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Abstract

Functional spintronic devices rely on spin-charge interconversion effects, such as the reciprocal

processes of electric field-driven spin torque and magnetization dynamics-driven spin and charge

flow. Both damping-like and field-like spin-orbit torques have been observed in the forward process

of current-driven spin torque and damping-like inverse spin-orbit torque has been well-studied via

spin pumping into heavy metal layers. Here we demonstrate that established microwave transmis-

sion spectroscopy of ferromagnet/normal metal bilayers under ferromagnetic resonance can be used

to inductively detect the AC charge currents driven by the inverse spin-charge conversion processes.

This technique relies on vector network analyzer ferromagnetic resonance (VNA-FMR) measure-

ments. We show that in addition to the commonly-extracted spectroscopic information, VNA-FMR

measurements can be used to quantify the magnitude and phase of all AC charge currents in the

sample, including those due to spin pumping and spin-charge conversion. Our findings reveal that

Ni80Fe20/Pt bilayers exhibit both damping-like and field-like inverse spin-orbit torques. While the

magnitudes of both the damping-like and field-like inverse spin-orbit torque are of comparable

scale to prior reported values for similar material systems, we observed a significant dependence

of the damping-like magnitude on the order of deposition. This suggests interface quality plays an

important role in the overall strength of the damping-like spin-to-charge conversion.
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† Contribution of the National Institute of Standards and Technology; not subject to copyright.
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I. INTRODUCTION

Spin-charge transduction effects for ferromagnet/nonmagnet (FM/NM) multilayers cou-

ple electric fields to magnetic torques in the forward process (so-called spin-orbit torque

(SOT)), and they couple magnetization dynamics to currents in the inverse process (iSOT).

In general, these torques can be phenomenologically separated into two components:

damping-like and field-like. Both are perpendicular to the FM magnetization, but the

damping-like torque is odd under time-reversal and dissipative, whereas the field-like torque

is even under time-reversal and conservative1. A classic example of a field-like torque is the

action of an Oersted field on a FM magnetization due to a charge current in an adjacent

conducting layer. By Onsager reciprocity, the inverse process is captured by Faraday’s law:

magnetization dynamics in the FM generate charge currents in the NM. Recently, it has

been found that spin-orbit coupling (SOC) in multilayers can give rise to both field- and

damping-like SOTs2,3, but with substantially different scaling than that achieved with Oer-

sted fields. Unlike the Oersted effect, these spin-orbitronic effects are short-range, making

them highly advantageous for microelectronic applications that require device scaling to

high densities such as nonvolatile memory and alternative state-variable logic4,5.

Damping-like torques due to the spin Hall effect (SHE) in heavy NM layers such as Pt

and β-Ta are well-studied and understood, and have been investigated in both forward4 and

inverse configurations6–8. Substantial field-like torques have also been measured for FM/NM

interfaces in the forward configuration2,9–11. However, an inverse measurement of the field-

like torque in Ni80Fe20/Pt has not yet been unambiguosly reported12. Here, we present

simultaneous measurements of inverse field-like and damping-like torques in Ni80Fe20/Pt

bilayers via well-established coplanar waveguide (CPW) ferromagnetic resonance (FMR).

Time-varying magnetic fields produced by a FM/NM sample under FMR excitation will

inductively couple into the CPW, altering the total inductance of the microwave circuit.

Such fields are produced by: (1) the Py precessing magnetization, (2) Faraday effect induced

AC currents in the Pt layer, and (3) spin-orbit AC currents due to damping-like and (4)

field-like processes. We show that through proper background normalization, combined

with Onsager reciprocity for the specific phenomenology of these measurements, commonly-

used vector network analyzer (VNA) FMR spectroscopy allows accurate identification of the

processes that contribute to spin-charge conversion.
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The paper is organized as follows. In Sec. II, by appealing to Onsager reciprocity we

provide the phenomenological background relating the forward and inverse processes that

produce magnetic torques and charge flow in a ferromagnet/normal metal system under

electrical bias or with excited magnetization dynamics. Sec. III describes the quantitative

VNA-FMR technique, and derives the expressions we use to calculate the sample’s complex

inductance. This section also introduces the effective conductivity σ̃NM that quantifies the

magnitude and symmetry of magnetic torques due to applied charge currents, and recipro-

cally, of the AC charge currents flowing in a sample in response to the driven magnetization

dynamics. In Sec. IV, we present data acquired from Ni80Fe20/Pt bilayers and Ni80Fe20/Cu

control samples. The magnitude of the phenomenological parameter σ̃NM extracted from

these data is well within the range of reported values, and it obeys the usual symmetry

properties associated with the stacking order of the Ni80Fe20and Pt layers. Finally, we dis-

cuss the results in Sec. V by comparing our extracted iSOT parameters to the microscopic

spin-charge conversion parameters of spin Hall angle and Rashba parameter. In all cases, the

magnitudes of the extracted spin Hall angle and Rashba parameter are in rough agreement

with what has been reported in the literature, though this agreement is contingent on the

assumption of typical values for the interfacial and bulk spin transport parameters. How-

ever, we find that the extracted spin Hall angle changes by a factor of almost 4 depending on

the growth order of the multilayer stacks, with a larger spin Hall angle when the Pt is grown

on top of the Ni80Fe20. This suggests that the spin transport parameters are in actuality

highly dependent on the stack growth order.

II. ONSAGER RELATIONS FOR SPIN-ORBIT TORQUE

Onsager reciprocity relations13 are well known for certain pairs of forces and flows. For

example, for thermoelectric effects, applied electric fields or thermal gradients can drive both

charge and heat flow. In this section, we establish Onsager relations for charge current and

magnetic torque as the flows that are driven by applied electric fields and magnetization

dynamics in a FM/NM multilayer1.

By analogy to Ohm’s Law, J = σE, we can write a general matrix equation relating

driving forces (magnetization dynamics ∂m̂/∂t and electric field E) to flows (magnetic torque

density T and charge current density J)1:
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where m̂ is the magnetization unit vector, ~ is Planck’s constant divided by 2π, e is the

electron charge, dFM and dNM are the FM and NM thicknesses. The terms in the 2 × 2

conductivity matrix are described below. The sign of the off-diagonal terms are determined

by sgn(ẑ · n̂), where n̂ is an interface normal pointing into the FM. The coordinate unit

vector ẑ is defined by the sample placement on the CPW, as shown in Fig. 1(a), and z = 0

is defined by the FM/NM interface. G is a 2 × 2 matrix imposing geometrical constraints:

(1) magnetic torques are orthogonal to m̂ and (2) charge currents can flow only in the x, y

plane:

G =





[m̂×] 0

0 [ẑ×]



 (2)

The diagonal elements of the effective conductivity matrix describe the Gilbert damping

of the FM and charge flow in the metallic bilayer in response to an applied electric field.

That is,
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where Gmag ≡ −dFM(2e/~)
2(αMs/γ), α is the Gilbert damping parameter, and γ is the
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gyromagnetic ratio, such that Eq. 3 is the usual Gilbert damping term from the Landau-

Lifshitz-Gilbert equation:

∂m̂

∂t
= −γµ0m̂×H−

(

γ

MsdFM

)

+dFM
∫

0

T(z)dz (5)

In Eq. 4, Zeff is the effective frequency-dependent impedance of the bilayer. Eq. 4 reduces

to Ohm’s Law in the DC limit (Zeff → R� as f → 0).

The off-diagonal terms describe the electromagnetic reciprocity between Faraday’s and

Ampere’s Law14,15, as well as spin-orbit torques (SOT) and their inverse, using the effective

conductivities σF
e , σ

SOT
e , and σSOT

o .
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Here, the superscripts indicate the source of the torque or current as due to the Faraday

effect or SOT. The subscripts indicate “even” or “odd” with respect to time-reversal, which

determines the torque direction or phase of the corresponding current with respect to the

driving electric field or magnetization dynamics. The signs of the effective conductivities

are chosen to comply with the appropriate time-reversal symmetry of an Oersted torque (or

Faraday’s law of induction) for σF
e , and of field-like and damping-like SOT (σSOT

e and σSOT
o ,

respectively). Furthermore, the sign of the field-like SOT terms are consistent with that

used by Emori, et al.16 and Kim, et al.17, in which a positive, interfacial SOT field points

in the direction ẑ × J. Finally, we use the usual convention for the direction of SHE and

iSHE currents: Qŝ ∝ ŝ × J and J ∝ Qŝ × ŝ, for spin current flow in the Q direction and

spin orientation ŝ, as in Ref. 18.

First consider the Faraday conductivity, σF
e . In the forward process an electric field

E produces a charge current, which by Ampere’s Law produces a magnetic field. This

field exerts a torque T on the magnetization of the FM layer. In the reverse process,

magnetization dynamics ∂tm̂ produce an AC magnetic field, which by Faraday’s Law induces

a charge current J in the NM layer. In this way, σF
e quantifies the reciprocity between

Ampere’s and Faraday’s Law (see Eq. 31 for an estimate of the σF
e magnitude based on
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material properties). Inclusion of the terms in Eq. 1 due to electrodynamic reciprocity is

critical for the proper interpretation of inverse spin orbit torque experiments12.

Also present in the off-diagonal terms are SOT conductivities due to spin-charge con-

version. In Eq. 6, these manifest as electric-field driven damping-like torques, which are

proportional to m̂×(m̂×(ẑ×E)), and field-like torques, which are proportional to m̂×(ẑ×E).

The constants of proportionality between applied electric field and SOTs are σSOT
o and σSOT

e .

In the reverse direction (Eq. 7), these effects are responsible for spin-to-charge conversion

(e.g., inverse spin Hall effect (iSHE)19 or inverse Rashba-Edelstein effect (iREE)20).

Reporting effective conductivities, as opposed to spin-charge conversion parameters like

the spin Hall angle, directly relates the microwave inputs and charge current outputs of an

iSOT device without the need for separate characterization of spin-mixing conductance or

spin diffusion length. Reciprocally, in a spin torque experiment with charge current inputs

and magnetization dynamics (or switching) as output, the effective conductivities provide

the ideal figure of merit for determining magnetization oscillation and switching thresholds

of the applied current. To estimate the critical current density Jc needed to switch the

magnetization of a ferromagnetic layer at 0K21,22, one simply needs to equate the Gilbert

damping torque (Eq. 3) and odd (anti-damping-like) SOT (Eq. 6):

Jc = αMsdFM
ω

γ

2e

~

(

σ

σSOT
o

)

(8)

where ω is the FMR frequency with no applied fields (e.g. for in-plane magnetization, ω =

µ0γ
√

Hk(Ms +Hk), with anisotropy field Hk). Using α as determined for these Ni80Fe20/Pt

films (see Supplementary Information (SI)23), Ms = 700kA/m, Hk = 160 kA/m (for thermal

stability considerations), bulk Pt resistivity24, and the measured σSOT
o (see Table I), we

estimate a critical current density of 2× 1012A/m2 for a 2 nm Ni80Fe20film.

While the effective conductivity is the directly measured quantity, in Sec. VA we nev-

ertheless derive expressions relating the effective conductivities to microscopic spin-charge

conversion parameters. Extraction of the microscopic parameters is necessarily contingent

on the details of the model employed and parameters assumed.

The effective conductivities can also be related to the often-used quantity of effective

flux density per unit current density25 Beff/J , with units of Tm2A−1 via the equation

Beff/J = σSOT
e,o ~/(2MsσdFMe) (where σ is the ordinary charge conductivity of the NM).

However, our definition for the effective conductivity is more general insofar as it allows
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one to calculate the actual SOT without the need to independently determine the sample

magnetization, conductivity, or actual thickness.

Eq. 1 is consistent with the phenomenological formulation presented by Freimuth,

Bluegel, and Mokrousov1, although it has been expanded to include the purely electro-

dynamic contributions. Our use of the descriptors “even” and “odd” are different from

that of Freimuth, et al., who use the symmetry of the spin orbit torques with respect to

magnetization-reversal as the symmetry identifier. We instead use the symmetry of the

torque with respect to time-reversal because this is the relevant symmetry with regard to

the off-diagonal components in the phenomenological Eq. 1. Any process for which the

torque is odd under time-reversal qualifies as microscopically non-reversible in the sense of

Onsager reciprocity, where microscopic reversibility pertains solely to forces that are even

functions of velocity, as well as position13. (We also note that all axial vectors such as

magnetic field are odd under time reversal.)

III. EXPERIMENTAL TECHNIQUE

The broadband, phase-sensitive FMR measurements utilize a coplanar waveguide (CPW)

as both the excitation and detection transducer (see Fig. 1(a)). Any source of AC magnetic

flux generated by the bilayer is inductively detected in the CPW. Therefore, the inductive

load that the sample contributes to the CPW circuit consists of four terms: (1) The real-

valued L0 due to the oscillating magnetic dipolar fields produced by the resonating FM

magnetization, (2) the Faraday-effect currents induced in the NM layer by the precessing

FM magnetization, (3) currents produced by damping-like iSOT effects (e.g., spin pumping

+ iSHE), and (4) currents produced by field-like iSOT effects (e.g., iREE). The latter three

inductances, which we collectively define as complex-valued LNM, are produced by currents in

the NM which generate Oersted fields that inductively couple to the CPW. We quantify these

currents with the effective conductivities σF
e , σ

SOT
o , and σSOT

e , described above. Importantly,

as shown below, while L0 is independent of frequency, LNM is linear in frequency, as the

currents in the NM are driven by ∂tm̂. Hence, frequency-dependent measurements allow us

to disentangle L0 and LNM.

Figure 1(b) and (c) show schematics of these four signal sources at two instants in time:

when the dipolar and even SOT effects are maximal (Fig. 1(b)) and when the odd SOT
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effect is maximal (Fig. 1(c)). Fig. 1(d) shows the time dependence of each of these signal

sources, and their distinct phase relationships to the driving field hy, which we exploit below

to determine their contributions separately.

For our measurements, we place samples onto a coplanar waveguide (CPW) with the

(a) (c)

(b) (d)

Figure 1. (a) Sample on CPW, showing out-of-plane field H0 and sample length l. The microwave

driving field points primarily along ŷ at the sample. (b) Schematic of the bilayer, with precessing

magnetization m(t) at time t0 when m = 〈mx, 0,mz〉. Bilayer is insulated from CPW using

photoresist spacer layer (not shown). At this instant in time, JF
e (due to the Faraday effect in the

NM) and JSOT
e (e.g., due to inverse Rashba-Edelstein effect) are maximal along ±x̂, and hy is also

at its maximum strength. The corresponding Oersted fields from JF
e and JSOT

e are superposed.

The spin accumulation (with orientation ŝ) and JSOT
e are produced at the FM/NM interface.

Interface normal is given by n̂. (c) Same as (b), except at time t1 when m = 〈0,my,mz〉. Here,

odd-symmetry SOT current JSOT
o (e.g., due to inverse spin Hall effect), and the dynamic fields

HSOT
o and Hdipole are at maximum amplitude. Note that the dipolar signal is proportional to

∂t(Hdipole · ŷ), and not simply to Hdipole. Spin flow direction Q̂ŝ due to spin pumping into the NM

is also shown. (d) Amplitude of driving field hy and different signal sources as a function of time

(left), and viewed in the complex plane at time t0 (right). Relative amplitudes not indicated. For

further discussion of signal phases, see SI Sec. ??23.
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metallic film side facing down (see Fig. 1). This setup is positioned between the pole pieces

of a room-temperature electromagnet capable of producing fields up to ≈2.2T. Using a

VNA, we measure the change in microwave transmission through the CPW loaded with the

bilayer sample as an out-of-plane DC magnetic field (H0 ‖ ẑ) is swept through the FMR

condition of the Ni80Fe20(Permalloy, Py) layer. We acquire the microwave transmission S-

parameter S21 ≡ Vin,2/Vout,1 where Vin(out),1(2) is the voltage input (output) at port 1 (2) of

the VNA. Field sweeps were repeated to average the transmission data until an appropriate

signal-to-noise ratio was obtained.

Typically, VNA-FMR measurements focus on the resonance field and linewidth. Our

method additionally makes use of the signal magnitude and phase in order to directly probe

the AC charge currents produced by iSOT. Previous studies of AC charge currents in spin

pumping experiments have relied on intricate experimental setups or techniques that sup-

press or are insensitive to spurious background signals12,26,27. Our technique remains sensi-

tive to currents induced by the Faraday effect, but is able to separate them from spin-charge

conversion currents through the combination of phase-sensitive analysis and comparison to

control samples in which the heavy metal NM (here, Pt) is substituted with a Cu layer

of nominally negligible intrinsic spin-orbit effects. Furthermore, because the CPW is in-

ductively coupled to the sample, no electrical connections need to be made directly to the

FM/NM sample.

The sample adds a complex inductance L in series with the impedance of the bare CPW,

Z0 (here, 50Ω). The change in microwave transmission ∆S21 is therefore that of a simple

voltage divider28:

∆S21 = −1

2

(

iωL

Z0 + iωL

)

≈ −iωL

2Z0

(9)

for Z0 >> ωL, where ω is the microwave frequency. The factor of 1/2 is needed because the

port 2 voltage measurement is between the CPW signal and ground (and not between port

2 and port 1).

A. Inductance Derivations

In order to extract values for the SOT effects from the measured ∆S21, we derive expres-

sions for each contribution to L.
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1. Inductance due to dipole field of dynamic magnetization

To derive the inductance due to AC dipolar fields produced by the precessing FM mag-

netization, we follow Ref. 28.

L0 =
µ0ℓ

WwgdFMI2







+∞
∫

−∞

dy

dFM+dwg
∫

dwg

dz [q (y, z) · χ (ω,H0) · h1 (y, z, I)]







∗
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∼= µ0ℓ
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2
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FMW
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WwgdFMI2
χyy (ω,H0)

(

I

2Wwg

η (z,Wwg)

)2

d2FMW
2
wg

=
µ0ℓdFM
4Wwg

χyy (ω,H0) η
2 (z,Wwg) (10)

where µ0 is the vacuum permeability, l the sample length, dFM the FM thickness, Wwg the

width of the CPW signal line (here, 100µm), and χyy(ω) the frequency-dependent magnetic

susceptibility. η(z,Wwg) ≡ (2/π) arctan(Wwg/2z) is the spacing loss, ranging from 0 to 1,

due to a finite distance z between sample and waveguide. We have assumed the coordinate

system described in Fig. 1 (x̂ along the CPW signal propagation direction, ẑ along the

CPW and sample normal). The function q(y, z) describes the normalized spatial amplitude

of the FMR mode. For the uniform mode, q(y, z) = 1 over the entire sample. The first set of

integrals in brackets captures the integrated amplitude of the mode as excited by the driving

microwave field h1 = hyŷ, while the second describes the inductive pickup sensitivity of the

CPW. The first approximation assumes uniform microwave field over the sample dimensions.

The second approximation utilizes the Karlqvist equation29 to approximate the microwave

field as hy(I, z) ∼= I/(2Wwg)η(z,Wwg).

2. Inductance due to AC current flow in NM

Following Rosa30, we model the sample and CPW as two thin current-carrying sheets of

width w = Wwg, separation z, and length l, so that the mutual inductance is given by
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L12 =
µ0

4π
2l

[

ln

(

2l

R

)

− 1

]

(11)

where R is defined as

R ≡
√
w2 + z2
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w2 + z2

)( z

w
)
2

∗ exp
(

2z

w
arctan

(w

z

)

− 3

2

)

(12)

Viewing the sample-CPW system as a voltage transformer (two mutually-coupled in-

ductors), the voltage induced in the CPW due to current INM in the NM and the mutual

inductance L12 is given by V = −L12(∂INM/∂t). If instead we consider the system to be a

single lumped-element inductor, the voltage due to the self-inductance contributed by the

sample LNM and applied current ICPW is V = LNM(∂ICPW/∂t). Therefore, we can calculate

LNM as

LNM = −L12
INM

ICPW
(13)

The charge current we are interested in is that driven by the magnetization dynamics of

the FM layer, and given by the off-diagonal term of Eq. 1:

INM = x̂ ·





+dFM
∫

−dNM

J(z)dz



Wwg

= x̂ ·
[

ẑ × (−σF
e + σSOT

e − σSOT
o [m̂×])∂tm̂

]

∗ sgn(ẑ · n̂)
(

~

2e

)

Wwg (14)

Assuming a linear solution to the Landau-Lifshitz-Gilbert equation of motion for the mag-

netization, we write a simple relation between the dynamic component of the magnetization

m and microwave field h1.

∂tm̂ = iω
χ

Ms
h1 (15)

To convert the vector cross products in Eq. 14 to the complex plane, we use χ in the

frequency domain31:

11



χ =
γµ0Ms

ω2
res − ω2 + iω∆ω





(1 + α2)ωy − iαω iω

−iω (1 + α2)ωx − iαω



 (16)

where ωx,y ≡ γµ0Hx,y, Hx,y is the stiffness field in the x or y direction (including external,

anisotropy, and demagnetizing fields), ωres ≡ √
ωxωy, and ∆ω ≡ α(ωx+ωy). For compactness

in the following derivation, we utilize the tensor components of the susceptibility as defined

in Eq. ??.

Eq. 14 has even terms along ẑ×∂tm̂ and odd terms along ẑ×(m̂×∂tm̂). Using Eq. 15 for

∂tm̂, we can work out these cross products assuming m̂ ‖ ẑ (small-angle FMR excitation).

The vector components of the even terms are given by:

ẑ × ∂tm̂ = ẑ ×









χxx χxy

χyx χyy









0

hy









(

iω

Ms

)

= ẑ × (χxyhyx̂+ χyyhyŷ)

(

iω

Ms

)

= (−χyyhyx̂+ χxyhyŷ)

(

iω

Ms

)

(17)

Similarly, we find for the odd terms:

ẑ × (m̂× ∂tm̂) = ẑ × (−χyyhyx̂+ χxyhy ŷ)

(

iω

Ms

)

= (−χxyhyx̂− χyyhyŷ)

(

iω

Ms

)

(18)

Noting from Eq. 16 that χxy = iχyy (ignoring terms of order α or α2, and working near

resonance such that ωx = ω), the vector relationships of Eq. 17 and 18 are substituted into

Eq. 14. After evaluating the x̂ projection as prescribed by Eq. 14 and grouping even and

odd terms, we find:

INM =
[

(σF
e − σSOT

e ) + iσSOT
o

]

sgn(ẑ · n̂) iχyyhy

Ms

(

~ω

2e

)

Wwg (19)

from which we define σ̃NM = (σF
e −σSOT

e )+iσSOT
o . On resonance, χyy = −iγµ0Ms/(2αeffωres),

such that Eq. 19 produces the current phases depicted in Fig. 1.

Finally, using the Karlqvist equation29, we approximate the field of the CPW. With

these substitutions into Eq. 13, we arrive at the final result for the inductance due to all

AC currents in the NM:
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LNM = sgn(ẑ · n̂)L12(z,Wwg, l)η(z,Wwg)

∗ ~ω

4Mse
iχyy(ω,H0)σ̃NM (20)

The different frequency dependencies of L0 and LNM is critical for our analysis. When

normalized to χyy(ω,H0), L0 is a frequency-independent inductance. By contrast, LNM has

an extra factor of ω, reflecting the fact that both Faraday and SOT effects are driven by

∂tm̂, rather than by m(t) itself.

Careful attention needs to be paid to the signal phase in order to properly add the

inductive effects of L0 and LNM. As discussed in detail in the SI Sec. ??23, it is the current

phase in the CPW that determines the propagating signal phase. Using the excitation

current in the CPW as the phase reference, we work out the phase of the induced currents

due to the perturbative inductance of the sample-on-CPW, and find that the inductances

add according to L = L0 − iLNM.

After normalizing by the fitted susceptibility L̃ ≡ L/χyy(ω,H0), the real and imaginary

normalized inductance amplitudes are given by:

Re(L̃) =
µ0l

4

[

dFM
Wwg

η2(z,Wwg)− sgn(ẑ · n̂)η(z,Wwg)

∗L12(z,Wwg, l)

µ0lMs

~ω

e
(σF

e − σSOT
e )

]

(21)

Im(L̃) = −µ0l

4

[

sgn(ẑ · n̂)η(z,Wwg)

∗L12(z,Wwg, l)

µ0lMs

~ω

e
σSOT
o

]

(22)

Note that when the stacking order of FM and NM is reversed, so is the sign of the SOT and

Faraday currents (and therefore their inductance contributions).

3. Magnetization dynamics driven by forward SOT

From the transformer analogy developed above and discussed in SI Sec. ??23, we see that

“image currents” are produced in the CPW when currents flow in the conducting sample.

Reciprocity requires that the excitation currents in the CPW drive image currents in the
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sample. This current will produce Amperian torque and forward SOT effects according

to Eq. 6, exciting additional magnetization dynamics which are then picked up by the

CPW. This series of transduction effects is fully reciprocal with the Faraday and iSOT

sequence described above. In the first case, a drive current in the CPW excites magnetization

dynamics (via the coupling factor, η(z,Wwg)). Those magnetization dynamics drive charge

current in the NM via σ̃NM. Finally, these charge currents couple into the CPW via the

mutual inductance L12(z,Wwg, l). In the second case, the order is simply reversed: the CPW

currents create image currents in the NM (via L12(z,Wwg, l)), which drive magnetization

dynamics (via σ̃NM), which are picked up by the CPW (via η(z,Wwg)). It can be shown that

the induced signal due to forward Amperian or SOT-driven magnetization dynamics add

together in-phase with their inverse counterparts, increasing the inductive response from

each contribution by a factor of 2. The inductance in Eq. 20 (and hence 21 and 22) is

therefore too small by a factor of 2. Therefore, in the below calculation of σ̃NM based on

measured values of L̃NM, we include this factor.

B. Background Correction

To make use of the phase and amplitude information in the VNA-FMR spectra, we first

fit the raw spectra to:

S21(ω,H0) = Aeiφχyy(ω,H0) + C0 + C1H0 (23)

where A is the signal amplitude, φ is the raw phase (inclusive of signal line delay), and C0

and C1 are complex offset and slope corrections to the background. Utilizing the information

in this complex background is key to our data processing method. The background-corrected

signal can be plotted from the measured values of S21 as:

∆S21(ω,H0) =
S21(ω,H0)− (C0 + C1H0)

C0 + C1H0
(24)

This corrects the signal phase for the finite length of the signal line between the VNA source

and receiver ports and the sample, effectively placing the ports at the sample position.

Additionally, it normalizes the signal amplitude by the frequency-dependent losses due to

the complete microwave circuit (cables + CPW + sample). In Fig. 2(a) and (b), we plot

14



(a)

(b)

1.601.561.521.48

μ0 H0 )

Figure 2. Example S21 spectrum, acquired at f = 20.0GHz. (a) Raw data, with fits. Note the

different background offsets of the Re and Im data (left and right axes). (b) De-embedded ∆S21

signal.

the raw and de-embedded data, respectively. The large complex offset on top of which the

resonance signal is superimposed in (a) represents C0 and C1.

Comparison of Eqs. 23 and 24 shows that the change in microwave transmission can be

written as:

∆S21(ω,H0) =
Aeiφ

C0 + C1H0

χyy(ω,H0) (25)

Using this form for the background-corrected ∆S21, the inductance amplitude L̃(f) is cal-

culated as [∆S21/χyy(ω,H0)][i2Z0/(2πf)]. When L̃ is plotted vs. frequency as in Fig. 4, we

note that there can be a small phase error that causes Im(L̃)(f → 0) 6= 0. The correction

for this phase error is discussed in SI Sec. ??23.

C. Calculation of σ̃NM from measured L

Using the results for Re(L̃) and Im(L̃) (Eqs. 21 and 22), we can isolate the σ̃NM contri-

bution as follows. First, the slope of L̃ is used to isolate the contribution of L̃NM:
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dL̃

df
= −1

2
sgn(ẑ · n̂)η(z,Wwg)

L12(z,Wwg, l)

Ms

∗ h

e

[

(σF
e − σSOT

e ) + iσSOT
o

]

(26)

We normalize dL̃/df by L̃0 in order to remove any residual differences in sample-CPW

coupling from sample to sample. Variation in L̃0 (e.g., as seen in Fig. 4) can be caused

by sample-to-sample variations in magnetization, including dead layer effects at the vari-

ous FM/NM interfaces, as well as measurement-to-measurement variations in the sample-

waveguide spacing, which could be affected by small dust particles in the measurement

environment. Finally, we solve for the effective conductivity.

[

(σF
e − σSOT

e ) + iσSOT
o

]

= − sgn(ẑ · n̂)











dL̃

df

2L̃0











∗ µ0l

L12(z,Wwg, l)

MsdFM
Wwg

η(z,Wwg)
e

h
(27)

We note that in Eq. 27, the inductance quantities dL̃/df and L̃0 are experimentally measured

values as determined from ∆S21 by application of Eq. 9, while the remaining terms follow

from normalization of the right-hand-side of Eq. 26 with that of Eq. 10.

D. Analysis Protocol

Our quantitative VNA-FMR analysis protocol is summarized below32.

1. Complex VNA-FMR data is collected and fit with Eq. 23.

2. ∆S21 is calculated with Eq. 25 to de-embed the sample contribution to the inductance.

3. ∆S21 is converted to sample inductance L using Eq. 9.

4. L is normalized by magnetic susceptibility χyy, yielding the complex inductance am-

plitude given by Eqs. 21 and 22 (Re(L̃) and Im(L̃)).

5. The phase error of L̃ is corrected as described in SI Sec. ??23.
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6. Linear fits of L̃(ω) (using Eqs. 21 and 22) are used to extract L̃0 and L̃NM(ω).

7. The effective conductivities σSOT
o and (σF

e − σSOT
e ) are obtained from (∂L̃/∂f)/L̃0

according to Eq. 27.

IV. DATA AND ANALYSIS

To demonstrate the quantitative VNA-FMR technique, we measured FMR in metal-

lic stacks consisting of substrate/Ta(1.5)/Py(3.5)/NM/Ta(3) and inverted stacks of sub-

strate/Ta(1.5)/NM/Py(3.5)/Ta(3) (where the numbers in parentheses indicate thickness in

nanometers). We focus on a Pt(6) NM layer due to its large intrinsic SOC, and use Cu(3.3)

as a control material with nominally negligible SOC19,33,34. We collected room-temperature

FMR spectra as a function of out-of-plane external magnetic field H0 with microwave fre-

quencies from 5GHz to 35GHz and VNA output power of 0 dBm. Exemplary Re(∆S21)

spectra are shown in Fig. 3. Each raw spectrum has been normalized by the complex signal

background (see Sec. III B). In the following discussion, we use a notation for the bilayers

which indicates the sample growth order as read from left-to-right. For example, Py/Pt

indicates Py is first deposited onto the substrate, followed by Pt.

Both Py/Cu and Cu/Py samples exhibit a mostly real normalized inductance amplitude

(symmetric Lorentzian dip for Re(∆S21) in Fig. 3(a) and (b)) with a magnitude largely

independent of frequency, in accordance with L̃NM ≈ 0. That is, the signal is dominated by

the dipolar inductance. In contrast, the lineshape and magnitude of the Py/Pt and Pt/Py

data in Fig. 3(c) and (d) exhibit a clear frequency dependence as expected for L̃NM 6= 0.

In particular, the data for Py/Pt indicate that L̃NM adds constructively with L0, such that

Re(L̃) increases with increasing f . The Pt/Py inductance evolves in an opposite sense due

to the stack inversion, leading to a decrease and eventual compensation of Re(L̃) at high

f . The increasingly antisymmetric lineshape for both Py/Pt and Pt/Py reveals that the

magnitude of Im(L̃) also increases with frequency, with a sign given by the stacking order.

By normalizing the spectra in Fig. 3 to the magnetic susceptibility χ(ω,H0) defined in

Eq. ??, we extract the complex inductance amplitude L̃. Re(L̃) and Im(L̃) are shown in

Fig. 4 for all investigated bilayers with a length l of 8mm. As shown in Eqs. 21 and 22,

Re(L̃) provides information about the dipolar inductance (L̃0, zero-frequency intercept), and

−(σF
e − σSOT

e ) (slope). Similarly, the slope of Im(L̃) reflects −σSOT
o . Immediately evident
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Figure 3. FMR spectra for FM/NM bilayers. Re(∆S21) at several excitation frequencies for

different samples: (a) Py/Cu, (b) Cu/Py, (c) Py/Pt, and (d) Pt/Py. The change in lineshape

and amplitude for Py/Pt and Pt/Py clearly shows the presence of frequency-dependent inductive

terms not present in the Py/Cu and Cu/Py control samples. The colored circles indicate the value

of Re(∆S21) ∝ Re(L) when H0 satisfies the out-of-plane FMR condition.
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Figure 4. Frequency dependence of real and imaginary inductances extracted from S21 spectra

(symbols) and fits to Eqs. 21 and 22 (lines). (a) Re(L̃) for all samples with l = 8mm. Zero-

frequency intercept indicates the dipolar inductive coupling, while the linear slope reflects (σF
e −

σSOT
e ). (b) Im(L̃) for all samples, as a function of frequency, where the linear slope is governed by

σSOT
o .

is the reversal of the slope for Py/Pt compared to Pt/Py, which is captured by the sgn

function (where n̂ is the FM/NM interface normal, pointing into the FM, and ẑ is defined

by the coordinate system in Fig. 1). This sign-reversal is consistent with the phenomenology

expected for interface-symmetry sensitive effects, e.g., combined spin pumping and iSHE,

as well as iREE. There is also a marked difference in the slope magnitude for Py/Pt and

Pt/Py in panel (b), the implications of which are discussed below.

Each of the inductance terms has some dependence on sample length: linear for the

dipolar contribution, and slightly non-linear for the inductances due to charge flow in the

NM (see Eqs. 10 and 11). We therefore repeated the measurements shown in Fig. 4 for a

variety of sample lengths from 4 to 10mm. Fig. 5 shows the measured inductance terms L̃0,

∂Re(L̃)/∂f (intercept and slope of curves in Fig. 4(a)), and ∂Im(L̃)/∂f (slope of curves in

19



Fig. 4(b)) as a function of sample length. Following normalization by its corresonding L̃0,

each data point in Fig. 5(b) provides a value of (σF
e − σSOT

e ) (see Eq. 27). Similarly, data

points in panel (c) provide values of σSOT
o . These values are averaged to provide a single

(σF
e −σSOT

e ) and σSOT
o for each sample type. Results are summarized in Table I. The dashed

lines in Fig. 5(b) and (c) are calculated curves based on these average values and the length

dependence of L̃.

Because σSOT
e and σF

e have the same phase and frequency dependence, we use control

samples where we replace the Pt with Cu, wherein it is generally accepted that both the

SHE for Cu and the REE at the Py/Cu interface are negligible19,33,34. Furthermore, the

Cu thickness is chosen so that it exhibits the same sheet resistance as the Pt layer, so

that the two samples have identical σF
e (see Eq. 31). Subtraction of the time-reversal-even

conductivity for the Py/Cu control samples from the time-reversal-even conductivity for

the Py/Pt samples therefore isolates σSOT
e specifically for the Py/Pt interface. Likewise,

any damping-like contributions to σSOT
o due to the Ta seed layer should also be removed by

subtraction of the Py/Cu inductance data.

Additional data collected for varied NM thickness (to be presented in a future publi-

cation) indicates that the charge currents produced by iSOT effects experience a shunting

effect, whereby some fraction of the interfacial charge current flows back through the sample

thickness, reducing the inductive signal. This can be modeled as a current divider with

some of the iSOT-generated current coupling to the 50Ω CPW via image currents, and the

remainder shunted by the sheet conductance of the sample. Final values of the extracted

conductivities reported in Table I have been corrected to account for current shunting (see

SI Sec. ?? for more details23). Comparison of the shunt-corrected SOT conductivities makes

evident that the field-like charge currents are comparable to those due to damping-like spin-

charge conversion processes.

We can compare our measured values of σSOT
e and σSOT

o to measurements made by

other groups using different techniques. Garello, et al.9 use the harmonic Hall technique

and Miron, et al.2 investigate domain wall nucleation to quantify the spin-orbit torque

exerted on Co sandwiched between Pt and AlOx. Converting their measured values of

field-like SOT field per unit current density to our metric σSOT
e , they find 1.1× 106Ω−1m−1

and 1.9× 107Ω−1m−1. Nguyen, et al.25 find a similar value of ≈ 1.3× 106Ω−1m−1 for

a Pt/Co bilayer using harmonic Hall methods. The Garello and Nguyen results are

20



Figure 5. L̃(f = 0) and ∂L̃/∂f extracted from data as in Fig. 4 vs. sample length for all samples.

(a) Dipolar inductive coupling L̃0. (b) From ∂[Re(L̃)]/∂f , we extract (σF
e − σSOT

e ). (c) From

∂[Im(L̃)]/∂f , we extract σSOT
o . Dashed lines are guides based on Eqs. 21 and 22 with values of

σSOT
o and (σF

e − σSOT
e ) calculated as described in Sec. IIIC. Several measurements were repeated

to demonstrate reproducibility.

within an order of magnitude of our findings (−1.48± 0.07× 105Ω−1m−1 for Pt/Py and

−1.8± 0.2× 105Ω−1m−1 for Py/Pt).

Garello and Nguyen also report damping-like values for their effective SOT fields. Con-

verted to σSOT
o , they find 5.8× 105Ω−1m−1 and ≈2.9× 105Ω−1m−1, respectively, which are

again within an order of magnitude of our values: 2.4± 0.3× 105Ω−1m−1 (Py/Pt) and
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Sample (σF
e − σSOT

e )meas (σSOT
o )meas (σSOT

e )corr (σSOT
o )corr

Py/Pt −0.45± 0.03 1.0± 0.1 −1.48 ± 0.07 2.4± 0.3

Pt/Py −0.69± 0.05 0.31 ± 0.06 −1.8± 0.2 0.6± 0.2

Py/Cu 0.143 ± 0.006 0.07 ± 0.03

Cu/Py 0.04 ± 0.03 0.06 ± 0.01

Table I. Effective conductivities (in units of 105 Ω−1m−1) for various FM/NM samples. Measured

values are calculated from measured inductances (Fig. 5). Corrected values are calculated by sub-

traction of Cu control to remove the Faraday contribution (in the case of σe) and any contribution

from the Ta interfaces, followed by application of the shunting correction (see SI Sec. ??).

0.6± 0.2× 105Ω−1m−1 (Pt/Py).

The difference in stacking-order dependence for σSOT
e and σSOT

o may come as a surprise,

since some degree of correlation between the field-like and damping-like torques is suggested

by intuition. However, this need not be the case if the two effects have different physical

origins. As is discussed below, in the case of the damping-like torque, the proportionality

between the spin accumulation and the spin current entering or exiting the FM is given by the

real part of the spin-mixing conductance. By contrast, an interfacial SOC of the Rashba form

can give rise to a spin accumulation (and hence SOT) that has no dependence on the spin-

mixing conductance (see for example the theory in by Kim, et al.17). Therefore, empirical

observation of uncorrelated even and odd effective conductivities is not unexpected35.

V. DISCUSSION

For comparison to previous measurements and to theory, we can relate the effective

conductivities σSOT
e and σSOT

o to microscopic spin-charge conversion parameters under the

assumptions that the damping-like iSOT is due to iSHE only, and the field-like iSOT is

from iREE only. We also relate the Faraday contribution to the AC charge currents in the

NM—that is, σF
e —to sample properties.
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A. Contributions to effective conductivity, σ̃NM

1. Effective Faraday conductivity, σF
e

To relate the effective Faraday conductivity, σF
e , to sample parameters, we isolate the

Faraday component of the induced charge current from Eq. 7:





+dFM
∫

−dNM

JF(z)dz



 = − sgn(ẑ · n̂)
(

~

2e

)

σF
e (ẑ × ∂tm̂) (28)

The charge current is driven by the induced e.m.f., Vx, according to:

x̂ ·





+dFM
∫

−dNM

JF(z)dz



 =
Ix
w

=
Vx

Zeff l
(29)

The induced e.m.f. is derived from inductive reciprocity36

Vx = −∂φ

∂t
= −µ0Ms

∫

VFM

[h(r) · ∂tm̂]d3r (30)

where h(r) is the magnetic sensitivity function for a current of unit amplitude in the NM

layer. We assume this field can be approximated with the Karlqvist equation, and use the

results for ∂tm̂ from Sec. IIIA. Subsituting Eq. 30 into Eq. 29, and equating the result

with Eq. 28 yields the final expression for σF
e :

σF
e =

eµ0MsdFM
~Zeff

(31)

2. Rashba parameter and σSOT
e

We can relate the even spin-orbit torque conductivity σSOT
e to the Rashba parameter αR.

We start from the field-like interfacial spin torque per spin tfl introduced by Kim, et al. (Eq.

12 in Ref. 17):

tfl = sgn(ẑ · n̂)kRvs
[

m̂× (ĵ × ẑ)
]

(

~

2

)

(32)
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where kR = 2αRme/~
2 is a wavevector corresponding to the Rashba energy parameter αR,

me is the mass of the electron, and vs = PJintgµB/(2eMs) is the spin velocity, with charge

current density Jint at the FM/NM interface at which the Rashba effect is present, spin

polarization of the charge current P , Landé g-factor g , and Bohr magneton µB. Note that

tfl/(~/2) has units of Hz; that is, the same units as ∂tm̂. We can therefore relate Eq. 32 to

the volume-averaged magnetic torque density T from Eqs. 5 and 6 through the time rate

of change of the magnetization: tfldintδ(z)/(~/2) = ∂tm̂, where we have added dintδ(z) to

account for the interfacial nature of this torque (where dint is an effective thickness of the

interface).

2

~

dFM
∫

0

tfldintδ(z)dz = − γ

Ms

dFM
∫

0

T(z)dz (33)

kRvsm̂× (ĵ × ẑ)dint = − γ

Ms

~

2e
σSOT
e m̂× (ẑ × E) (34)

The final line results from subsituting Eq. 32 and the even SOT term from Eq. 6 into Eq.

33. Making the substitutions for kR and vs, and using E = (Jint/σint)ĵ yields:

αR =
~
2

2me

σSOT
e

σint

1

Pdint
(35)

Here, σint is the interfacial conductivity of the FM/NM interface (extracted by measur-

ing resistance vs. Py thickness; see SI Sec. ??23) and P is the spin polarization at the

FM/NM interface. We use P = 0.6 as determined via spin-wave Doppler measurements

in Ref. 37, and assume dint is one Py lattice constant (0.354 nm)38. We therefore find

αR = −5.8± 0.3meV nm for the Py/Pt sample, and −7.5± 0.7meV nm for Pt/Py. These

values are smaller than those measured with angle-resolved photoelectron spectroscopy

(ARPES) for the surface state of Au(111) (33meV nm)39, Bi(111) (56meV nm)40, and

Ge(111) (24meV nm)41, and much smaller than the Bi/Ag(111) interface (305meV nm)42.

We can also compare our results for the Rashba parameter to a recent theoretical calcu-

lation. Kim, Lee, Lee, and Stiles (KLLS)17 have shown that SOT and the Dzyaloshinskii-

Moriya interaction (DMI) at a FM/NM interface are both manifestations of an underlying

Rashba Hamiltonian, and predict a straightfoward relationship between the Rashba param-

eter αR, interfacial DMI strength Dint
DMI, and the interfacial field-like SOT per spin tfl:
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αR =
~
2

2me

(

Dint
DMI

2A

)

=
~

me

(

tfl
vs

)

(36)

where A is the exchange stiffness.

For the Pt/Py stack, the ratio of interfacial DMI, Dint
DMI, to bulk exchange A was previ-

ously measured via a combination of Brillouin light scattering (BLS) and superconducting

quantum interference device (SQUID) magnetometry for samples prepared under nearly

identical growth conditions, albeit with a stack geometry that was optimized for optical

BLS measurements43. The ratio is a constant value of −0.25 ± 0.01 nm−1 over a Py thick-

ness range of 1.3 to 15 nm. As such, this material system is an ideal candidate to test the

quantitative prediction of the KLLS theory. Using the experimentally-determined value for

Dint
DMI/A with Eq. 36 predicts a Rashba strength of −4.8± 0.2meV nm, which agrees well in

sign and magnitude with the result of our iSOT measurement for the Pt/Py sample of the

same stacking order, as well as the Py/Pt sample with opposite stacking order. Together,

the spin wave spectroscopy and iSOT measurements clarify the role of the Rashba spin-orbit

interaction as the underlying physical mechanism for both DMI and field-like SOT in the

Py/Pt system.

3. Spin Hall angle and σSOT
o

In order to develop intuition for Eq. 7 we first derive an approximate relationship be-

tween σSOT
o and the spin Hall angle, θSH, applicable when the NM thickness is much thicker

than its spin diffusion length. We assume series resistors 1/G↑↓ + 1/Gext (interfacial spin-

mixing conductance + spin conductance of the NM) in a voltage divider model for the spin

accumulation at the FM/NM interface due to spin pumping

µŝ(z = 0+)ŝ =
~

2

(

m̂× ∂m̂

∂t

)(

G↑↓

G↑↓ +Gext

)

(37)

where µŝ(z = 0+) is the spin accumulation at the FM/NM interface. Using the result of Eq.

6 from Ref. 44 for the effective one-dimensional spin conductance of a NM (where we have

set GNM
2 = 0 because we are interested in only a FM/NM bilayer, not a FM/NM1/NM2

multilayer):
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Gext =
σ

2λs

tanh

(

dNM

λs

)

(38)

where λs is the spin diffusion length in the NM. The integrated charge current in the NM

layer driven by the resulting spin chemical potential gradient −∇µŝ = Qŝ and the inverse

spin Hall effect (J ∝ Qŝ × ŝ) is given by

dNM
∫

0

J(z)dz =

dPt
∫

0

[

σSH
−∇µs(z)

e
× ŝ

]

dz (39)

= σSH
µs(z = 0+)

e
(−ẑ × ŝ) (40)

assuming dNM >> λs. The spin Hall conductivity is related to the spin Hall angle via the

Pt charge conductivity: σSH = θSHσPt. If we combine Eqs. 37, 38, and 40 and equate the

integrated charge current to that from σSOT
o in Eq. 7 we arrive at the final result:

σSOT
o = σ















θSHRe









G↑↓

σ

2λs

tanh

(

dNM

λs

)

+G↑↓























ǫ (41)

The model also accounts for less-than-unity efficiency ǫ for spin transmission into the NM

(such that (1 − ǫ) is the spin loss fraction, which has been attributed to processes such as

spin memory loss45 or promixity magnetism46).

A more accurate version of Eq. 41 is obtained by replacing the unitless term in curly

brackets with Eq. 11 from Ref. 35:

σSOT
o = σ

{

θSH
(1− e−dNM/λs)2

(1 + e−2dNM/λs)

∗
|G̃↑↓|2 + Re(G̃↑↓) tanh

2

(

dNM

λs

)

|G̃↑↓|2 + 2Re(G̃↑↓) tanh
2

(

dNM

λs

)

+ tanh4

(

dNM

λs

)















ǫ (42)

where G̃↑↓ = G↑↓2λs tanh(dNM/λs)/σ. This properly accounts for the boundary condition

that the spin current goes to zero at the distant surface of the NM.

Eq. 42 can be used to calculate θSH if we assume values for λs, G↑↓, and ǫ. If these

parameters are presumed identical for the two stacking orders, we would find spin Hall
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angles that differ by a factor of 4 depending on whether Pt is deposited on Py, or vice versa.

Instead, the large discrepancy in σSOT
o for the two stacking orders suggests differences in the

FM/NM interface that affect G↑↓ and ǫ. Indeed, stacking-order dependence of damping-like

torque has been observed in previous works47,48. Given the data presented here, it is possible

for us to estimate the efficiency with which spins are pumped into the Pt layer as follows.

The total Gilbert damping αtot is the sum of intrinsic processes αint, spin pumping into the

Pt and Ta layers αPt(Ta), and possible spin memory loss αSML.

αtot = αint + αPt + αTa + αSML (43)

We can apply Eq. 43 to each of the stacking orders (Py/Pt and Pt/Py), and use the

damping measurements for Py/Cu and Cu/Py control samples as a measure of αint + αTa

for Py/Pt and Pt/Py, respectively. We note that that the total Gilbert damping for the two

stacking orders differs by only 8% (see Table ??), while the odd SOT conductivity differs by

a factor of 4. This suggests that the damping-like processes contributing to σSOT
o (i.e. iSHE)

add only a small amount of enhanced damping, while the majority of spin current pumped

out of the FM experiences spin memory loss and is not available for iSHE conversion45. If we

therefore assume that αSML is identical for the two stacking orders, and that the difference in

σSOT
o for the two stacks is due entirely to a difference in spin-mixing conductance, such that

αPt(Py/Pt) = 4αPt(Pt/Py), then the resulting system of equations is solvable for αPt(Py/Pt)

and αPt(Pt/Py), as well as αSML (see SI Sec. ??23). Using the results, we can estimate the

spin pumping efficiency factor ǫ ≡ αPt/(αPt + αSML). We find that only 31% or 10% of the

spin current pumped through the Pt interface is available for iSHE conversion, for Py/Pt

and Pt/Py samples respectively.

A more rigorous calculation can be done to estimate G↑↓, ǫ, and θSH by simultaneously

fitting Eq. 42 and Eq. 43 for the two stacking orders (using the corrected values (σSOT
o )corr

from Table I and total damping values from Table ??). To perform this optimization, we

use the functional form for the spin pumping damping contributions as presented in Ref. 44,

such that αPt(Ta) depends on λs, G↑↓, and σ in order to implement the spin current backflow

correction. We obtained a value for the Pt charge conductivity σ = 4.16× 106Ω−1m−1 from

four-probe resistance measurement on a series of Py/Pt samples with varying Pt thickness,

to allow isolation of the Pt contribution to the total conductivity. Using a value of λs

= 3.4 nm from Ref. 45, we obtain a spin Hall angle of θSH = 0.28. This falls within the
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range of published values from DC spin Hall measurements (0.01–0.33)7,12,49–55. In good

agreement with the estimate above, we find efficiencies of 34% and 18% for Py/Pt and

Pt/Py respectively. Furthermore, this optimization yields G↑↓ = 8.9× 1014Ω−1m−2 (for

Py/Pt) and 2.3× 1014Ω−1m−2 (for Pt/Py). Both of these values are below the Sharvin

conductance56 (G↑↓ =1× 1015Ω−1m−2), which serves as the theoretical upper bound for the

spin-mixing conductance. This result demonstrates clearly that when Py is deposited on Pt,

the details of the FM/NM interface can result in significant SML and a reduced spin-mixing

conductance.

Finally, we note that the contributions of iSHE and iREE may not separate neatly into

damping-like and field-like torques as was assumed for the above analyses. For example, a

more sophisticated three-dimensional model of the Rashba effect in FM/NM bilayers has

been used to demonstrate that damping-like torques can be present and comparable to field-

like torques57. This nevertheless emphasizes the utility of σSOT
e and σSOT

o without reliance

on underlying assumptions or models.

VI. CONCLUSION

In summary, we have quantified both field- and damping-like inverse spin-orbit torques in

Ni80Fe20/Pt bilayers using phase-sensitive VNA-FMR measurements and an analysis of the

sample’s complex inductance that arises in part from the AC currents due to spin-charge

conversion. The magnitude of these currents is determined by their respective SOT con-

ductivities, a key figure of merit for characterizating and optimizing operational spintronic

devices. Because our technique entails straightforward post-measurement data processing

for an experimental technique that is well-established in the field, it provides a powerful way

to unpick a highly complex experimental system and represents a broadly applicable tool for

studying strong SOC material systems. The technique could even be applied to previously-

acquired VNA-FMR data sets in which only spectroscopic analysis was performed. The

measurements presented here demonstrate that both Rashba-Edelstein and spin Hall effects

must be considered in FM/NMmetallic bilayers. Together with the observation of significant

variation in σSOT
o with respect to FM/NM stacking order, these results point to interfacial

engineering as an opportunity for enhancing current-controlled magnetism.
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