
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Spin-lattice relaxation of individual solid-state spins
A. Norambuena, E. Muñoz, H. T. Dinani, A. Jarmola, P. Maletinsky, D. Budker, and J. R.

Maze
Phys. Rev. B 97, 094304 — Published 20 March 2018

DOI: 10.1103/PhysRevB.97.094304

http://dx.doi.org/10.1103/PhysRevB.97.094304


Spin-lattice relaxation of individual solid-state spins
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Understanding the effect of vibrations on the relaxation process of individual spins is crucial for
implementing nano systems for quantum information and quantum metrology applications. In this
work, we present a theoretical microscopic model to describe the spin-lattice relaxation of individual
electronic spins associated to negatively charged nitrogen-vacancy centers in diamond, although our
results can be extended to other spin-boson systems. Starting from a general spin-lattice interaction
Hamiltonian, we provide a detailed description and solution of the quantum master equation of an
electronic spin-one system coupled to a phononic bath in thermal equilibrium. Special attention
is given to the dynamics of one-phonon processes below 1 K where our results agree with recent
experimental findings and analytically describe the temperature and magnetic-field scaling. At
higher temperatures, linear and second-order terms in the interaction Hamiltonian are considered
and the temperature scaling is discussed for acoustic and quasi-localized phonons when appropriate.
Our results, in addition to confirming a T 5 temperature dependence of the longitudinal relaxation
rate at higher temperatures, in agreement with experimental observations, provide a theoretical
background for modeling the spin-lattice relaxation at a wide range of temperatures where different
temperature scalings might be expected.

PACS numbers:

I. INTRODUCTION

The negatively charged nitrogen-vacancy (NV−) cen-
ter in diamond is a promising solid-state system with re-
markable applications in quantum sensing with atomic-
scale spatial resolution1,2, fluorescent marking of biolog-
ical structures3–5, single photon sources6, and quantum
communications7. However, most of these quantum-based
applications crucially depend on the longitudinal (1/T1)
and transverse (1/T2) spin relaxation rates associated with
the ground state spin degree of freedom8.

From experiments and theory, we know that lattice
phonons in diamond are important for the spin-lattice re-
laxation dynamics of the spin degree of freedom of the NV−

center, and that the temperature plays a fundamental role
in this relaxation process8–12. Phonons can be understood
as collective quantum vibrational excitations that propa-
gate through the lattice and directly interact with the or-
bital states of the point defect. The intensity of this inter-
action depends on the electron-phonon coupling between
the defect and all possible phonon modes in the lattice
(acoustic, optical and quasi-localized phonon modes)13–15.
Theoretical and numerical studies show that the strain
field of the diamond lattice and perturbative corrections
given by the spin-orbit and spin-spin interactions intro-
duce interesting spin-phonon dynamics between the ground
state spin degree of freedom of the NV− center and lattice
phonons16,17.

Several theoretical works have addressed the problem

of finding the relaxation rate by considering the interac-
tion between the spin degree of freedom with two-phonon
Raman18,19 and Orbach-type20 processes. In general, the
problem of estimating the thermal dependence of each re-
laxation process is translated into the problem of calculat-
ing the transition rates predicted by the Fermi golden rule
for different phonon processes12,18–21. Using this reasoning,
it is reported that the second-order Raman process induced
by a linear spin-phonon interaction leads to 1/T1 ∝ T 519,
while the first-order Raman process induced by a quadratic
spin-phonon interaction leads to 1/T1 ∝ T 718, where T is
the environment temperature.

The ground triplet state of the NV− center in diamond
has a natural zero-field splitting D/2π = 2.87 GHz origi-
nated from the dipole-dipole interaction between electronic
spins22,23. This energy gap is low compared to typical
optical phonon energies ωph/2π ∼ 15-40 THz and sets a
characteristic thermal gap associated with the spin system
Tgap = ~D/kB ≈ 0.14 K. Experimental observations at
high temperatures, from 300 K to 475 K, have shown that
different samples with different NV− center concentrations
present a dominant two-phonon Raman process that leads
to (1/T1)Raman ∝ T 58,11. At low temperatures, between 4
K and 100 K, the relaxation rate is dominated by Orbach
and spin-bath interactions. The former is associated with a
quasi-localized phonon mode with energy ωloc ≈ 73 meV8,24

and contributes with a temperature dependence relaxation
rate (1/T1)Orbach ∝ (exp(~ωloc/kBT )− 1)−1. This, closely
matches the numerical vibrational resonance predicted by
ab initio studies13. Meanwhile, it is observed that dipole-



2

dipole interactions between neighboring spins lead to a con-
stant sample-dependent relaxation rate which dominates at
this temperature range8. In contrast, at lower temperatures
(below 1 K) recent experimental observations and ab ini-
tio calculations concluded that the longitudinal relaxation
rate is dominated by single-phonon processes, and is given
by (1/T1) ∝ Γ0 (1 + 3n̄(T )), where Γ0 = 3.14 × 10−5 s−1,

and n̄(T ) = (exp(~D/kBT )− 1)
−1

is the mean number of
phonons at the zero-field splitting frequency12. However,
a microscopic model that predicts the temperature depen-
dence of the longitudinal relaxation rate for a wide range of
temperatures, to the best of our knowledge, is still missing.

Here, we present a microscopic model for the spin-lattice
relaxation dynamics associated with the ground state of
the NV− center in diamond. In our model, we introduce
a general spin-phonon Hamiltonian to describe the spin re-
laxation dynamics using the quantum master equation as-
sociated with the electronic spin degree of freedom under
the effect of a phononic bath. We focus on the estimation
of the longitudinal relaxation rate by evaluating the rate
of the Fermi golden rule transitions to first and second-
order considering the effect of acoustic and quasi-localized
phonons. In Sec. II, we give the Hamiltonian of the whole
system and introduce the spin-phonon interaction between
the triplet state of the spin degree of freedom and lattice
vibrations, by considering one-phonon and two-phonon in-
teractions. Section III introduces the phonon relaxation
rates for one-phonon and two-phonon processes, by using
the Fermi golden rule, the Debye approximation, and a
model for strong interactions with quasi-localized phonon
modes. In Sec. IV we introduce the quantum master equa-
tion associated with the spin-lattice relaxation dynamics of
the ground state and include the role of a stochastic mag-
netic noise. Finally, in Section V we discuss the longitu-
dinal relaxation rate at low and high-temperature regimes
and the role of a static magnetic field on the relaxation rate
for low temperatures.

II. SPIN DEGREE OF FREEDOM AND
PHONONS

We consider a system composed of a single NV− cen-
ter in diamond interacting with lattice phonons. In this
scenario, local vibrations induce a mixing between orbital
states of the defect by means of the electron-phonon in-
teraction. This phonon-induced mixing effect generates an
effective interaction between the spin degree of freedom and
lattice phonons. In order to model the spin-phonon relax-
ation dynamics, we use the following Hamiltonian

Ĥ = ĤNV + Ĥs-ph + Ĥph, (1)

where the first, second and third terms represent the ground
state spin Hamiltonian of the NV− center, the interaction
Hamiltonian between the spin state and lattice phonons,
and the phonon bath, respectively.

The NV− center is composed of a substitutional nitro-
gen atom next to a vacancy in a diamond lattice. The
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FIG. 1. The energy levels and the atomic structure of the NV−

center are shown. Here, |X〉 and |Y 〉 are the orbital degenerate
excited states, and |A2〉 is the orbital ground state. The zero-
phonon line energy is given by E0 = 1.945 eV. The spin triplet
states are represented by |ms = 0〉 and |ms = ±1〉. Such spin
states are separated by the zero-field splitting constant D/2π =
2.87 GHz and the static magnetic field which we have assumed
is aligned along the symmetry axis of the center. Phonons are
represented by a continuous band that interacts with the ground
state and its transitions are represented by the labels (1), (2),
and (3).

symmetry of the center is captured by including the three
carbon atoms adjacent to the vacancy25. The atomic con-
figuration of this point defect is associated with the C3v

symmetry group. The electronic structure of this point
defect is modeled as a two electron-hole system with elec-
tronic spin S = 1. In this representation, the electronic
wavefunctions of the excited and ground state are linear
combinations of two-electron wave functions26, where the
single-electron orbitals of the NV− center can be written in
terms of the carbon and nitrogen dangling bonds27,29. In
the absence of external perturbations, such as lattice dis-
tortions or electromagnetic fields, the orbital excited states
|X〉 and |Y 〉 are degenerate due to the C3v symmetry and
belong to the irreducible representation E. Meanwhile, the
orbital ground state |A2〉 belongs to the irreducible repre-
sentation A2.

In the presence of a static magnetic field B0 along the z
axis, the spin Hamiltonian of the NV− center is given by
(~ = 1)

ĤNV = DS2
z + γsB0Sz, (2)

where S = (Sx, Sy, Sz) are the Pauli matrices for S = 1
(dimensionless), D/2π = 2.87 GHz is the zero-field splitting
constant, and γs/2π ≈ 2.8 MHz/G is the gyromagnetic
ratio. Figure. 1 shows the energy diagram of the system,
including the orbital states, spin degrees of freedom and
the atomic configuration of the NV− center.

Quantum systems with spin S = 1 are traditionally
called non-Kramers systems30,31. Interestingly, there is
a non-trivial connection between the spin number and
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the temperature dependence of the relaxation rate19,20,27.
Therefore, in order to obtain the correct temperature de-
pendence of the spin relaxation rate of the ground triplet
state of the NV− center we consider the most general spin-
phonon interaction Hamiltonian for spin S = 1 systems
given by30

Ĥs-ph = EzS
2
z + Ex

(
S2
x − S2

y

)
+ Ey (SxSy + SySx)

+Ex′ (SxSz + SzSx) + Ey′ (SySz + SzSy) , (3)

where the operators Ez, Ex, Ey, Ex′ and Ey′ have units of
energy. In addition, the operators Ex, Ex′ , Ey, and Ey′ be-
long to the irreducible representation E, while the operator
Ez is characterized by the irreducible representation A1

30.
Physically, the Ei operators can be derived from perturba-
tive corrections of the spin-spin and spin-orbit interactions
due to the effect of the strain field17. These operators are
proportional to the nuclear displacements, and therefore,
can be quantized using phonon modes17. In order to intro-
duce these quantized vibrations, we expand the Ei oper-
ators in terms of lattice phonon-mode operators classified
by each symmetry, including the linear and the quadratic
terms, as the following

Ei =
∑
k∈E

λk,ix̂k +
∑

k⊗k′∈E

λkk′,ix̂kx̂k′ , i 6= z (4)

Ez =
∑
k∈A1

λk,zx̂k +
∑

k⊗k′∈A1

λkk′,zx̂kx̂k′ . (5)

Here, λk,i and λkk′,i are the linear and quadratic spin-
phonon coupling constants, respectively. The operator x̂k
is given by x̂k = b̂k + b̂†k where b̂k and b̂†k are the boson
annihilation and creation operators, respectively satisfying

[b̂k, b̂
†
k′ ] = δk,k′ . The linear term given in Eqs. (4) and (5)

has the same symmetry as the corresponding Ei operators,
and phonons with these symmetry are considered in the
summation. In the quadratic term we are considering com-
binations of phonons such that the product belongs to the
irreducible representation E or A1. As a consequence of
the multiplication rules A2 ⊗ A2 = A1 and A2 ⊗ E = E,
phonon modes with A2 symmetry only contribute to the
quadratic term. Therefore, the most general spin-phonon
Hamiltonian for a system with spin S = 1, is given by

Ĥs-ph =
∑
i

[∑
k∈Γi

λk,ix̂k +
∑

k⊗k′∈Γi

λkk′,ix̂kx̂k′

]
F̂i(S),

(6)

where i = x, y, x′, y′, z is the spin label, Γx,y,x′,y′ = E and
Γz = A1 are the irreducible representations of the C3v point
group. The spin functions are given by F̂x(S) = S2

x −
S2
y , F̂y(S) = SxSy + SySx, F̂x′(S) = SxSz + SzSx, F̂y′(S) =

SySz + SzSy, and F̂z(S) = S2
z .

Using the spin basis that diagonalizes the spin Hamilto-
nian given in Eq. (2), i.e., |ms = 1〉 = (1, 0, 0), |ms = 0〉 =

(0, 1, 0), and |ms = −1〉 = (0, 0, 1) we explicitly obtain

F̂x(S) =

 0 0 1
0 0 0
1 0 0

 , F̂x′(S) =
1√
2

 0 1 0
1 0 −1
0 −1 0

 , (7)

F̂y(S) =

 0 0 −i
0 0 0
i 0 0

 , F̂y′(S) =
1√
2

 0 −i 0
i 0 i
0 −i 0

 , (8)

F̂z(S) =

 1 0 0
0 0 0
0 0 1

 . (9)

We observe that only the terms F̂x(S) and F̂y(S) induce
spin transitions between the states ms = +1 and ms =
−1, where the selection rule is ∆ms = ±2. On the other
hand, the terms F̂x′(S) and F̂y′(S) induce spin transitions
between ms = ±1 and ms = 0, in this case the selection
rule is ∆ms = ±1.

Finally, the phonon Hamiltonian can be written as

Ĥph =
∑
k

~ωk b̂†k b̂k, (10)

where ωk is the frequency of each vibrational mode of the
lattice (including the color center), and the summation
takes into account the contribution of all phonon modes of
the diamond lattice. In the next section, we will introduce
the phonon-induced spin relaxation rates and the temper-
ature dependence associated to the spin-phonon Hamilto-
nian given in Eq. (6) by considering the effect of acoustic
and quasi-localized phonons in thermal equilibrium. We
will show that the dimension and the symmetry of the
lattice play a fundamental role in the temperature depen-
dence of the longitudinal relaxation rate for two-phonon
processes.

III. FERMI GOLDEN RULE AND
PHONON-INDUCED SPIN RELAXATION RATES

In order to formally introduce the phonon-induced re-
laxation rates, we use the Fermi golden rule to first and
second order by using the spin-phonon Hamiltonian given
in Eq. (6). Using this procedure, it is possible to model
first and second-order Raman-like processes, as well as di-
rect absorption and emission associated with one-phonon
processes. In particular, the energies associated with the
spin transitions in the ground state of the NV− center
are given by ω1 = 2γsB0, ω2 = D + γsB0, and ω3 =
D − γsB0. For typical magnitudes of the static magnetic
field B0 ∼ 0 − 2000 G and taking into account the zero
field splitting constant D/2π = 2.87 GHz, we obtain that
ω1 ∼ 0− 11.2 GHz, ω2,3 ∼ 2.87− 8.47 GHz. These are the
typical energies of acoustic phonons which belong to the lin-
ear branch of the phonon dispersion relation for diamond28.
Acoustic phonons in diamond have energies of the order of
ωacous ∼ 0−10 THz. Therefore, the main fraction of acous-
tic phonons satisfy the frequency condition ωacous � ωi.
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For the case of Raman-like processes the frequency condi-
tion is ωph,1−ωph,2 = ωi (i = 1, 2, 3). Due to the condition
ωacous � ωi we assume in our model that the most sig-
nificant contribution to two-phonon processes comes from
acoustic phonons that satisfy ωph,1 � ωi and ωph,2 � ωi.
On the other hand, high energy phonons in diamond, with
frequencies of the order of ωph ∼ 15 − 40 THz, can be
included by considering the strong interaction with quasi-
localized phonons. Therefore, in what follows we will
consider the contribution of acoustic and quasi-localized
phonons.

A. One-phonon processes: acoustic phonons

In the case of one-phonon processes, we need to distin-
guish between the absorption and the emission of a partic-
ular phonon mode with frequency ωk, which must be reso-
nant with a transition between the spin energy levels of the
NV− center in diamond. In order to introduce the temper-
ature, we assume a phonon environment in thermal equilib-
rium, i.e., phonons that satisfy the Bose-Einstein distribu-

tion. Thus, we have 〈b̂†k b̂k〉 = n(ωk) and 〈b̂k b̂†k〉 = 1+n(ωk),

where n(ωk) = [exp (~ωk/kBT )− 1]
−1

is the mean number
of phonons at thermal equilibrium with kB and ~ being the
Boltzmann and Planck constant, respectively.

For one-phonon processes the absorption and emission
transition rates associated with the spin transition |ms〉 →
|m′s〉 are given by the first order Fermi golden rule as

Γ
ms→m′

s

abs =
2π

~2

∑
k

∣∣∣〈m′s, nk − 1
∣∣∣Ĥs-ph,

∣∣∣ms, nk〉
∣∣∣2

×δ(ωm′
s,ms
− ωk), (11)

Γ
ms→m′

s
em =

2π

~2

∑
k

∣∣∣〈m′s, nk + 1
∣∣∣Ĥs-ph

∣∣∣ms, nk〉
∣∣∣2

×δ(ωm′
s,ms
− ωk), (12)

where ωm′
s,ms

= ωm′
s
− ωms

is the frequency difference be-
tween the spin sub-levels, and |nk〉 is the number of phonons
in the mode k (Fock state). Using the spin-phonon Hamil-
tonian given in Eq. (6), the spin relaxation rates associated
with one-phonon processes are given by

Γ1,1-ph
abs =

2π

~2
n(ω1)J1(ω1), Γ1,1-ph

em =
2π

~2
(n(ω1) + 1) J1(ω1),

(13)

Γ2,1-ph
abs =

π

~2
n(ω2)J2(ω2), Γ2,1-ph

em =
π

~2
(n(ω2) + 1) J2(ω2),

(14)

where the superscript “1” and “2” represent the spin tran-
sitions |ms = −1〉 ↔ |ms = 1〉 and |ms = 0〉 ↔ |ms = +1〉,
respectively. Here, J1(ω) and J2(ω) are the spectral density
functions

J1(ω) =
∑
k∈E

(
λ2
k,x + λ2

k,y

)
δ(ω − ωk), (15)

J2(ω) =
∑
k∈E

(
λ2
k,x′ + λ2

k,y′
)
δ(ω − ωk), (16)

where λk,i are the linear spin-phonon coupling constants,
ωk are the phonon frequencies, and both summations con-
sider the contribution of E phonons. For the transition
|ms = 0〉 ↔ |ms = −1〉 the gap frequency ω3 = D − γsB0

can be positive or negative depending on the strength of
the external magnetic field B0. For ω3 > 0 the absorption
and emission relaxation rates are given by

Γ3,1-ph
abs =

π

~2
n(ω3)J2(ω3), (17)

Γ3,1-ph
em =

π

~2
(n(ω3) + 1)J2(ω3), (18)

where the superscript “3” represents the spin transition
|ms = 0〉 ↔ |ms = −1〉. In this case, the spin state
|ms = 0〉 is the lowest spin energy level and the absorp-
tion is defined by the transition |ms = 0〉 → |ms = −1〉. In
the opposite case, i.e., when ω3 < 0, the relaxation rates
can be written as the following

Γ3,1-ph
abs =

π

~2
n(|ω3|)J2(|ω3|), (19)

Γ3,1-ph
em =

π

~2
(n(|ω3|) + 1)J2(|ω3|). (20)

In this case the spin state |ms = −1〉 is the lowest spin
energy level, and the absorption is defined by the transi-
tion |ms = −1〉 → |ms = 0〉. Figure 2 shows the phonon-
induced spin relaxation rates associated with the ground
triplet state of the NV− center as a function of the exter-
nal magnetic field B0. The absorption and emission re-
laxation rates associated with the transitions |ms = 0〉 ↔
|ms = −1〉 are shown only for the case ω3 < 0. The total
phonon-induced spin relaxation rate associated with one-
phonon processes is defined as the sum of the absorption
and emission transition rates of each process, and is given
by

Γ1-ph =

3∑
i=1

(
Γi,1-ph

abs + Γi,1-ph
em

)
=

3∑
i=1

Ai coth

(
~ωi

2kBT

)
.

(21)
This total phonon-induced spin relaxation rate will be rel-
evant for the general solution associated with the popu-
lations of the spin states and the observable 〈Sz(t)〉 (see
Section V B and Eqs. (71) and (74)). In addition, this
transition rate, i.e., the sum of absorption and emission
of all the transitions, is the rate that limits the coherence
time T2

32. The parameters Ai depend on the value of the
spectral density function at the resonant frequencies, i.e.,
A1 = 2πJ1(ω1), A2 = πJ2(ω2), and A3 = πJ2(|ω3|).

In the limit of continuous frequency, i.e., ωk → ω, we can
introduce the following scaling for the linear spin-phonon
coupling constants34:

λk,i → λi(ω) = λ0i

(
ω

ωD

)ν
, 0 ≤ ω ≤ ωD, (22)

where λi(ω) is the one-phonon coupling constant for acous-
tic phonons, λ0i = λi(ωD) is the strength of the one-
phonon coupling constant at the Debye frequency ωD =

(3/(4πn))
1/3

vs, where n is the atom density, and vs is the
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speed of sound. For the diamond lattice the Debye fre-
quency is given by ωD/2π = 38.76 THz35. The parameter ν
is a phenomenological parameter that models the strength
of the coupling for acoustic phonons and depends on the
symmetry of the lattice. In the absence or presence of cu-
bic symmetry we have ν = 1/2 or ν = 3/2, respectively34.
For the NV− center in diamond we use the value ν = 1/2,
because of the presence of the color center with C3v symme-
try that breaks the symmetry of the whole system (lattice
and point defect).

We introduce the density of states for acoustic phonons
with E symmetry for a d-dimensional lattice, with a dis-
persion relation ωk = vs|k| in the Debye approximation
(ω ≤ ωD = vskD):

D(d)(ω) = Ω

∫
ddk

(2π)d
δ(ω − vs|k|)

=
Ω

(2π)d

∫
dΩ̂d

∫ kD

0

dk kd−1δ(ω − vsk)

= D0

(
ω

ωD

)d−1

Θ(ωD − ω). (23)

Here, we have used d-dimensional spherical coordinates
with measure ddk = dΩ̂ddkk

d−1, with Ω̂d the solid angle in
d-dimensions and ωD = vskD the Debye frequency for the
diamond lattice. In the last line, we have defined the posi-
tive normalization constant D0 = ΩΩ̂dω

d−1
D /((2π)dvds ) > 0,

for d = 1, 2, 3 the dimension of the lattice. In Eq. (23)
we have taken the continuum limit of the sum, Ω is the
volume of a unit cell, vs = 1.2 × 104 m/s is the speed of
sound in a diamond lattice, and ωD = vskD is the Debye
frequency for the diamond lattice. The frequency domain
is truncated in the upper limit to the Debye frequency by
the Heaviside function Θ(ωD−ω). For a three-dimensional
lattice we obtain D0 = Ωω2/(2π2v3

s). In the limit of contin-
uous frequency and considering a three dimensional lattice,
the spectral density functions can be written as

J1(ω) =
∑
k∈E

[
λ2
x(ωk) + λ2

y(ωk)
]
δ(ω − ωk)

→ Ω

∫
d3k

(2π)3

[
λ2
x(ωk) + λ2

y(ωk)
]
δ(ω − ωk)

=
[
λ2
x(ω) + λ2

y(ω)
]

Ω

∫
d3k

(2π)3
δ(ω − ωk)

= [λ2
x(ω) + λ2

y(ω)]D(3)(ω). (24)

Similar manipulations lead to J2(ω) = [λ2
x′(ω) +

λ2
y′(ω)]D(3)(ω). As a result, the parameters Ai are given

by

A1 =
Ω
(
λ2

0x + λ2
0y

)
πv3

sωD
(2γsB0)

3
, (25)

A2 =
Ω
(
λ2

0x′ + λ2
0y′

)
2πv3

sωD
(D + γsB0)

3
, (26)

A3 =
Ω
(
λ2

0x′ + λ2
0y′

)
2πv3

sωD
(D − γsB0)

3
. (27)

FIG. 2. The solid black lines are the energy levels of the ground
triplet state of the NV− center in diamond as a function of the
external magnetic field along the z axis. For a given absorp-
tion and emission transition between two spin states |ms〉, we
observe three different spin relaxation processes represented by
colored arrows (1=red, 2=green and 3=blue). The relaxation
rates Γi,1-phabs and Γi,1-phem are the absorption and emission spin
relaxation rates for one-phonon processes.

Therefore, the available number of phonons in the lattice,
the density of phonon states, and the spin-phonon coupling
constants will determine the intensity of each transition
rate. In this context, the temperature is the control pa-
rameter in the laboratory that, at a quantum level, intro-
duces available phonons that collectively act as a source of
relaxation. At zero magnetic field, we have A1 = 0 and
A2 = A3. In the high-temperature regime, kBT � ~ωi,
the one-phonon spin relaxation rates scales linearly with
the temperature, i.e., Γi,1-ph ∝ T . In the opposite case,
when kBT � ~ωi, the one-phonon spin relaxation rates
scales as a constant.

In the next section we introduce the second-order cor-
rections to the Fermi golden rule using both linear and bi-
linear terms in the spin-phonon interaction Hamiltonian.

B. Two-phonon processes: acoustic phonons

The second-order transition rate associated with the spin
transition |ms〉 → |m′s〉 is defined as

Γms→m′
s

=
∑
k,k′

∑
l,l′

Γ
m′

s,nl,nl′
ms,nk,nk′ , ms,m

′
s = 0,±1, (28)

where the sum is over all possible initial and final two-
phonon modes, with |i〉 = |ms, nk, nk′〉 and |f〉 =
|m′s, nl, nl′〉 being the initial and final states, respectively.
The transition rate inside the sum in Eq. (28) is given by
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the Fermi golden rule formula to second-order

Γ
m′

s,nl,nl′
ms,nk,nk′ =

2π

~2

∣∣∣V m′
s,nl,nl′

ms,nk,nk′

+
∑

m′′
s =0,±1

∑
p,p′

V
m′′

s ,np,np′

m′
s,nl,nl′

V
ms,nk,nk′
m′′

s ,np,np′

Ems,nk,nk′ − Em′′
s ,np,np′

∣∣∣∣∣∣
2

×δ(ωm′
s,ms

+ nlωl + nl′ωl′ − nkωk − nk′ωk′),
(29)

where V ji = 〈i| Ĥs-ph |j〉, |m′′s 〉 is the spin state of the inter-
mediate state, and |np〉,|n′p〉 are the intermediate phonon
states. The resonant frequencies of the system, i.e., ω1 ∼
0−11.2 GHz and ω2,3 ∼ 2.87−8.47 GHz are very low com-
pared to the frequency of the acoustic phonons in diamond
ωacous ∼ 0−10 THz. Therefore, to second-order we assume
that the most significant contribution comes from phonons
that satisfy the frequency condition ωk,k′ � ωms,m′′

s
.

We introduce four different types of two-phonon pro-
cesses: two-phonon direct transition (Direct), Stokes tran-
sition (Stokes), anti-Stokes transition (anti-Stokes), and
spontaneous emission followed by absorption (Spont), see
Fig. 3. The direct two-phonon transition is characterized
by the frequency condition ωk + ωk′ = ωm′

s,ms
and its ab-

sorption and emission relaxation rates are given by

Γabs, Direct
ms→m′

s
=
∑
k,k′

Γ
m′

s,nk−1,nk′−1
ms,nk,nk′ , (30)

Γem, Direct
m′

s→ms
=
∑
k,k′

Γ
ms,nk+1,nk′+1
m′

s,nk,nk′ . (31)

On the other hand, we have the Stokes and Anti-Stokes
transitions which are characterized by the frequency con-
dition ωk − ωk′ = ωm′

s,ms and are given by

ΓStokes
ms→m′

s
=
∑
k,k′

Γ
m′

s,nk−1,nk′+1
ms,nk,nk′ , (32)

ΓAnti-Stokes
m′

s→ms
=
∑
k,k′

Γ
ms,nk−1,nk′+1
m′

s,nk,nk′ . (33)

For the spontaneous emission followed by absorption pro-
cess we define

Γabs, Spont
ms→m′

s
=
∑
k,k′

Γ
m′

s,nk+1,nk′−1
ms,nk,nk′ , (34)

Γem, Spont
m′

s→ms
=
∑
k,k′

Γ
ms,nk+1,nk′−1
m′

s,nk,nk′ . (35)

For acoustic phonon modes, i.e., phonons with a linear dis-
persion relation ωk = v|k|, we can use the Debye model in
order to represent two-phonon processes. In order to study
the spin-relaxation rate as a function of the dimension of
the system, we used the density of phonon states for a d-
dimensional lattice given in Eq. (23). We can introduce
the following scaling for the quadratic spin-phonon cou-
pling constant for the acoustic phonon modes in the limit
of continuous frequency34

λkk′,i → λi(ω, ω
′) = λ00i

(
ω

ωD

)ν (
ω′

ωD

)ν
, (36)

FIG. 3. The red arrows represent the absorption and emission
of two phonons between two different spin states |ms〉 and |m′s〉.
The direct two-phonon process is associated to the energy con-
dition ωk + ωk′ = ωm′

s,ms , where ωm′
s,ms = ωm′

s
− ωms is the

frequency gap. The Stokes scattering is associated to the energy
condition ωk − ωk′ = ωm′

s,ms .

where λi(ω, ω
′) is the two-phonon coupling constant for

acoustic phonons, λ00i = λi(ωD, ωD) is the strength of the
two-phonon coupling constant at the Debye frequency ωD,
and ν > 0 is a phenomenological factor that models the
spin-phonon coupling in the acoustic regime.

Using the second-order Fermi golden rule given in
Eq. (A1) and only considering acoustic phonons, we obtain
the following absorption and emission transition rates

Γabs
ms→m′

s
= Γabs, Direct

ms→m′
s

+ ΓStokes
ms→m′

s
+ Γabs,Spont

ms→m′
s
, (37)

Γem
ms→m′

s
= Γem, Direct

ms→m′
s

+ ΓAnti-Stokes
ms→m′

s
+ Γem,Spont

ms→m′
s
, (38)

where each transition rate is defined as

Γprocess
ms→m′

s
= aprocess

ms,m′
s
(xD)T 4ν+2d−3 + bprocess

ms,m′
s
(xD)T 4ν+2d−2

+ cprocess
ms,m′

s
(xD)T 4ν+2d−1, (39)

where process = {Direct, Stokes, Anti-Stokes, Spont},
xD = ~ωD/kBT is a dimensionless parameter, T is the tem-
perature, and the coefficients aprocess

ms,m′
s
, bprocess

ms,m′
s
, and cprocess

ms,m′
s

are given in Appendix A. Using ν = 1/2 and d = 3, we
obtain the following total two-phonon spin relaxation rate

Γ2-ph =
∑

ms 6=m′
s

(
Γabs
ms→m′

s
+ Γem

ms→m′
s

)
= A5T

5 +A6T
6 +A7T

7. (40)

This total spin relaxation rate will be relevant for the gen-
eral solution associated with the physical observable 〈Sz(t)〉
(see Section V B and Eq. (74)). In Table I, we have shown
the different temperature dependence of the spin relaxation
rate associated with two-phonon processes in the acoustic
limit. We observe that the symmetry of the lattice ν and
the dimension of the system d determine the temperature
response of the spin-lattice relaxation dynamics of the sys-
tem at high temperatures.
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TABLE I. The table shows the expected temperature depen-
dence of linear and bi-linear spin-phonon interactions consid-
ered to first and second order in spin lattice relaxation rate.
The bi-linear term to second order is zero. When both linear
and bi-linear terms are considered a mixed term appears only
to second-order. Last column indicates the temperature scaling
for a three-dimensional, non-cubic lattice.

Hamiltonian First-order Second-order
d = 3

ν = 1/2

Ĥ =
∑
k,i

λkix̂k coth

(
~ω
kBT

)
T 4ν+2d−3 T 5

Ĥ =
∑
k,k′,i

λkk′,ix̂kx̂k′ T 4ν+2d−1 0 T 7

Mixed term 0 T 4ν+2d−2 T 6

In summary, by only considering the contribution of
acoustic phonons to first and second-order, we see three
different temperature scalings of the form (T s, T s+1, T s+2),
where s = 4ν + 2d − 3. We observe 1/T1 ∝ T s for a lin-
ear second-order Raman-like scattering, 1/T1 ∝ T s+2 for
a quadratic first-order Raman-like scattering, and 1/T1 ∝
T s+1 for the mixed term between the linear and quadratic
contributions to second order.

C. Two-phonon processes: quasi-localized phonons

Quasi-localized phonons, or vibrational resonances be-
tween a single-color-center and lattice vibrations, are good
candidates for dissipative processes due to the strong
electron-phonon coupling. The NV− center has a strong
electron-phonon coupling associated with vibrational reso-
nances, with a continuum of vibrational modes centered at
ωres = 65 meV, and a full width at half-maximum of about
∆ = 32 meV as regularly observed in the phonon-sideband
of the NV fluorescence spectrum under optical excitation13.
Because of the small zero-field splitting constant induced
by spin-spin interaction (D/2π = 2.87 GHz or ~D = 0.012
meV), we have ωres � D, and therefore, these high-energy
phonons can only be present in a two-phonon process as-
sociated with the condition ωk − ωk′ = ωi (ωk ≈ ωk′).
Strong interactions with high energy phonons can be intro-
duced in Orbach-type processes9. It is shown experimen-
tally that different NV− center samples have an activation
energy of 73 meV8, which is close to the vibrational reso-
nance frequency ωres = 65 meV. In our formalism, quasi-
localized phonons can be phenomenologically modeled by
a Lorentzian spectral density function of the form15,36

JLoc(ω) =
JLoc

π

1
2∆

(ω − ωloc)
2

+
(

1
2∆
)2 , 0 < ω < ωmax.

(41)
In this equation, JLoc is the coupling strength, ∆ is a
characteristic bandwidth, ~ωmax = 168 meV is the max-
imum phonon energy in a diamond lattice37, and ωloc is
the frequency of the localized phonon mode. As a simpler

model we can consider the interaction with only one quasi-
localized phonon mode (∆→ 0)

λk,i = λi,locδ(ω − ωloc), (42)

where λi,loc is the coupling strength. Using the above equa-
tion and calculating the second-order transition rate in-
duced by the linear spin-phonon interaction, we can obtain
the following relaxation rate associated with quasi-localized
phonons

Γloc = A4 (1 + n(ωloc))n(ωloc)

≈ A4

e~ωloc/kBT − 1
, (43)

where A4 is a constant of units of frequency. The approx-
imation (1 + n(ωloc))n(ωloc) ≈ n(ωloc) is valid for temper-
atures below T = 300 K. For such temperatures, the mean
number of phonons is low, n(ωloc) ≈ 0.1, therefore we can
write (1 + n)n ≈ n+O(n2).

In the next section we derive the spin-lattice relaxation
dynamics using the quantum master equation.

IV. SPIN-LATTICE RELAXATION DYNAMICS

In this section, we present the general equation associ-
ated with the spin-lattice relaxation dynamics of the ground
triplet state of the NV− center. We use the Markovian
quantum master equation38 for the reduced density op-
erator ρ̂(t) = Trph (ρ̂NV+ph). We assume that the ini-
tial state at time t0 is given by the uncorrelated state
ρ̂NV+ph(t0) = ρ̂NV(t0)⊗ ˆρph(t0) (Born approximation), and
that the phonon bath is in thermal equilibrium. In the
weak-coupling limit, and using the spin-phonon Hamilto-
nian given in Eq. (6), we obtain

˙̂ρ =
1

i~
[ĤNV, ρ̂] + L1-phρ̂+ L2-phρ̂+ Lmagρ̂, (44)

where the first term in Eq. (44) describes the free dynamics
induced by the NV− center Hamiltonian [Eq. (2)]. The
second and third terms are given by

L1-phρ̂ =

3∑
i=1

[
Γi,1-ph

abs L[Li+]ρ̂+ Γi,1-ph
em L[Li−]ρ̂

]
, (45)

L2-phρ̂ =

3∑
i=1

[
Γi,2-ph

abs L[Li+]ρ̂+ Γi,2-ph
em L[Li−]ρ̂

]
, (46)

which describe the dissipative spin-lattice dynamics in-
duced by one-phonon and two-phonon processes, with the
index i = 1, 2, 3 representing the spin transitions of the sys-
tem (see Fig. 1). In Eqs. (45) and (46) we have defined the

Lindblad super-operator L[Ô]ρ̂ = Ôρ̂Ô† − 1
2{Ô

†Ô, ρ̂} and
the spin operators

L1
+ = |ms = 1〉 〈ms = −1| =

(
L1
−
)†
, (47)

L2
+ = |ms = 1〉 〈ms = 0| =

(
L2
−
)†
, (48)

L3
+ = |ms = −1〉 〈ms = 0| =

(
L3
−
)†
. (49)
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The last term in Eq. (44) is an extra term that describes
a phenomenological dynamics induced by magnetic impu-
rities, and is given by

Lmagρ̂ = −1

4
Γmag

∑
i=x,y,z

[Si, [Si, ρ̂(t)]] , (50)

where Γmag is the magnetic relaxation rate induced by an
isotropic magnetic noise39, and Si are the Pauli matrices for
S = 1. From previous works, it is expected that the param-
eter Γmag will proportionally depend on the concentration
of neighboring NV− centers8 and temperature. Therefore,
Γmag is a sample-dependent parameter that models mag-
netic impurities. The exact temperature dependence of
Γmag is beyond the scope of this work, but we expect it
to change as temperature reaches Tgap = ~D/kB ≈ 0.14
K. In addition, in this work we neglect the effect of elec-
tric field fluctuations. This is relevant for experiments that
involve optical illumination and read-out of the electronic
states32.

Now, we study the longitudinal relaxation rate at low and
high temperatures. In the low-temperature limit we also
investigate the effect of magnetic field on the longitudinal
relaxation rate.

V. DISCUSSION

A. Low-temperature limit

In this section we discuss the low-temperature limit (be-
low 1 K) associated to the spin-lattice relaxation dynamics
of the ground state of the NV− center in diamond. For
low temperatures, only one-phonon processes contribute to
the transition rates. Therefore, we can deduce the spin-
lattice dynamics from the quantum master equation by
setting L2-phρ̂ = 0. From Eq. (44) we can find the dynam-
ics of the spin populations p1 = 〈ms = 1| ρ̂ |ms = 1〉, p2 =
〈ms = 0| ρ̂ |ms = 0〉, and p3 = 〈ms = −1| ρ̂ |ms = −1〉. For
an arbitrary magnetic field B0 along the z axis, using
Γmag = 0, and considering only one-phonon processes, the
equations at low temperatures are given by

dp1

dt
= − (γ+− + Ω+0) p1 + Ω0+p2 + γ−+p3, (51)

dp2

dt
= − (Ω0+ + Ω0−) p2 + Ω+0p1 + Ω−0p3, (52)

dp3

dt
= − (Ω0− + γ−+) p3 + γ+−p1 + Ω0−p2, (53)

where the direct relaxation rates between the spin states are
given by γ+− = A1(1 + n1), γ−+ = A1n1, Ω+0 = A2(1 +
n2), Ω0+ = A2n2, Ω−0 = A3(1 + n3), and Ω0− = A3n3

(see Fig. 4), where ni = [exp(~ωi/kBT )− 1]
−1

is the mean
number of phonons at thermal equilibrium. Here, ω1 =
2γsB0, ω2 = D+γsB0, and ω3 = D−γsB0 are the resonant
frequencies associated with the spin energy levels. The Ai
parameters are defined in Eqs. (25)-(27) and are estimated
as a function of the magnetic fieldB0 in the next section [see

FIG. 4. Direct relaxation rates induced by one-phonon pro-
cesses. The spin populations associated with the spin states
|ms = 0,±1〉 are modified by the absorption (γ−+,Ω0−,Ω0+)
and emission rates (γ+−,Ω−0,Ω+0). For magnetic fields γsB0 >
D (B0 > 1000 G), the state |ms = −1〉 is the lowest energy state
and the role of Ω0− and Ω−0 are exchanged.

Eqs. (63)-(65)]. For experiments in quantum information
processing and magnetometry these direct relaxation rates
play a fundamental role.

In the following we obtain the longitudinal relaxation
rate for the physical observables 〈S2

z (t)〉 and 〈Sz(t)〉 at dif-
ferent magnetic field regimes. However, this model can
be used to determine any other physical observable, for in-
stance, direct relaxation rates between spin states and their
magnetic field and temperature dependence.

1. Zero magnetic field

At zero magnetic field (B0 = 0) and neglecting the ef-
fect of strain, the spin states |ms = 1〉 and |ms = −1〉 are
degenerate (see Fig. 1). As a consequence, the emission
and absorption rates associated with the spin transitions
|ms = 0〉 ↔ |ms = 1〉 and |ms = 0〉 ↔ |ms = −1〉 are equal.

Therefore, the system can be modeled as a simple two-
level system with the degenerate excited states described
by |ms = ±1〉. In addition, the transition rate between
|ms = ±1〉 vanishes if we neglect the effect of electric field
fluctuations32. In such scenario, the absorption and emis-
sion rates are given by Γabs = Γ0n̄ and Γem = Γ0(n̄ + 1),

respectively, where n̄ = [exp(~D/kBT )− 1]
−1

is the mean
number of phonons at the zero-field splitting frequency
D/2π = 2.87 GHz. The parameter Γ0 is obtained from
Eqs. (26) and (27) for B0 = 0 and is given by

Γ0 =
ΩD3(λ2

0x′ + λ2
0y′)

2πv3
sωD

. (54)
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From Eqs. (51)-(53), we obtain

dp1

dt
= Γ0(1 + n̄)p1 + Γ0n̄p2, (55)

dp2

dt
= −2Γ0n̄p2 + Γ0(1 + n̄)p1 + Γ0(1 + n̄)p3, (56)

dp3

dt
= Γ0(1 + n̄)p1 + Γ0n̄p3. (57)

Using 〈S2
z (t)〉 = p1(t) + p3(t) and p1(t) + p2(t) + p3(t) = 1

we obtain

d〈S2
z (t)〉
dt

= −Γ0(1 + 3n̄)〈S2
z (t)〉+ 2Γ0n̄, (58)

dp2

dt
= −Γ0(1 + 3n̄)p2(t) + Γ0(1 + n̄). (59)

Using arbitrary initial conditions pi(0) = pi0 (i = 1, 2, 3),
we have

〈S2
z (t)〉 = 〈S2

z (T )〉st −
(
〈S2
z (T )〉st − p10 − p30

)
e−Γ0(1+3n̄)t,

p2(t) = (p2(T ))st − ((p2(T ))st − p20) e−Γ0(1+3n̄)t, (60)

where the steady states are given by

〈S2
z (T )〉st =

2

e~D/kBT + 2
, (61)

(p2(T ))st =
e~D/kBT

e~D/kBT + 2
. (62)

Therefore, the phonon-induced spin relaxation rate associ-
ated with 〈S2

z (t)〉 and p2(t) (ground state population) are
given by 1/T1 = Γ0(1 + 3n̄). In order to compare our
model to real systems, we extract the value of Γ0 from
recent experimental results12 which is Γ0 = 3.14 × 10−5

s−1 (see Fig. 5a). Using Eq. (54) and assuming λ0x′ ≈
λ0y′ ≈ λ0x ≈ λ0y, we estimate λ0x′ to be approximately
78.38 GHz. We note that other recent experimental results
seem to suggest an order of magnitude smaller values for
Γ0

33. Nevertheless, with this approximation for the λ0 fac-
tors and combining Eqs. (25)-(27) with Eq. (54), we can
estimate the following magnetic field dependence for the
one-phonon spin relaxation rates

A1 ≈ 2Γ0

(
2γsB0

D

)3

, (63)

A2 ≈ Γ0

[
(D + γsB0)

D

]3

, (64)

A3 ≈ Γ0

[
(D − γsB0)

D

]3

. (65)

Note that 〈Sz(t)〉 is zero as the states |ms = +1〉 and
|ms = −1〉 are degenerate at zero magnetic field. In the
next section we introduce the effect of low magnetic field
on the longitudinal relaxation rate associated with 〈Sz(t)〉.

2. Low magnetic field

We define the limit of low magnetic fields when γsB0 �
D so that n(D + γsB0) ≈ n(D − γsB0) ≈ n̄. By consid-
ering one-phonon processes, we obtain the following set of

equations

d〈S2
z (t)〉
dt

= −Γ0(1 + 3n̄)〈S2
z (t)〉+ 3εΓ0(1 + n̄)〈Sz(t)〉

+2Γ0n̄, (66)

d〈Sz(t)〉
dt

= − [ΓBnB + 3εΓ0(1 + 3n̄)] 〈S2
z (t)〉+ 6εΓ0n̄

− [ΓB(1 + 2nB) + Γ0(1 + n̄)] 〈Sz(t)〉, (67)

where ε = γsB0/D � 1 is a pertubative dimen-
sionless parameter, ΓB ≈ Γ0(2γsB0/D)3, and nB =

[exp(2~γsB0/kBT )− 1]
−1

is the mean number of phonons
at the resonant frequency ω1 = 2γsB0. In addition, the
mean number of phonons satisfies nB � n̄ due to the con-
dition γsB0 � D.

At low magnetic fields, the longitudinal relaxation rate
associated with 〈Sz(t)〉 is given by

1

T1
≈ 2Γ0(1 + 2n̄) + ΓB(1 + 2nB). (68)

The steady states satisfy the relation

〈S2
z (T )〉st
〈Sz(T )〉st

=
Γ0(1 + n̄) + ΓB(1 + 2nB)

nBΓB
. (69)

In the next section we obtain the longitudinal relaxation
rate associated with 〈Sz(t)〉 for arbitrary values of the mag-
netic field B0.

3. Arbitrary magnetic field values

At non-zero magnetic fields, the spin states |ms = −1〉
and |ms = 1〉 are split due to the Zeeman interaction (see
Fig. 1). This implies that the system can be modeled as a
dissipative three-level system consisting of the spin states
|ms = 0〉 and |ms = ±1〉. From Eqs. (51)-(53), the dynam-
ics for the longitudinal spin component is given by

d2〈Sz(t)〉
dt2

+
1

T1

d〈Sz(t)〉
dt

+ ω2〈Sz(t)〉 = A0, (70)

where the parameters are given by

1

T1
= A1(1 + 2n1) +A2(1 + 2n2) +A3(1 + 2n3), (71)

ω2 =
1

2

{
A1[A3(1 + n3)−A2(1 + n2)]−A2

2n2(3 + n2)

−A2
3n3(3 + n3) +A2A3(2 + n2 + n3 + 4n2n3)

}
,

A0 =
1

2

[
2A1(A2 +A3) +A2

2(1 + n2)2

+2A2A3(n2 − n3)−A2
3(1 + n3)2

]
. (72)

We observe that the relaxation rate 1/T1 is given by the
total one-phonon spin relaxation rate given in Eq. (21).
The general solution is that of a driven damped harmonic
oscillator, where the longitudinal relaxation rate is given
by

1

T1
≈ Γ0

D3
ω3

1(1 + 2n1) +
Γ0

D3

[
ω3

2(1 + 2n2) + ω3
3(1 + 2n3)

]
,

(73)
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FIG. 5. (a) Relaxation rate of 〈S2
z (t)〉 at zero magnetic field.

The symbols represent experimental spin relaxation rates mea-
sured at low temperatures (below 1 K) for different NV-samples
(Astner et. al.12). The dotted lines represent the theoretical fit
given by 1/T1 = Γ0(1+3n̄)+Γmag. We observe that at low tem-
peratures, the relevant contribution comes from the emission of
a phonon and the magnetic noise induced by the environment.
(b) Two-dimensional parameter plot of the longitudinal relax-
ation rate of 〈Sz(t)〉 in logarithm scale at magnetic fields ranging
from 0 to 1500 G, temperature ranging from 10 mK to 1 K, and
Γmag = 0.

where ω1 = 2γsB0, ω2 = D+γsB0, and ω3 = D−γsB0. In
this approximation we have assumed that λ2

0x′ + λ2
0y′ ≈

λ2
0x + λ2

0y (see Eqs. (25)-(27)). At low magnetic fields,
γsB0 � D, we recover the previous result given in Eq. (68).
Figure. 5b shows the expected longitudinal relaxation rate
at low temperatures for magnetic fields ranging from 0 to
1500 G. As the magnetic field increases, the longitudinal
relaxation rate increases as well.

B. High-temperature limit

In this section, we consider higher temperatures for which
the relaxation rate is dominated by quasi-localized phonons
and two-phonon processes, usually for temperatures higher
than 100 K. By solving the quantum master equation we
obtain that the longitudinal spin relaxation rate of 〈Sz(t)〉
(see Appendix B) is approximately given by

1

T1
≈ Γmag + Γ1-ph + Γloc + Γ2-ph,

= Γmag +

3∑
i=1

Ai coth

(
~ωi
kBT

)
+

A4

e~ωloc/kBT − 1

+A5T
5 +A6T

6 +A7T
7. (74)

In the above equation, ω1 = 2γsB0, ω2 = D + γsB0,
and ω3 = D − γsB0 are the resonant frequencies of the
ground triplet states of the NV− center in diamond in the
presence of the static magnetic field B0 along the z axis,
and T is the temperature. Similar formulas for the longi-
tudinal relaxation rate were obtained phenomenologically
in order to fit the experimental data for different NV−

center samples8,9. However, our work formally incorpo-
rates the phonon-induced spin relaxation rates by including
the contribution of stochastic magnetic noise, direct one-
phonon processes, strong interactions with quasi-localized
phonon modes, and the effect of the acoustic phonons to
first and second order. This is crucially different from
previous works8,9,11,12, but validates, both high and low-
temperature experimental observations in which electric
field fluctuations is not present (see Fig. 6). Our model
can also be useful to understand the temperature depen-
dence of the longitudinal spin relaxation rate of other color
centers in diamond. For instance, it is consistent with the
observed T 7 temperature dependence of the neutral silicon-
vacancy color center in diamond at high temperatures41.

Using experimental data from Refs.8,12, we can fit our
free parameter Γmag in order to model the magnetic noise
induced by magnetic impurities in samples with different
NV− concentrations. On the other hand, we consider that
the Ai parameters, which are related to the spin-phonon
coupling constants, are not sample-dependent. The A1, A2,
and A3 parameters can be found by fitting to the experi-
mental data at low temperature (below 1 K)12 as described
in Sec. V A. The parameters A4, A5, A6, A7, and ωloc can
be found by fitting to the experimental data for tempera-
tures ranging from 4 K to 475 K8.

Figure 6 shows the temperature dependence of the lon-
gitudinal relaxation rate for different samples at high tem-
peratures. For the two-phonon processes we obtain A4 =
1.96(5) × 10−3 s−1, A5 = 2.06(5) × 10−11 s−1 K−5, A6 =
9.11(2) × 10−16 s−1 K−6, A7 = 2.55(3) × 10−20 s−1 K−7,
and ωloc = 73(5) meV. We observe a good agreement be-
tween our results and the experiments performed at high
temperatures8,9,11. The largest contribution at high tem-
peratures, 300 K < T < 500 K, is due to the second-order
scattering (see Table I and Fig. 3) usually known as the
second-order Raman scattering19 which leads to the ob-



11

FIG. 6. The symbols represent experimental spin relaxation
rates measured for different NV− samples in the temperature
regime 4-475 K8,9,11. The dotted lines are the theoretical fit
of the longitudinal spin relaxation rate 1/T1 given in Eq. (74)
for different values of the magnetic noise Γmag. The tempera-
ture at which the contribution from quasi-localized phonons and
second-order phonon processes dominates is sample dependent.

served 1/T1 ∝ T 5 temperature dependence8,9,11 due to the
linear spin-phonon coupling to second-order. Between 50
K < T < 200 K the main contribution arises from Orbach-
type processes20 which can be attributed to a strong spin-
phonon interaction with a quasi-localized phonon mode
with energy ≈ 73 meV8. On the other hand, the magnetic
noise rate Γmag is dominant in samples with a high NV con-
centration (red, green and black dashed curves in Fig. 6).
Therefore, the effect of one-phonon processes (emission and
absorption) can be neglected if the magnetic noise is larger
than the one-phonon spin relaxation rates. We note that
we are not considering other sources of relaxation such as
fluctuating electric fields, in which case a relaxation with
an inverse magnetic field dependence is expected32.

VI. CONCLUSIONS

In summary, we have presented a microscopic model for
estimating the effect of temperature on the longitudinal
relaxation rate 1/T1 of NV− centers in diamond. In this
model, we introduced a general spin-phonon interaction be-
tween the ground-state spin degree of freedom and lattice
vibrations. We estimated the value of the phonon-induced
spin relaxation rates by applying the Fermi golden rule to
first and second order. The microscopic spin-lattice relax-
ation dynamics was derived from the quantum master equa-
tion for the reduced spin density operator. In the relaxation
dynamics, we included the effect of a phononic bath in ther-
mal equilibrium and phenomenologically modeled magnetic
impurities. Acoustic and quasi-localized phonons were in-

cluded in the phonon processes in order to model a more
general temperature dependence of the longitudinal relax-
ation rate.

At low temperatures, we provided a set of microscopic
equations in order to study the spin-lattice relaxation dy-
namics induced by one-phonon processes. In this limit
and considering zero magnetic fields, B0 = 0, we analyt-
ically obtained the relaxation rate 1/T1 = Γ0(1 + 3n̄) as-
sociated with 〈S2

z (t)〉, where Γ0 depends on microscopic
constants. This relaxation rate is in agreement with re-
cent experiments and ab initio calculations8, as well as
theoretical calculations40. In addition, for low magnetic
fields, γsB0 � D, we obtained the relaxation rate 1/T1 =
2Γ0(1 + 2n̄) + ΓB(1 + 2nB) associated with 〈Sz(t)〉, where
ΓB scales as B3

0 .
At high temperatures, we have modeled multiple two-

phonon processes where the fitted relaxation rate as-
sociated to 〈Sz(t)〉 is in agreement with experimental
observations8,9,11. We included both linear and bi-linear
lattice interactions that lead to several different tempera-
ture scaling in a spin-boson model. In particular, for NV-
centers in diamond the dominant temperature scaling is T 5

for temperatures larger than 200 K. Moreover, our model
will be useful to evaluate the contribution of second-order
phonon processes that give different temperature scaling
(T s, T s+1, T s+2) for other spin-boson systems. The power
of the temperature s = 4ν + 2d− 3 depends on the dimen-
sion of the system and the symmetry of the lattice, where
d = 3 and ν = 1/2 for the NV− center.
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Appendix A: Fermi golden rule

In this section we derive the analytic form of the second-
order phonon-induced spin relaxation rates introduced in
Sec. III B. To second order in time-dependent perturbation
theory the transition rate between an initial |i〉 and final
state |f〉 is given by

Γi→f =
2π

~

∣∣∣∣∣Vfi +
∑
m

VfmVmi
Ei − Em

∣∣∣∣∣
2

δ(Ei − Ef ), (A1)

where Vij = 〈i| Ĥs-ph |j〉, with Ĥs-ph being the perturba-
tion. In Eq. (A1) the sum over m denotes all possible in-
termediate states |m〉 for which VfmVmi 6= 0. Here, Ei,
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Ef , and Em are the energies of the initial, final, and in-
termediate states, respectively. For the Stokes transition
the initial and final states are given by |i〉 = |ms, nk, nk′〉
and |f〉 = |m′s, nk − 1, nk′ + 1〉. Let us write the spin-

phonon Hamiltonian given in Eq. (6) as Ĥs-ph = V (1)+V (2)

with V (1) =
∑
i

∑
k∈Γi

λk,i(b̂k + b̂†k)F̂i(S) and V (2) =∑
i

∑
k⊗k′∈Γi

λkk′,i(b̂k + b̂†k)(b̂k′ + b̂†k′)F̂i(S) being the lin-
ear and quadratic spin-phonon interactions, respectively.

It is straightforward to verify that V
(2)
fmV

(2)
mi = V

(1)
fmV

(2)
mi =

V
(2)
fmV

(1)
mi = 0 for every intermediate state |m〉 with initial

and final states for Stokes transition, i.e., |i〉 = |ms, nk, nk′〉
and |f〉 = |m′s, nk − 1, nk′ + 1〉. In other words, the contri-
bution of the quadratic term V (2) is zero to second order.
This implies that lower order perturbation theory combined
with higher order phonon coupling wins over higher order
perturbatin theory with lower order coupling21. Similar ar-
guments can be applied to the other two-phonon processes.

The non-zero contributions to the transition rate
can be obtained if we expand the phonon part of
the summation for the intermediate states |np, np′〉 =
{|nk − 1, nk′〉 , |nk, nk′ + 1〉}, we obtain

Γ
m′

s,nk−1,nk′+1
ms,nk,nk′ =

2π

~
nk(nk′ + 1)

∣∣∣∣∣∣
∑
i

g
m′

s,ms

i λkk′,i +
1

~
∑
m′′

s

∑
i,j

λk′,iλk,j

gm′
s,m

′′
s

i g
m′′

s ,ms

j

ωk
−
g
m′′

s ,ms

i g
m′

s,m
′′
s

j

ωk′

∣∣∣∣∣∣
2

×δ(ωm′
s,ms
− ωk + ωk′), (A2)

where g
ms,m

′
s

i = 〈ms| F̂i(S) |m′s〉, and the summation over i
and j is over x, y, x′, y′, z. Here, we have used the approx-
imation ωk,k′ � ωms,m′′

s
. By taking the continuous limit

and using the density of phonon states given in Eq. (23) we
obtain

aStokes
ms,m′

s
(xD) =

2πD2
0

~3ω4ν+2d−2
D

∫ xD

0

n(x)(n(x− xm′
s,ms

) + 1)x2ν+d−1(x− xm′
s,ms

)2ν+d−1

×

∣∣∣∣∣∣
∑
m′′

s

∑
i,j

λ0iλ0j

gm′
s,m

′′
s

i g
m′′

s ,ms

j

x
−
g
m′′

s ,ms

i g
m′

s,m
′′
s

j

(x− xm′
s,ms

)

∣∣∣∣∣∣
2

dx, (A3)

bStokes
ms,m′

s
(xD) =

2πD2
0

~2ω4ν+2d−2
D

∫ xD

0

n(x)(n(x− xm′
s,ms

) + 1)x2ν+d−1(x− xm′
s,ms

)2ν+d−1

×2Re

∑
m′′

s

∑
i

∑
i′,j′

λ00iλ0i′λ0j′

gm′
s,m

′′
s

i′ g
m′′

s ,ms

j′

x
−
g
m′′

s ,ms

i′ g
m′

s,m
′′
s

j′

(x− xm′
s,ms

)

 dx, (A4)

cStokes
ms,m′

s
(xD) =

2πD2
0

∣∣∣∑i g
m′

s,ms

i λ00i

∣∣∣2
~ω4ν+2d−2

D

∫ xD

0

n(x)(n(x− xm′
s,ms

) + 1)x2ν+d−1(x− xm′
s,ms

)2ν+d−1 dx. (A5)

where for a three dimensional lattice D0 = Ωω2
D/(2πv

3
s),

ωD is the Debye frequency, d is the dimension of the
lattice, ν is the scaling of the spin-phonon coupling for
acoustic phonons [see Eq. (22)]. Here, xD = ~D/(kBT ),
xm′

s,ms
= ~ωm′

s,ms
/(kBT ), in which ωm′

s,ms
= ωm′

s
− ωms

,
kB is the Boltzmann constant, ~ is the Planck constant, and
T is the temperature. Similar formulas can be obtained for
the other processes (Direct, Anti-Stokes and Spontaneous
emission).

Appendix B: Quantum master equation

In this section we solve the quantum master equa-
tion for the ground state spin degree of freedom of the
NV− center in diamond. By solving the quantum mas-
ter equation given in Eq. (44), for the spin populations
p1 = 〈ms = 1| ρ̂ |ms = 1〉, p2 = 〈ms = 0| ρ̂ |ms = 0〉, and
p3 = 〈ms = −1| ρ̂ |ms = −1〉, we obtain

ṗ1 = −Γ′1p1 + Γ′2p2 + Γ3p3, (B1)

ṗ2 = −Γ′4p2 + Γ′5p1 + Γ′6p3,

ṗ3 = −Γ′7p3 + Γ8p1 + Γ′9p2, (B2)



13

where Γ′i = Γi + Γmag/2, and the phonon-induced spin re-
laxation rates are given by

Γ1 = Γ1,1-ph
em + Γ1,2-ph

em + Γ2,1-ph
em + Γ2,2-ph

em , (B3)

Γ2 = Γ2,1-ph
abs + Γ2,2-ph

abs , (B4)

Γ3 = Γ1,1-ph
abs + Γ1,2-ph

abs , (B5)

Γ4 = Γ2,1-ph
abs + Γ2,2-ph

abs + Γ3,1-ph
abs + Γ3,2-ph

abs , (B6)

Γ5 = Γ2,1-ph
em + Γ2,2-ph

em , (B7)

Γ6 = Γ3,1-ph
em + Γ3,2-ph

em , (B8)

Γ7 = Γ1,1-ph
abs + Γ1,2-ph

abs + Γ3,1-ph
em + Γ3,2-ph

em , (B9)

Γ8 = Γ1,1-ph
em + Γ1,2-ph

em , (B10)

Γ9 = Γ3,1-ph
abs + Γ3,2-ph

abs . (B11)

where Γ1 = Γ5 +Γ8, Γ4 = Γ2 +Γ9, and Γ7 = Γ3 +Γ6, which
implies that ṗ1 + ṗ2 + ṗ3 = 0, and therefore, Tr(ρ̂) = 1. The
analytic solution for the populations pi(t) are determined
by the following general solution p1(t)

p2(t)

p3(t)

 =

3∑
i=1

Civie
λit, (B12)

where vi and λi are the eigenvectors and eigenvalues as-
sociated to the set of coupled linear equations of motions
given by Eqs. (B1)-(B2). The eigenvalues are given by

λ1 = −1

2

[
Γmag + Γph +

√
∆
]
, (B13)

λ2 = −1

2

[
Γmag + Γph −

√
∆
]
, (B14)

λ3 = 0, (B15)

where

Γph = Γ1 + Γ2 + Γ7 =

3∑
i=1

(
Γiabs + Γiems

)
, (B16)

is the total phonon-induced spin relaxation rate, and

∆ = Γ2
mag + 2Γmag(Γ9 − Γ8) + Γ2

2 + Γ2
3 + (Γ1 − Γ6 − Γ9)2

−2Γ2(Γ7 − Γ5 + Γ8 − Γ9 − Γmag)

−2Γ3(Γ5 − Γ6 − Γ8 + Γ9 + Γmag). (B17)

If we consider the initial condition ρ00(0) = 1 (ground
state) and considering that 〈Sz(t)〉 → 0 when t → ∞ ,
we finally obtain

〈Sz(t)〉 = e
−
(

Γmag+Γph

)
t
sinh(∆t) ∝ e−t/T1 . (B18)

Therefore, by assuming that (2Γmag + Γph) /2 > ∆, we can
recover the longitudinal relaxation rate given in Eq. (74).

1 J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M.
Taylor, P. Cappellaro, L. Jiang, M. V. Gurudev Dutt, E.
Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D.
Lukin, Nature 455 (2008).

2 A. Ajoy, U. Bissbort, M.D. Lukin, R.L. Walsworth, and P.
Cappellaro, Phys. Rev. X 5, 011001 (2015).

3 C. C. Fu, H. Y. Lee, K. Chen, T. S. Lim, H. Y. Wu, P. K.
Lin, P. K. Wei, P. H. Tsao, H. C. Chang, and W. Fann, Proc.
Natl. Acad. Sci. U.S.A. 104, 727 (2007).

4 O. Faklaris, V. Joshi, T. Irinopoulou, P. Tauc, M. Sennour,
H. Girard, C. Gesset, J. C. Arnault, A. Thorel, J. P. Boudou,
P. A. Curmi, and F. Treussart, ACS Nano 3, 3955 (2009).

5 L. P. MacGuinness, Y. Yan, A. Stacey, D. A. Simpson, L. T.
Hall, D. Maclaurin, S. Prawer, P. Mulvaney, J. Wrachtrup,
F. Caruso, R. E. Scholten, L. C. L. Hollenberg, Nature Nan-
otechnology 6, 358 (2011).

6 B. Naydenov, F. Jelezko (2014) Single-Color Centers in Di-
amond as Single-Photon Sources and Quantum Sensors. In:
Kapusta P., Wahl M., Erdmann R. (eds) Advanced Photon
Counting. Springer Series on Fluorescence (Methods and Ap-
plications), vol 15. Springer, Cham.

7 G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D.
Awschalom, Nature Physics 7, 789793 (2011).

8 A. Jarmola, V. M. Acosta, K. Jensen, S. Chemerisov, and D.
Budker, Phys. Rev. Lett. 108, 197601 (2012).

9 D. A. Redman, S. Brown, R. H. Sands, and S. C. Rand, Phys.
Rev. Lett. 67, 3420 (1991).

10 J. Harrison, M. J. Sellars, and N. B. Mason, Diam. Relat.
Mater. 15, 586 (2006).

11 S. Takahashi, R. Hanson, J. van Tol, M. S. Sherwin, and D.
D. Awschalom, Phys. Rev. Lett. 101, 047601 (2008).

12 T. Astner, J. Gugler, A. Angerer, S. Wald, S. Putz, N.
J. Mauser, M. Trupke, H. Sumiya, S. Onoda, J. Isoya,
J. Schmiedmayer, P. Mohn, J. Majer, Nature Materials
doi:10.1038/s41563-017-0008-y.

13 A. Alkauskas, B. B. Buckley, D. D. Awschalom, and C. G.
Van de Walle, New. J. Phys. 16, 073026 (2014).

14 E. Londero, G. Thiering, A. Gali, and A. Alkauskas,
arXiv:1605.02955v2.

15 A. Norambuena, S. A. Reyes, José Mej́ıa-Lopéz, A.Gali, and
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22 V. Ivády, T. Simon, J. R. Maze, I. Abrikosov, and A. Gali,
Phys. Rev. B 90, 235205 (2014).

23 M. W. Doherty, V. M. Acosta, A. Jarmola, M. S. J. Barson,
N. B. Manson, D. Budker, and L. C. L. Hollenberg, Phys.
Rev. B 90, 041201 (2014).

24 V. M. Huxter, T. A. A. Oliver, D. Budker, and G. R. Fleming,
Nature Physics 9, 744 (2013).

25 A. Gali, M. Fyta, and E. Kaxiras, Phys. Rev. B 77, 155206
(2008).

26 J. A. Larsson and P. Delaney, Phys. Rev. B 77, 165201
(2008).

27 J. H. N. Loubser and J. A. van Wyk, Rep. Prog. Phys. 41,
1201 (1978).

28 P. Pavone, K. Karch, O. Schütt, W. Windl, D. Strauch, P.
Giannozzi and S. Baroni, Phys. Rev. B 48, 3156 (1993).

29 J. P. Goss, R. Jones, S. J. Breuer, P. R. Briddon and S.
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