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Abstract

Using a self-consistent scattered field approach based on fluctuational electrodynamics, we de-

velop compact formulas for radiative heat transfer in many-body systems without the constraint of

reciprocity. The formulas allow for efficient numerical calculation for a system consisting of a large

number of bodies, and are in principle exact. As a demonstration, for a non-reciprocal many-body

system, we investigate persistent heat current at thermal equilibrium and directional heat transfer

when the system is away from thermal equilibrium.
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I. INTRODUCTION

It has been theoretically shown1–5 and experimentally verified6–17 that near field radia-

tive heat transfer between bodies supporting surface waves can greatly exceed the blackbody

limit. These results indicate the fundamental importance for the study of thermal electro-

magnetic fluctuation at nanoscale, and may lead to opportunities for applications such as

imaging18,19, thermo-photovoltaics20–26, electroluminescent cooling27,28, thermal rectifier29–34

and thermal transistor35.

Near-field radiative heat transfer is strongly geometry-dependent. A variety of photonic

structures such as gratings36–47, metamaterials48–51, thin films11,52,53 have been used to tailor

near field radiative heat transfer. Therefore, there are significant efforts in developing the

theoretical formalisms to treat near-field heat transfer in various geometries1–5,35,54–62. The

vast majority of these works have focused on heat transfer between two bodies. Moreover,

the electromagnetic properties of these bodies are typically assumed to be reciprocal, where

the permittivity and permeability are described by scalars or symmetric tensors63.

On the other hand, it has been recently noted that new physics effects can arise when

one considers many-body heat transfer35,58. Also, for heat transfer between non-reciprocal

bodies, novel effects, such as a thermal Hall effect64, or a persistent heat current at equilib-

rium65, can arise. These effects, moreover, exist only in systems consisting of at least three

bodies. More specifically, for two bodies 1 and 2 in a many-body system, we denote the

spectral heat transfer to body 2 due to thermal noise sources in body 1 as S1→2(ω), and

the spectral heat transfer to body 1 due to thermal noise sources in body 2 as S2→1(ω). If

such many-body system consists of materials that violate Lorentz reciprocity, when bodies

1 and 2 have the same temperature, the radiative heat transfer between bodies 1 and 2

are non-reciprocal, i.e. S1→2(ω) 6= S2→1(ω). In light of these recent developments, there is

therefore a need for developing a theoretical formalism that treats many-body heat transfer

without the constraint of reciprocity.

In this paper, we develop compact formulas for radiative heat transfer in both reciprocal

and non-reciprocal arbitrarily-shaped many-body systems. Our development uses a self-

consistent scattered field approach within the framework of fluctuational electrodynamics,

and are in principle exact. The formulas can be used for efficient numerical calculation

for a system containing a large number of bodies, without any constraint on whether the
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electromagnetic response of these bodies are reciprocal or not. As a demonstration, we

show that the effect of persistent equilibrium heat current, which was previously observed

in a system consisting of three non-reciprocal bodies65, also exists as one further increases

the number of bodies. Moreover, such a heat current has signatures in non-equilibrium

situations. Our work should prove useful in exploring new opportunities of controlling

near field radiative heat transfer by using complex non-reciprocal or reciprocal many-body

systems.

Related to our works, there have been several other efforts in developing a theory for

many-body heat transfer. And here we briefly contrast our works with these efforts. A

formalism for reciprocal many-body heat transfer was provided in Ref. 57. But the formal-

ism requires knowing beforehand the collective scattering effect (i.e. the T-matrix) for a

composite consisting of multiple bodies. Obtaining the T-matrix of a composite containing

a large number of bodies is non-trivial and therefore it requires substantial further work in

order to directly implement the formalism of Ref. 57 to compute many-body heat trans-

fer. In contrast, in this article, we describe the many-body heat transfer in terms of the

scattering effect (i.e. the T-matrix) of individual objects. We show that our formula can

be efficiently implemented numerically. We also note that non-reciprocal heat transfer in a

three-body system is studied in Ref. 65 using a scattering approach, but Ref. 65 does not al-

low treating many-body systems consisting of a large number of bodies. Our formalism also

differs from the dipole approximation approach64,66–69 for many-body heat transfer in that

our approach takes into account all the modes. The dipole approximation is most accurate

when the particles are smaller than the thermal wavelength, and the spacing between the

particles is relatively large as compared to the size of the particles. Our formalism is not

restricted to this regime and can be used to treat situations where higher order modes may

contribute significantly to the radiative heat transfer. Finally, we note that a thermal dis-

crete dipole approximation (T-DDA) method has been used to study radiative heat transfer

between magneto-optical materials61. In T-DDA, each body needs to be discretized into a

large number of volume elements and hence requires one to solve linear systems with a large

number of unknowns. In contrast, the use of a scattering method such as ours typically re-

sults in linear systems with a far smaller number of unknowns and thus is much faster than

methods that require spatial discretization70. The relatively modest computational costs of

our scattering approach further allow for studying many-body radiative heat transfer in a
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system consisting of a large number of bodies.

The rest of the paper is organized as follows. In Section II we discuss the mathematical

background. In Section III we summarize the main results. In Section IV we derive formulas

for many-body radiative heat transfer for an arbitrary number of bodies without the con-

straint of reciprocity. In Section V, based on the formulas we derived in Section IV, we study

non-reciprocal many-body radiative heat transfer at both equilibrium and non-equilibrium

situations. We conclude in Section VI.

II. MATHEMATICAL BACKGROUND

A. Assumptions

We start by briefly summarizing the assumptions that underlie our approach. We consider

a many-body system that consists of linear materials. Our approach applies independent of

whether the materials satisfy Lorentz reciprocity or not.

The multiple bodies in the system may have different temperatures. We assume that

the temperature inside each body is homogeneous. We note that in certain scenarios there

may be non-negligible temperature inhomogeneity even in nanoscale bodies. In particular,

a volumetric-fluctuating current formalism has been used to study effects of temperature

inhomogeneity on radiative heat transfer and thermal radiation71,72. We do not consider

such inhomogeneity in our approach even though our approach may be generalized for such

situations.

We use a scattering formalism and expand fields using a complete basis. Specifically, in

order to use the spherical wave basis as the complete basis, the bodies can have arbitrary

shapes, however, each body must be able to be enclosed by non-overlapping spheres.

B. Notation

Throughout the paper we use the SI units and the e−iωt convention. All time-dependent

physical fields, e.g. A(t) are real. The convention for Fourier transform is

A(t) = Re

ˆ ∞

0

dωA(ω)e−iωt. (1)
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For thermal calculation, the relevant physical quantities are typically in the form of

〈A(t)B(t)〉, where 〈...〉 denotes an ensemble average. The thermal processes we consider in

the paper are stationary random processes, where 〈A(t)B(t)〉 is time-independent. Therefore

〈A(ω)B∗(ω′)〉 must be proportional to δ(ω − ω′), i.e.

〈A(ω)B∗(ω′)〉 = 〈AB∗〉ωδ(ω − ω′). (2)

Using Eqs. 1 and 2, we have

〈A(t)B(t)〉 =

ˆ ∞

0

dω
1

2
Re〈AB∗〉ω.

In particular, the Poynting vector

S = 〈E(t)×H(t)〉 =

ˆ ∞

0

dωS(ω) ≡

ˆ ∞

0

dω
1

2
Re〈E×H∗〉ω,

where E and H are electric and magnetic fields, respectively.

C. Electromagnetic scattering theory

We briefly summarize the relevant aspect of the electromagnetic scattering theory, and

highlight those aspects unique to non-reciprocal systems. Assuming a permittivity and

permeability distribution ǫ(r), µ(r), in the presence of an electric current source J at a

frequency ω, the resulting electric field E satisfies

(Ĥ0 − V̂ −
ω2

c2
Î)E = iωµ0J, (3)

where

Ĥ0 = ∇×∇×,

V̂ =
ω2

c2
(ǫ̂− Î) +∇× (Î −

1

µ̂
)∇× .

Here µ0 is the permeability of vacuum. ǫ̂ and µ̂ are the operator forms for ǫ(r) and µ(r).

Eq. 3 can be formally solved as

E = iωµ0ĜJ,

where

Ĝ =

(

Ĥ0 − V̂ −
ω2

c2
Î − iη

)−1

, (4)
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is the Green function operator. Here η is an infinitesimal positive number. We denote the

free-space Green’s function as Ĝ0. Ĝ0 is symmetric, i.e. Ĝ0(r, r
′) = ĜT

0 (r
′, r).

Consider a body surrounded by vacuum. In the presence of an incident wave in vacuum

E0, the resulting total field E satisfies the Lippmann-Schwinger equation73

E = E0 + Ĝ0V̂ E. (5)

Define the T̂ operator such that T̂E0 = V̂E, we then have also

E = E0 + Ĝ0T̂E0. (6)

The scattering property of the body is therefore entirely described by the T̂ operator. Using

Eqs. 5 and 6, the T̂ operator can be solved as:

T̂ = V̂ (Î − Ĝ0V̂ )−1. (7)

For most previous works in near-field heat transfer, both ǫ and µ are assumed to be either

scalar or symmetric tensors, in which cases the system satisfies Lorentz reciprocity. And

from Eqs. 4 and 7, both Ĝ and T̂ are symmetric, i.e. Ĝ(r, r′) = ĜT (r′, r), and T̂ (r, r′) =

T̂ T (r′, r). On the other hand, in this paper we will be considering systems without reciprocity

constraint. In these systems ǫ and µ may no longer be symmetric, such as in magneto-optical

materials as we will simulate in Section V. For these systems, in general Ĝ and T̂ are not

symmetric operators.

In this paper we make extensive use of various solutions of the free-space Maxwell’s

equations, which can be written as:

(Ĥ0 −
ω2

c2
Î)E = 0. (8)

The set of non-singular solutions of this equation for all frequencies, which we denote as

Ereg
ν , form a complete basis, with ν denoting the labels. In the spherical coordinate system,

for example, ν ≡ {l, m, P}, where l, m and P are the total angular momentum, and the an-

gular momentum component along the z-direction, and the polarization index, respectively.

We also denote the solutions of this equation, with an outgoing-wave boundary condition,

as Eout
ν . In the spherical or cylindrical coordinate system centered around an origin, the

outgoing waves are singular at the origin.
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For arbitrary wave basis, the regular and outgoing wave basis functions satisfy the fol-

lowing orthonormal relations:

−Im

˛

[

Eout
ν ×

(

∇×Eout∗
ν′

)

g + Eout
ν′ ×

(

∇× Eout∗
ν

)

g∗
]

· dA = 2Re(g) δνν′δν,pr, (9)

−Im

˛

[

Eout
ν × (∇× E

reg∗
ν′ ) g + Ereg

ν ×
(

∇× Eout∗
ν′

)

g∗
]

· dA = Re(e−iφνg) δνν′, (10)

−Im

˛

[Ereg
ν × (∇× E

reg∗
ν′ ) g + E

reg
ν′ × (∇× Ereg∗

ν ) g∗] · dA = 0, (11)

where g is an arbitrary complex number. Here, the integration is taken on a closed surface

surrounding the origin, and dA denotes outward-pointing surface area element. In Eq. 9,

δν,pr = 1 for a basis function ν that is propagating, and is zero otherwise. In Eq. 10, φν is

zero for propagating basis function, and is generally a non-zero real number for evanescent

basis function. Identities equivalent to Eqs. 9, 10 and 11 in cylindrical wave basis for the

subset of propagating basis functions were used in Ref. 74.

Spherical wave basis only consists of propagating waves. Thus, in spherical wave basis,

Eqs. 9 and 10 simplify to

−Im

˛

[

Eout
ν ×

(

∇× Eout∗
ν′

)

g + Eout
ν′ ×

(

∇× Eout∗
ν

)

g∗
]

· dA = 2Re(g) δνν′ , (12)

−Im

˛

[

Eout
ν × (∇× E

reg∗
ν′ ) g + E

reg
ν′ ×

(

∇× Eout∗
ν

)

g∗
]

· dA = Re(g) δνν′. (13)

The free-space Green’s function can be expanded using outgoing and regular wave basis

functions:

Ĝ0(r, r
′) = i

∑

ν

Eout
ν (r)⊗ E

reg

σ(ν)(r
′), (14)

when |r| > |r′|. We note that Eq. 14 is the representation of the free-space Green’s function

in scattering wave basis, while Eq. 4 is the general Green function operator. Here, σ(ν)

denotes a permutation of the mode index ν. σ({l, m, P}) = {l,−m,P} for the spherical

wave basis function. We note that Eq. 14 is “on-shell”: for the free-space Green’s function

at a frequency ω, the right hand side of Eq. 14 involves only the solutions of Eq. 8 at the

frequency ω. The imaginary part of the free-space Green’s function can be expanded using

propagating regular wave basis functions:

ImĜ0(r, r
′) =

∑

ν∈pr

Ereg
ν (r)⊗E

reg

σ(ν)(r
′), (15)

where again the right hand side involves solutions only at the frequency ω.
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In arbitrary wave basis, the matrix element for the T̂ operator of a scatterer is defined

as57:

Tνν′ = i

ˆ

dr

ˆ

dr′
[

E
reg

σ(ν)(r)
]T

T̂ (r, r′)Ereg
ν′ (r

′). (16)

D. Fluctuation dissipation theorem

Thermal radiation is sourced by fluctuating current sources. For a medium without

magnetic loss (i.e. µ̂ = µ̂†), at a temperature T , the current-current correlation function has

the form

〈J(ω, r)J†(ω′, r′)〉 =
4

π
ωΘ(ω, T )ǫ0δ(r− r′)

ǫ̂(r, ω)− ǫ̂†(r, ω)

2i
δ(ω − ω′), (17)

where Θ(ω, T ) = ~ω/
[

exp( ~ω
kBT

)− 1
]

. This form is applicable to both reciprocal and non-

reciprocal media75,76.

For a system that is at equilibrium, e.g. a many-body system where all bodies are at the

same temperature, the electric field correlation function has the form 〈E(r, ω)E†(r′, ω′)〉 =

δ(ω − ω′)〈E(r)E†(r′)〉ω, where

〈E(r)E†(r′)〉ω =
4

π
ωΘ(ω, T )µ0

Ĝ(r, r′)− Ĝ†(r′, r)

2i
. (18)

This can be seen as a manifestation of the fluctuation dissipation theorem77, since the

Green’s function is the linear response function of the electromagnetic system with respect

to J. Alternatively, this relation can also be derived using Eqs. 4 and 17.

III. SUMMARY OF MAIN RESULTS

Having reviewed the mathematical background in the previous section, in this section we

summarize the main results of the paper regarding the major properties of heat transfer in

many-body systems without the constraint of reciprocity. We also contrast these properties

with those in reciprocal systems. We consider a many-body system including n bodies, as

schematically shown in Fig. 1. These bodies may have different temperatures. Without loss

of generality we specifically discuss radiative heat transfer between bodies 1 and 2 in the

many-body system. Using scattering theory, in this article, we will show that the spectral
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heat flux to body 2 due to thermal noise sources in body 1, which is maintained at a

temperature T1, can be expressed as

S1→2(ω) =
2

π
Θ(ω, T1)Tr

[

A2W21R1W
†

21

]

, (19)

where

Aj = −(e−iΦjTj + T †
j e

iΦj )/2− T †
j Π

prTj (20)

is related to the absorption process of the j-th body,

Rj = −(Tje
−iΦj + eiΦjT †

j )/2− TjΠ
prT †

j (21)

is related to the emission process of the j-th body. Here, Tj is the T -matrix of the j-th body

and is related to its scattering matrix Sj by Tj = (Sj −I)/2 where I is identity matrix. Πpr

is an operator that projects to the sub-space of propagating waves. Φj is a diagonal matrix.

Its diagonal element is zero for propagating waves, and non-zero for evanescent waves. In

Eq. 19, W21 describes the scattering of outgoing waves from body 1 into regular waves

impinging on body 2, taking into account of the scattering by all bodies in the many-body

system. Generally, Wjk is the (j, k)-th block element of W ≡ U(I − T U)−1, where

T ≡















T1 0 . . . 0

0 T2 . . . . . .

. . . . . . . . . 0

0 . . . 0 Tn















, U ≡















0 U12 ... U1n

U21 0 ... . . .

... ... ... U (n−1)n

Un1 . . . Un(n−1) 0















.

Here, U jk represents the translation matrix connecting the wave basis for body j and k.

Also, the emission from the source body 1 to the environment in the presence of other

bodies is

S1→env(ω) =
2

π
Θ(ω, T1)Re

n
∑

j=1

Tr
[

Qj1R1

(

ΠprQj1 + eiΦjW j1

)†
]

. (22)

In Eq. 22, Qjk is the (j, k)-th block element of Q ≡ (I − T U)−1.

The results above are for an arbitrary scattering wave basis. In a spherical wave basis,

all basis functions are propagating waves. We have

Aj = −(Tj + T †
j )/2− T †

j Tj , (23)

Rj = −(Tj + T †
j )/2− TjT

†
j . (24)
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1

FIG. 1. (Color online) Schematic of a system consisting of multiple bodies in electromagnetic heat

transfer with each other. For this specific case, spherical wave basis can be used, as the bodies can

be surrounded by non-overlapping spheres.

The properties for A and R strongly depend on whether the system is reciprocal or not.

In a system consisting only of materials satisfying Lorentz reciprocity, the T̂ operator is

symmetric, hence by the definition of T matrix in Eq. 16, we have Tνν′ = Tσ(ν′)σ(ν). It

follows that, for a reciprocal system, Aνν′ = Rσ(ν′)σ(ν). Also, for a reciprocal system, one

has W21,νν′ = W12,σ(ν′)σ(ν). Then by using Eq. 19, it is straightforward to show that the

radiative heat transfer between bodies 1 and 2 is reciprocal, i.e. S1→2(ω) = S2→1(ω), when

bodies 1 and 2 have the same temperature T1 = T2.

In contrast, in a system consisting of materials that break Lorentz reciprocity, T̂ is gen-

erally non-symmetric. And hence in general Aνν′ 6= Rσ(ν′)σ(ν). The breaking of Lorentz

reciprocity also leads to W21,νν′ 6= W12,σ(ν′)σ(ν). It follows that the radiative heat transfer

is generally no-longer reciprocal, i.e. S1→2(ω) 6= S2→1(ω), even when bodies 1 and 2 are at

the same temperature. Since any pair of bodies in the many-body system can be selected as

bodies 1 and 2, the arguments here apply to any pair of bodies in a many-body system. In

summary, for a non-reciprocal system, the absorption and emission processes can no longer

be directly related, leading to non-reciprocal radiative heat transfer.

Non-reciprocal heat transfer does not violate the second law of thermodynamics. At

thermal equilibrium, the net heat flux into each body remains zero. When all the bodies

and the environment have the same temperature T , if we denote Si→j(ω) ≡
Θ(ω,T )

2π
Fi→j(ω),

Si→env(ω) ≡
Θ(ω,T )

2π
Fi→env(ω), and Senv→i(ω) ≡

Θ(ω,T )
2π

Fenv→i(ω), energy conservation requires
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that the total heat flux into body j must be balanced by the total heat flux out of body j:

∑

i 6=j

ˆ

dω
Θ(ω, T )

2π
Fi→j(ω) +

ˆ

dω
Θ(ω, T )

2π
Fenv→j(ω)

=
∑

i 6=j

ˆ

dω
Θ(ω, T )

2π
Fj→i(ω) +

ˆ

dω
Θ(ω, T )

2π
Fj→env(ω), (25)

where the subscript env denotes the environment. For linear systems which does not involve

frequency conversion, Eq. 25 leads to

∑

i 6=j

Fi→j(ω) + Fenv→j(ω) =
∑

i 6=j

Fj→i(ω) + Fj→env(ω). (26)

IV. FORMALISM FOR NON-RECIPROCAL MANY-BODY RADIATIVE HEAT

TRANSFER

A. Spherical basis

We now provide a derivation of the main results as discussed in Section III, by introducing

a formulation for calculating near field radiative heat transfer in non-reciprocal many-body

systems. For simplicity, we consider the spherical scattering wave basis first, and the mod-

ification from using an arbitrary scattering wave basis is discussed later in Section IVB.

We consider a many-body system consisting of n bodies in radiative exchange with each

other, labeled as body 1, 2, ... n, respectively. In order to use the spherical wave basis,

the bodies can have arbitrary shapes, however, each body must be able to be enclosed by

non-overlapping spheres as illustrated in Fig. 1. We refer to such a sphere that encloses only

the j-th body as the j-th sphere.

Consider first a body k by itself, i.e. in the absence of all other bodies. Suppose further

that body k is in local thermal equilibrium of temperature Tk. Using Eq. 18, Lippmann-

Schwinger equations57,73 and expansion on the scattering wave basis57,78, we have (see Ap-

pendix for a derivation)

〈E(r)E†(r′)〉isok,ω =
4

π
ωΘ(ω, T )µ0

∑

ν,ν′

Eout
k,ν(r) (Rk)ν,ν′ E

out†
k,ν′ (r

′), (27)

where

Rk = −(Tk + T †
k )/2− TkT

†
k . (28)
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Here, Tk denotes the T -matrix for body k, and Eout
k,ν denotes the ν-th normalized outgoing

wave basis function with respect to body k. For subsequent use we also use E
reg
k,ν to denote

the ν-th normalized regular wave basis function with respect to body k. Eq. 27 describes

correlations of the emitted fields sourced by fluctuations in the k-th body only. We can also

expand the field emitted by the isolated k-th body, Eiso, in terms of the outgoing wave basis

function with respect to the k-th body as:

Eiso =
∑

ν

d0k,νE
out
k,ν , (29)

where d0k,ν is the expansion coefficient. From Eqs. 27 and 29, we have

〈d0kd
0†
k 〉 =

4

π
ωΘ(ω, T )µ0Rk, (30)

where d0k denotes a column vector of the coefficients d0k,ν.

In the many-body system, the emitted fields sourced by body k as described by Eqs. 27

and 29 will be scattered by all the other bodies in the system. In order to evaluate the heat

transfer from body k to body j, we need to calculate the field on body j that results from

the thermal noise sources in body k, taking into account the scattering from all the bodies.

In the presence of the emitted field from the k-th body, the total field E in the many

body system in the free space regions outside all the bodies can be expanded in the outgoing

wave basis defined with respect to all the individual bodies, i.e.

E =
∑

ν,m

dmk,νE
out
m,ν, (31)

where dmk,ν denotes the expansion coefficient.

Consider first the field in the free-space region that is outside the j-th body, but lies in

the j-th sphere that encloses only the j-th body. In this region, we can rewrite Eq. 31 as:

E =
∑

ν

djk,νE
out
j,ν +

∑

ν,m6=j

dmk,νE
out
m,ν . (32)

In the case where j 6= k, we can interpret the second term in Eq. 32 as the wave that is

incident on the j-th body, and the first term as the scattered wave by the j-th body in

response to such incident wave. Therefore, we can derive a relation between these two terms

by applying the Lippmann-Schwinger formalism73 to the field inside the j-th sphere. We

define an incident field that exists in the entire j-th sphere

E0 =
∑

ν,m6=j

dmk,νE
out
m,ν. (33)
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Inside the j-th sphere, such incident field can be expanded in the regular wave basis with

respect to the j-th body:

E0 =
∑

ν

cjk,νE
reg
j,ν , (34)

where cjk,ν is the expansion coefficient. In this region, outgoing wave basis functions with

respect to the m-th body where m 6= j can be expanded using regular wave basis functions

with respect to the j-th body79,80:

Eout
m,ν =

∑

ν′

U jm
ν′νE

reg
j,ν′, (35)

where U jm represents the translation matrix. From Eqs. 33 and 35, we have

E0 =
∑

m6=j,ν

E
reg
j,ν

(

∑

ν′

U jm
νν′dmk,ν′

)

. (36)

Then by comparing Eq. 36 with Eq. 34, we have

cjk ≡
∑

m6=j

U jmdmk. (37)

By applying the Lippmann-Schwinger equation73 to calculate the field in the region that

is inside the j-th sphere but outside the j-th body, we then have

E = E0 + Ĝ0T̂jE0. (38)

From Eq. 34 and the relation Ĝ0T̂jE
reg
j,ν ≡

∑

ν′ E
out
j,ν′Tj,ν′ν , we have

E =
∑

ν

cjk,νE
reg
j,ν +

∑

ν′

Eout
j,ν′

∑

ν

Tj,ν′νcjk,ν. (39)

Then by comparing Eqs. 32 and 39, we have

djk,ν = dscatjk,ν ≡
∑

ν′

Tj,νν′cjk,ν′. (40)

In the case where j = k, the field in the region that is inside the k-th sphere but outside

the k-th body can also be written in the form of Eq. 32. The outgoing wave however, has

contributions both from the source inside the k-th body, and from the scattering of the

incident waves as represented by the first term, i.e.

dkk,ν = d0k,ν + dscatkk,ν, (41)
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where the scattering part can be derived in the same wave as above. Eqs. 40 and 41 can be

grouped as:

djk = δjkd
0
k + Tjcjk, (42)

where δjk is the Kronecker delta function.

Eqs. 37 and 42 describe a full set of self-consistent equations. Plugging Eq. 37 into Eq. 42,

we have






















d1k
...

dkk
...

dnk























= (I − T U)−1























0
...

d0k
...

0























(43)

for k = 1, . . . , n, with

T ≡















T1 0 . . . 0

0 T2 . . . . . .

. . . . . . . . . 0

0 . . . 0 Tn















, U ≡















0 U12 ... U1n

U21 0 ... . . .

... ... ... U (n−1)n

Un1 . . . Un(n−1) 0















.

Thus, the (j, k)-th block element of Q ≡ (I − T U)−1, which we denote as Qjk, describes

the relation between the outgoing waves from body j and the emitted outgoing waves from

the isolated body k, i.e. djk = Qjkd
0
k. Also, from Eqs. 37 and 43, we have























c1k
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ckk
...

cnk























= U























d1k
...

dkk
...

dnk























= U(I − T U)−1























0
...

d0k
...

0























. (44)

Thus, the (j, k)-th block element of W ≡ U(I −T U)−1, which we denote as W jk, describes

the relation between the regular waves on body j and the emitted outgoing waves from the

isolated body k, i.e. cjk = Wjkd
0
k.

Based on the computation above, in the presence of all the other bodies, the resulting

field, in the j-th sphere outside the j-th body, can be written as:

E =
∑

ν

[

djk,νE
out
j,ν + cjk,νE

reg
j,ν

]

. (45)
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The heat flux into body j is

Sj =

ˆ ∞

0

Sj(ω)dω, (46)

where Sj(ω) = −
¸

dA · 1
2
Re〈E×H∗〉ω, with the integration taken on the surface of the j-th

sphere. Using Eqs. 45, 30, as well as the orthonormal relations of the regular and outgoing

waves in Eqs. 11, 12 and 13, we obtain:

Sj(ω) = −
2

π
Θ(ω, Tk) Tr Re

[

QjkRk(Qjk +Wjk)
†
]

, (47)

where j = 1, 2, ..., n.

In the case where j 6= k, Eq. 47 describes the spectral heat transfer to the j-th body due

to thermal noise in the k-th body, i.e. Sk→j(ω) = Sj(ω). Using identity Q = I + T W and

hence Qjk = TjW jk when j 6= k, Eq. 47 can be re-written as

Sk→j(ω) =
2

π
Θ(ω, Tk) Tr

[

AjW jkRk

(

W jk

)†
]

, (48)

where

Aj ≡ −(Tj + T †
j )/2− T †

j Tj . (49)

In the case where j = k, by negating Eq. 47, the power spectral density of the total

emission out of body k is:

Stot
k (ω) =

2

π
Θ(ω, Tk)Re Tr

[

QkkRk

(

Qkk +Wkk

)†
]

. (50)

From energy balance, the energy flux out of the source body should equal the sum of the

energy transfer to other bodies and the emission to the environment. Then from Eq. 50, and

Eq. 47 when j 6= k, the emission from the source body k to the environment in the presence

of other bodies is

Sk→env(ω) =
2

π
Θ(ω, Tk)Re

n
∑

j=1

Tr
[

QjkRk

(

Qjk +W jk

)†
]

, (51)

where n is the number of bodies in the system.

Equations 47, 48, 50 and 51 are the major results of this study. They allow for evaluating

heat transfer and thermal emission in reciprocal and non-reciprocal many-body systems

using compact formulas. Here we briefly comment on the numerical cost for implementing

these formulas. Consider the heat transfer among n bodies, and in the expansion of Eq. 45

we keep a total of N modes per body. Tj and U jl are then N × N matrices, whereas T , U
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and W are (Nn) × (Nn) matrices. The main computation step, which is Eq. 43, involves

the inversion of an Nn × Nn matrix. When using the spherical wave basis, if we specify l

as the cut-off in total angular momentum included in the expansion, then N = 2l(l + 2).

B. Arbitrary basis

In the derivation above, we use spherical wave basis, which consists of only propagating

waves. In the following, we discuss arbitrary wave basis, which generally contains propagat-

ing as well as evanescent waves. An example of such an arbitrary basis is the plane wave

basis used to describe heat transfer between extended bodies, where the basis can be either

propagating or evanescent depending on the magnitude of the parallel wavevectors.

The derivation above can be straightforwardly generalized with the arbitrary basis. Below

we highlight the main differences. With the arbitrary wave basis, the matrix R in Eq. 28 is

modified as:

R = −(T e−iΦ + eiΦT †)/2− T ΠprT †. (52)

The derivations then follow unchanged to Eq. 46. Eq. 47 is modified to:

Sj(ω) = −
2

π
Θ(ω, Tk) Tr Re

[

QjkRk(Π
prQjk + eiΦjWjk)

†
]

, (53)

where j = 1, 2, ..., n. In Eq. 48, the matrix A is modified to:

A = −(e−iΦT + T †eiΦ)/2− T †ΠprT . (54)

Eq. 50 is modified to:

Stot
k (ω) =

2

π
Θ(ω, Tk)Re Tr

[

QkkRk

(

ΠprQkk + eiΦkWkk

)†
]

. (55)

Eq. 51 is modified to:

Sk→env(ω) =
2

π
Θ(ω, Tk)Re

n
∑

j=1

Tr
[

QjkRk

(

ΠprQjk + eiΦjWjk

)†
]

. (56)

V. NUMERICAL STUDIES

A. Material properties and dielectric tensor of magneto-optical materials

We now present numerical examples of non-reciprocal near field radiative heat transfer.

We consider multiple spheres with their centers lying on the x − y plane. The spheres are
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made of n-doped InSb. An external B field is applied in the z-direction to break the Lorentz

reciprocity. The relative permittivity tensor of n-InSb in the presence of an external B field

in the z-direction is:

¯̄ǫ = ǫb
¯̄I −

ω2
p

(ω + iΓ)2 − ω2
c











1 + iΓ
ω

−iωc

ω
0

iωc

ω
1 + iΓ

ω
0

0 0 (ω+iΓ)2−ω2
c

ω(ω+iΓ)











.

Here, the first term is the permittivity as taken from Ref. 81. This permittivity includes

contributions from both interband transition and lattice vibration. The second term takes

into account free-carrier contribution, which is sensitive to external magnetic field. Γ is the

free carrier relaxation rate, ωc = eB/m∗ is the cyclotron frequency, and ωp =
√

nee2/(m∗ǫ0)

is the plasma frequency. We use a doping concentration ne = 1.36 × 1019 cm−3, for which

the experimentally characterized relaxation rate82 is Γ = 1012 s−1 and the effective electron

mass82,83 is m∗ = 0.08 me.

We use vector spherical wave functions as the wave basis. We calculate the T matrix for

the sphere, by constructing the eigenmodes inside the sphere using vector spherical wave

functions, and then matching the boundary conditions84. We use a computationally-efficient

recursive formalism to compute the conversion matrix U using vector translation addition

theorem79,80.

B. Persistent heat current at thermal equilibrium

In Ref. 65, it was noted that there can be a persistent heat current in non-reciprocal

many-body heat transfer. Ref. 65 considered heat transfer among three bodies. Here, as an

application of the formalism presented above, we consider heat transfer for larger numbers

of bodies. We show that such persistent heat current can persist for larger numbers of

bodies. Moreover, the directionality of heat transfer has a non-monotonic dependency on

the strength of the magnetic field.

The configuration used in our calculation is illustrated in Fig. 2a. We consider a total of

n InSb spheres. Each sphere has a radius of 100 nm. The centers of the spheres are placed

on the vertices of an n-sided regular polygon with a side length of 320 nm. A magnetic field

is applied perpendicular to the plane of the polygon. Fig. 2a shows the case of n = 6.
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FIG. 2. (Color online) (a) Geometry of a many-body system consisting of six spheres. The centers

of the spheres are placed at the vertices of a regular hexagon on x-y plane with a side length of 320

nm. Each sphere has a radius of 100 nm. A magnetic field is applied in the z direction. The spheres

consist of n-doped InSb, with the same doping level. (b) and (c) The heat transfer spectra of S2→1

and S1→2, from fluctuational electrodynamics. The system is at equilibrium. (b) Non-reciprocal

case with B = 1T . (c) Reciprocal case with B = 0T . (d) The spectra for thermal transfer from

sphere 1 to other spheres and to the background environment, with B = 1T .
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The strength of the persistent heat current between two bodies i and j can be character-

ized by the directionality of the heat flow between the two bodies, defined as

ηi→j = (Si→j − Sj→i)/min(Si→j, Sj→i).

For the structure shown in Fig. 2a, Fig. 2b shows the normalized heat flux spectra for

S2→1 and S1→2 at the same temperature. We observe that the spectra S2→1 and S1→2 are

different at B = 1 T , demonstrating a directional heat flow. At the free space wavelength

λ = 10.88 µm, the directionality η1→2 is as large as 247%. After spectral integration over

the entire thermal wavelength range when the temperature of the spheres are at T = 300 K,

the directionality for the heat transfer between bodies 1 and 2 is still as large as 32%,

with S1→2 > S2→1. In thermal equilibrium, from the rotational symmetry of the system,

we then can see that there is strong persistent heat current in counter-clockwise direction.

In contrast, for the scenario with B = 0 T shown in Fig. 2c, the heat transfer spectra

S2→1 = S1→2 when the spheres are at the same temperature, indicating the lack of persistent

heat current.

In Fig. 2d, we plot the radiative heat transfer from body 1 to all other bodies in the

structure, and also the far field radiation to the environment from body 1. We observe

that the heat transfer between the spheres are much larger compared to far field radiation,

indicating the near-field nature of heat transfer in this system. Also, the near field heat

transfer to nearest-neighbor spheres is much larger than those to the farther spheres, in

consistency with the near-field nature of the heat transfer.

The existence of the persistent heat current can be related to the nature of the electro-

magnetic states supported in the spheres. In the absence of external magnetic fields, an

individual sphere support counter-rotating states that are degenerate to each other. In the

presence of the field, the degeneracy is split, and the directionality arises from the interfer-

ence effects from these states. To maximize the directionality, there is an optimum in the

split of resonance frequencies, which in turn indicates the existence of an optimal external

magnetic field. In Fig. 3, we study the directionality as a function of external magnetic field.

And we consider structures with the number of spheres ranging from n = 3 to n = 10. In

all these cases, the directionality shows a non-monotonic dependency as a function of the

magnetic field strength, in consistency with the physical picture discussed above.

In general, the details of the persistent heat current show intricate dependency of both
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the number of the spheres and the strength of the magnetic field. For example, at B = 4 T ,

a persistent heat current is supported in the clockwise direction in the case of n = 3 (blue

curve, Fig. 3), whereas a persistent heat current flowing in the counter-clockwise direction

can occur when n ≥ 4. For the cases of n = 3 and 4, the persistent heat current can have

opposite directions by varying the magnitude of the external magnetic field, while keeping

the direction of the magnetic field fixed.
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FIG. 3. (Color online) Directionality between bodies 1 and 2 as a function of external B field, in

a system consisting of n InSb spheres. Each sphere has a radius of 100 nm. The centers of the

spheres are placed on the vertices of n-sided regular polygon with a side length of 320 nm on x-y

plane. The external magnetic field is applied in z direction. The example with n = 6 is shown in

Fig. 2a. The system is at thermal equilibrium of 300 K.

In the examples above we have applied a magnetic field along the z-direction. Such a

choice of the direction of magnetic field is important. In Fig. 4, we instead apply an external

B field along the x-direction, for the case where n = 6. We observe that in this scenario

the heat transfer is reciprocal. We have also numerically verified that for all the systems

consisting of spheres forming regular polygons, applying the external B field in any direction

inside the plane of the spheres always leads to reciprocal heat transfer. This observation

is consistent with the discussions above relating the persistent heat current to degeneracy

splitting of collective counter-rotating states. The collective rotating states reside in the

plane of the spheres. Thus, in order to break the reciprocity of those states, the external

magnetic field must have a non-zero out-of-plane component.

We end this section by providing some numerical details. For the case where n = 10, we

have used a cut-off in the total angular momentum of lmax = 9. For the cases we tested,
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FIG. 4. (Color online) (a) Geometry of a many-body system consisting of six spheres. The centers

of the spheres are placed at the vertices of a regular hexagon on x-y plane with a side length of

320 nm. Each sphere has a radius of 100 nm. An external magnetic field B = 1 T is applied in x

direction. (b) The heat transfer spectra of S2→1 and S1→2. The system is at thermal equilibrium

of 300 K.

further increasing lmax to 10 changes the results by a fraction that is less than 10−7. For

each frequency obtaining all the Si→j for all instances of i and j takes about 4 seconds on a

single-core machine. The results here indicate that our formalism can be used to simulate

heat transfer among a substantial number of objects with relatively modest computational

costs.

C. Directional heat flow at thermal non-equilibrium

The formalism as developed in Section IV is generally applicable for non-equilibrium

situations where the bodies have different temperatures. In this subsection we will use this
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FIG. 5. (Color online) Net heat flux from body 1 to body 2. The geometry is the same as in

Fig. 2a. T2 is fixed at 300 K, while T1 varies.

formalism to consider non-reciprocal heat transfer away from thermal equilibrium. Figure 5

shows the case where we use the same n = 6 geometry in Fig. 2a, but we vary the temperature

T1 of body 1 while keeping the temperature of all the other bodies fixed at 300 K. When the

applied magnetic field is at B = 1 T , there is a directional flow from body 1 to body 2 at

the equilibrium situation. Consequently, S1→2 > S2→1, even when T1 < T2. We emphasize

that such a result does not violate the second law of thermodynamics, since when T1 < T2,

there is always a net heat flow into body 1 from the composite of all the bodies except body

1, thus the net total heat flow points from the hot to the cold, which is consistent with the

second law. In contrast, with B = 0 T , the system is reciprocal, and S1→2 > S2→1 only

when T1 > T2.

The directional heat transfer as discussed above has unique signature in the dynamics

of the system away from thermal equilibrium. The dynamics of the temperatures for the

bodies are described by:

Ci

d

dt
Ti =

ˆ ∞

0

dω

{

∑

j 6=i

[Sj→i(ω)− Si→j(ω)] + Senv→i(ω)− Si→env(ω)

}

, (57)

where Ci denotes the heat capacity of body i.

We consider again the case of n = 6 in the configuration as shown in Fig. 2a, but now

studying the transient behavior of the system using Eq. 57. We maintain sphere 1 at a

constant temperature of 300 K by assuming it to be in contact with a large reservoir. The

other five spheres are assumed to be initially at 200 K. They are assumed to isolated except

through radiative heat contact with other spheres in the system. Consequently, due to the

near field radiative heat exchange the temperatures of these five spheres will increase with
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time and eventually approach 300 K. We compute the temperature as a function of time

for each of the spheres using Eq. 57, where we determine Ci from the the specific heat

of n − InSb which is 200 J/(kg · K). We also assume that the dielectric property of the

material does not vary as a function of temperature. In Fig. 6, we show the temperatures

of the spheres as a function of time. Sphere 2 which is in the counter-clockwise direction of

sphere 1 is preferentially heated up, compared with sphere 6 which is the clockwise direction

of sphere 1, in consistency with the existence of a persistent heat current along the counter-

clockwise direction. The preferential direction for heating can be reversed by flipping the

direction of the external magnetic field. On the other hand, if B = 0, sphere 2 and 6 will

have the exact same temperature. Therefore, the persistent heat current as we predicted for

the equilibrium situation can be probed in non-equilibrium experiments.
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FIG. 6. (Color online) Transient behavior involving non-reciprocal many-body heat transfer in

thermal non-equilibrium. The geometry parameters are the same as in Fig. 2a. An external

magnetic field as B = 1T is applied in z direction. Sphere 1 is fixed at 300 K, and the other

spheres are initially at 200 K. Plotted here are the temperatures of all the spheres as a function

of time.

VI. CONCLUSION

In summary, we have developed compact formulas to calculate near field radiative heat

transfer in both reciprocal and non-reciprocal many-body systems. Such formulas allow

efficient calculation of radiative heat transfer in systems consisting of a large number of

particles, and take into account of all the modes. As a demonstration, we study non-
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reciprocal many-body near field radiative heat transfer in and out of thermal equilibrium.

In equilibrium, we show that persistent heat current has intricate dependence on the number

of particles in the system and the external magnetic field. Out of thermal equilibrium, we

show that non-reciprocal heat transfer points to directional heat exchange, with the direction

set by the persistent heat current in equilibrium. Our work points to the opportunity of

exploring novel effects of radiative heat transfer that can arise in complex reciprocal and

non-reciprocal many-body systems.
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Appendix: Derivation of Eq. 27

Eq. 27 describes the field correlation solely due to thermal noise sources of an isolated

body k. Eq. 27 has been provided in Ref. 57. For completeness, we derive it here.

We consider a single body k in thermal equilibrium with the environment. As the thermal

noise sources in the body k and the environment (with infinitesimal loss) are uncorrelated,

the field correlation at equilibrium can be divided according to the thermal noise sources:

〈E(r)E†(r′)〉eq = 〈E(r)E†(r′)〉isok + 〈E(r)E†(r′)〉env,

where 〈E(r)E†(r′)〉isok is the contribution due to sources in the k-th body, and 〈E(r)E†(r′)〉env

is the contribution due to sources in the environment. Thus,

〈E(r)E†(r′)〉isok = 〈E(r)E†(r′)〉eq − 〈E(r)E†(r′)〉env. (A.1)

On one hand, the field correlation at equilibrium is set by Eq. 18 as reproduced below:

〈E(r)E†(r′)〉eq =
4

π
ωΘ(ω, T )µ0

Ĝ(r, r′)− Ĝ†(r′, r)

2i
. (A.2)

For the system consisting of the body k and the environment, from the Lippmann-Schwinger

equation73,

Ĝ = Ĝ0 + Ĝ0T̂kĜ0. (A.3)
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On the other hand, 〈E(r)E†(r′)〉env results from the scattering by body k of the field

emitted by the environment. From Eq. A.2, the field emitted by a free-space environment

is described by:

〈E(r)E†(r′)〉free =
4

π
ωΘ(ω, T )µ0ImĜ0.

Using the Lippmann-Schwinger equation73 and treating such free-space field Efree as an

incident field, the total field after scattering by body k is Eenv = (1 + Ĝ0T̂k)E
free. Thus,

〈E(r)E†(r′)〉env = (1 + Ĝ0T̂k)〈E(r)E
†(r′)〉free(1 + Ĝ0T̂k)

†,

=
4

π
ωΘ(ω, T )µ0 (1 + Ĝ0T̂k)ImĜ0(1 + Ĝ0T̂k)

†. (A.4)

Then from Eqs. A.1, A.2, A.3 and A.4, we have

〈E(r)E†(r′)〉isok =
4

π
ωΘ(ω, T )µ0

Ĝ− Ĝ†

2i
−

4

π
ωΘ(ω, T )µ0(1 + Ĝ0T̂k)ImĜ0(1 + Ĝ0T̂k)

†,

=
4

π
ωΘ(ω, T )µ0R̂k, (A.5)

where

R̂k = Ĝ0

[

T̂k − T̂ †
k

2i
− T̂kImĜ0T̂

†
k

]

Ĝ†
0.

Further, by using Eqs. 14, 15 and 16, we have

〈E(r)E†(r′)〉isok =
4

π
ωΘ(ω, T )µ0

∑

ν,ν′

Eout
k,ν(r) (Rk)ν,ν′ E

out†
k,ν′ (r

′), (A.6)

where in spherical wave basis

Rk = −(Tk + T †
k )/2− TkT

†
k .
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Johnson, Phys. Rev. Lett. 107, 114302 (2011).

37 R. Guerout, J. Lussange, F. S. S. Rosa, J.-P. Hugonin, D. A. R. Dalvit, J.-J. Greffet, A. Lam-

brecht, and S. Reynaud, Phys. Rev. B 85, 180301 (2012).

38 J. Lussange, R. Guérout, F. S. S. Rosa, J. J. Greffet, A. Lambrecht, and S. Reynaud, Phys.

Rev. B 86, 085432 (2012).

39 X. Liu and Z. Zhang, ACS Photonics 2, 1320 (2015).

40 X. Liu, B. Zhao, and Z. M. Zhang, Phys. Rev. A 91, 062510 (2015).

41 J. Dai, S. A. Dyakov, and M. Yan, Phys. Rev. B 92, 035419 (2015).

42 H. Chalabi, E. Hasman, and M. L. Brongersma, Phys. Rev. B 91, 014302 (2015).

43 H. Chalabi, E. Hasman, and M. L. Brongersma, Phys. Rev. B 91, 174304 (2015).

44 J. Dai, S. A. Dyakov, S. I. Bozhevolnyi, and M. Yan, Phys. Rev. B 94, 125431 (2016).

45 J. Dai, S. A. Dyakov, and M. Yan, Phys. Rev. B 93, 155403 (2016).

46 R. Messina, A. Noto, B. Guizal, and M. Antezza, Phys. Rev. B 95, 125404 (2017).
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Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, Nat. Photonics 7, 579 (2013).

64 P. Ben-Abdallah, Phys. Rev. Lett. 116, 084301 (2016).

65 L. Zhu and S. Fan, Phys. Rev. Lett. 117, 134303 (2016).

66 P. Ben-Abdallah, S.-A. Biehs, and K. Joulain, Phys. Rev. Lett. 107, 114301 (2011).

67 R. Messina, M. Tschikin, S.-A. Biehs, and P. Ben-Abdallah, Phys. Rev. B 88, 104307 (2013).

68 P. Ben-Abdallah, R. Messina, S.-A. Biehs, M. Tschikin, K. Joulain, and C. Henkel, Phys. Rev.

Lett. 111, 174301 (2013).

69 I. Latella and P. Ben-Abdallah, Phys. Rev. Lett. 118, 173902 (2017).

70 C. R. Otey, L. Zhu, S. Sandhu, and S. Fan, J. Quant. Spectrosc. Radiat. Transfer 132, 3 (2014).

71 A. G. Polimeridis, M. T. H. Reid, W. Jin, S. G. Johnson, J. K. White, and A. W. Rodriguez,

Phys. Rev. B 92, 134202 (2015).

72 W. Jin, A. G. Polimeridis, and A. W. Rodriguez, Phys. Rev. B 93, 121403 (2016).

73 B. Lippmann and J. Schwinger, Phys. Rev. 337, 469 (1950).
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