0
x = µ/

√
λ2 −∆2. How-

ever, recall that we are dealing with surface drumhead
bands whose momentum range is bounded by the size
of the nodal ring kF , given in the lattice model by
2 cos kF = 2 − t1. Thus as long as k0

x > kF , the surface
bands remain gapped, and the topology of the quasi-2D
system is unchanged. This corresponds to the following
condition

√
µ2 + ∆2k2

F > λkF . (49)

We see that as long as µ > λkF , the gap, and hence topol-
ogy, are robust against the spin-orbit coupling term, no
matter how small ∆ is. A simple calculation shows that
this is precisely the condition that the normal state torus
FS remains intact in the presence of spin-orbit coupling.

Similarly the calculation can be extended to the surface
states of the B-phase and the conclusion is the same:
as long as the normal state has a torus-shaped Fermi
surface, the order parameters described in Eqs. (39, 40)
give rise to topological superconducting states in a slab
geometry.

IV. CONCLUSION

In this work, we have systematically examined the fully
gapped p-wave superconducting states in doped nodal
loop semimetals with a torus-shaped Fermi surface, for
both the Weyl loop case and the Dirac loop case. We
have found that for both cases the p-wave states are nat-
ural realizations and perfect testbeds for topological crys-
talline superconductors protected by a mirror symmetry.
The mirror symmetry is perpendicular to the nodal loop
direction, the same one that is invoked in the normal
state to stabilize the nodal loop. As a result, the mirrror
preserving surfaces host gapless states characterized by
strong topological invariants.

Aside from the topology as 3D systems, quasi-2D sys-
tems in a slab geometry also carry nontrivial topology.
For the Weyl loop superconductor and the A-phase of the
Dirac loop superconductor, the topology is characterized
by a Chern number, which leads to a quantized thermal
Hall effect and possible vortex core Majorana zero modes.
For the B-phase of the Dirac loop superconductor, time-
reversal symmetry is preserved and the topology is char-
acterized by a Z2 invariant. These Chern numbers and
Z2 invariant have been recently discussed as second-order
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topological invariants46 of the system in a cube geome-
try, which induces hinge modes if the mirror symmetry is
broken. In this sense the nodal loop superconductors also
provide potential realizations of second-order topological
superconductors42–47.

With regard to experiments, we note that in the candi-
date Dirac loop material CaAgAs the mirror symmetry
Rz is only approximate and is broken by a spin-orbit
coupling term. The broken mirror symmetry thus spoils
the bulk topological invariants for both the A and B
states. However, as we show in this paper, the quasi-
2D topological invariants in both cases are more robust,
very similar to the Weyl loop case in the presence of a
mirror breaking field. By a simple model calculation, we
verify that even though the nodal loop is gapped by the
spin-orbit coupling, as long as the normal state Fermi
surface maintains its torus shape, the quasi-2D topol-
ogy of the superconducting state is stable even for an
infinitesimal superconducting gap compared to the spin-
orbit coupling strength. Therefore, it would be quite
interesting to search for exotic superconducting states in
nodal-loop materials.

There are currently intensive experimental efforts to
search for nodal loop materials, but the focus has been
mainly on the band structure of the normal state. Our
theoretical results suggest that the torus-shaped Fermi
surface in nodal loop materials is a natural host of many
unconventional superconducting phases, and can poten-
tially open a new route toward realizing topological su-
perconductivity.
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Appendix A: Derivation of surface modes

Here, we derive the surface state wave functions and
show that each surface spectrum can be written in
terms of px + ipy superconductor. To find the particle-
hole/pseudospin content of the surface states we need
to solve the domain-wall problem in which we find the
effective model at the interface between the topological
superconductor and a trivial matter.

xy-surface:
This is modeled by a spatial-varying mass term t1(z).

We shall solve for the in-gap states near the bottom sur-
face, i.e., topological superconductor-vacuum interface at

z = 0 where the upper-half (z > 0) is filled with topologi-
cal superconductor t1(z) > 0 and the lower-half (z < 0) is
filled with trivial superconductor t1(z) < 0 (that is topo-
logically equivalent to vacuum). A similar solution can be
found for the top surface. Let us start by finding the zero-
mode states on the topological side. The Schrödinger
equation for the zero-momentum state (kx, ky) = (0, 0)
is given by

[2t2σ2(−i∂z)− t1σ1] τz |Ψ〉 = 0 (A1)

the solution of which can be written as |Ψ〉 = |ψs〉⊗ |ψp〉
where |ψs〉 is in the pseudospin space and |ψp〉 is in the
Nambu space. Hence, there are two solutions

|Ψ1〉 = e−t1z/2t2 |↑〉 ⊗
(

1
0

)
, (A2)

|Ψ2〉 = e−t1z/2t2 |↑〉 ⊗
(

0
1

)
, (A3)

The low energy Hamiltonian in terms of in-plane mo-
menta k‖ = (kx, ky) becomes,

h(k) = ∆(kxτx + kyτy)− µτz, (A4)

in the basis spanned by {|Ψ1〉 , |Ψ2〉}.
In the presence of a mirror-breaking −Eσ3τz term,

note that the subspace of {|Ψ1〉 , |Ψ2〉} is closed under
matrix operator σ3τz, which projects to τz. Therefore,
with a mirror-breaking E field, the xy bottom surface
states are described by

h(k) = ∆(kxτx + kyτy)− (µ+ E)τz. (A5)

By the same token, one can show that the effective low-
energy Hamiltonian for xy top surface states are given
by

h(k) = ∆(kxτx + kyτy)− (µ− E)τz. (A6)

yz-surface: We are to solve the domain-wall equation

[∆σ0τx(−i∂x)− t1σ1τz + µσ0τz] |Ψ〉 = 0 (A7)

The two solutions are

|Ψ1〉 =
e−(t1+µ)x/∆

√
2

|←〉 ⊗
(

1
i

)
, (A8)

|Ψ2〉 =
e−(t1−µ)x/∆

√
2

|→〉 ⊗
(

1
−i

)
. (A9)

The low energy Hamiltonian in terms of in-plane mo-
menta k‖ = (ky, kz) becomes,

h(k) = ∆kyηz + 2t2kzηy, (A10)

where ηi are Pauli matrices defined in the basis spanned
by {|Ψ1〉 , |Ψ2〉} which satisfy σ1τy |Ψi〉 = − |Ψi〉.

In the presence of a mirror-breaking −Eσ3τz term,
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note that the subspace of {|Ψ1〉 , |Ψ2〉} is closed under
matrix operator σ3τz, which projects to ηx. Therefore,
with a mirror-breaking E field, the yz surface states are
described by

h(k) = ∆kyηz + 2t2kzηy − Eηx, (A11)

which is gapped.

xz-surface: We are to solve the domain-wall equation

[∆σ0τy(−i∂y)− t1σ1τz + µσ0τz] |Ψ〉 = 0 (A12)

The two solutions are

|Ψ1〉 =
e−(t1+µ)y/∆

√
2

|→〉 ⊗
(

1
1

)
, (A13)

|Ψ2〉 =
e−(t1−µ)y/∆

√
2

|←〉 ⊗
(

1
−1

)
. (A14)

The low energy Hamiltonian in terms of in-plane mo-
menta k‖ = (ky, kz) becomes,

h(k) = ∆kxηz − 2t2kzηy, (A15)

where ηi are Pauli matrices defined in the basis spanned
by {|Ψ1〉 , |Ψ2〉} which satisfy σ1τx |Ψi〉 = |Ψi〉. Similar

to the previous analysis, with a mirror-breaking E field,
the xz surface states are described by

h(k) = ∆kxηz − 2t2kzηy − Eηx, (A16)

which is gapped.

Appendix B: Calculation details on vortex line
Majorana bound state

In this Appendix we provide some details on the com-
putation of the Majorana bound state in the chiral p-wave
Weyl loop superconductor. We show how to obtain the
surface part and bulk part of the vortex line mode. The
calculation is similar to that for Majorana zero modes in
2D px + ipy superconductors.

For the surface part, one subtlety is that with a vor-
tex configuration, the p-wave superconducting order pa-
rameter depends both on coordinate and momentum,
which do not commute. The standard way to circumvent
this complication60–62 is to take the anti-commutator
of the coordinate-dependent part and the momentum-
dependent part in the first-quantized BdG Hamiltonian.
Here we show this issue is automatically taken care of if
one treats the problem with the second-quantized Hamil-
tonian, which is given by H =

∫
d2rH(r), and from (24)

H(r) =
1

2

[
−(µ∓ E)ψ†(r)ψ(r) + (µ∓ E)ψ(r)ψ†(r) + ∆(r)eiθψ†(r)(∂x + i∂y)ψ†(r)−∆(r)e−iθψ(r)(∂x − i∂y)ψ(r)

]

=
1

2

[
−(µ∓ E)ψ†(r)ψ(r) + (µ∓ E)ψ(r)ψ†(r)

+∆(r)e2iθψ†(r)

(
∂

∂r
+
i

r

∂

∂θ

)
ψ†(r)−∆(r)e−2iθψ(r)

(
∂

∂r
− i

r

∂

∂θ

)
ψ(r)

]
, (B1)

where ψ is the fermion field, r, θ are polar coordinates, and in the second line we have used the relation ∂x + i∂y ≡
eiθ(∂r + i∂θ/r). The term with µ∓ E corresponds to top (bottom) surface, and we assume that 0 < E < µ here.

In the second-quantized language, the Majorana zero mode condition is

[H, γ] = 0, (B2)

where

γ =

∫
d2r g(r)

[
f1(θ)ψ†(r) + f2(θ)ψ(r)

]
. (B3)

Then we obtain

−µg(r)f1(θ) + ∆(r)e2iθ

(
∂

∂r
− 1

2r
+

1

2

∂ log ∆(r)

∂r
+
i

r

∂

∂θ

)
g(r)f2(θ) =0,

µg(r)f2(θ)−∆(r)e−2iθ

(
∂

∂r
− 1

2r
+

1

2

∂ log ∆(r)

∂r
− i

r

∂

∂θ

)
g(r)f1(θ) =0. (B4)

The solution of this set of equations is given by

f1(θ) = eiθ, f2(θ) = −e−iθ,

g(r) =
1√
r∆(r)

exp

[
−
∫ r µ∓ E

∆(r′)
dr′
]
. (B5)

For positive µ and ∆ we can verify that the wave function
given by this form is concentrated near r = 0. Also, note
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that for a negative µ, the angular part of the solution
becomes

f1(θ) = eiθ, f2(θ) = e−iθ. (B6)

In other words, the spinor χ ≡ (f1, f2)T in the BdG space
is an eigenstate with

τθχ ≡ (cos 2θτx − sin 2θτy)χ = ∓χ, (B7)

where the ∓ corresponds to positive and negative µ, re-
spectively.

For the bulk states that are localized near the vortex
line, let’s first split the superconducting Hamiltonian into
two parts H = Hxy +Hz, where

Hxy =(3− 2 cos kx − 2 cos ky)τzσ1 − µτz
+ ∆(sin kxτx + sin kyτy)

Hz =2 sin kzτzσ2 + Eτzσ3, (B8)

where we have included the mirror-breaking E field into
Hz. We observe that Hxy is nothing but two decoupled
copies of 2D px + ipy superconductor that we analyzed
in the previous section. The two copies correspond to

σ1 = ±1, and importantly, one of them (σ1 = 1) has
an electron-like FS and the other a hole-like one. Note
also that the Fermi energies for the two copies are not µ,
but rather the distance from chemical ponential to band
bottom (for the elctron-like band) or top (for the hole-like
band), which are of opposite signs.

At the vortex core, Hxy has two zero modes. By anal-
ogy with (B7), we have for the Nambu spinor part of the
bulk vortex line mode, χvl

τθσ1χvl = −χvl. (B9)

It is easy to check that this condition commutes with Hz.
Thus we obtain that the vortex line state are described
by the Hamiltonian

hvl = 2 sin kzτzσ2 + Eτzσ3. (B10)

This low-energy Hamiltonian also has zero energy solu-
tions. Given E > 0, its wave function is exponentially
decaying in ±z direction, corresponding to

σ1χvl = ±χvl. (B11)

We have used Eqs. (B5, B7, B9, B10, B11) in the main
text.
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