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Most of the group IV, III-V, and II-VI compounds crystallize in semiconductor structures under
ambient conditions. Upon application of pressure, they undergo structural phase transitions to more
close-packed structures, sometimes metallic phases. We have performed density functional calcula-
tions using projector augmented wave (PAW) pseudopotentials to determine the transition pressures
for these transitions within the local density approximation (LDA), the Perdew-Burke-Ernzerhof
(PBE) generalized gradient approximation (GGA), and the strongly-constrained and appropriately-
normed (SCAN) meta-GGA. LDA underestimates the transition pressure for most of the studied
materials. PBE under- or overestimates in many cases. SCAN typically corrects the errors of LDA
and PBE for the transition pressure. The accuracy of SCAN is comparable to that of computation-
ally expensive methods like the hybrid functional HSE06, the random phase approximation (RPA),
and quantum Monte Carlo (QMC), in cases where calculations with these methods have been re-
ported, but at a more modest computational cost. The improvement from LDA to PBE to SCAN
is especially clearcut and dramatic for covalent semiconductor-metal transitions, as for Si and Ge,
where it reflects the increasing relative stabilization of the covalent semiconducting phases under
increasing functional sophistication.

I. INTRODUCTION

The experimental study of pressure-induced structural
phase transitions of group IV, III-V, II-VI compounds
began in the early 1960s. Much progress has been made
with advances in measurement methods. However, it is
quite challenging to find an accurate equilibrium tran-
sition pressure (the pressure at which both phases can
coexist in equilibrium) experimentally. Hysteresis due to
an energy barrier is common in a first-order phase transi-
tion, making it hard to locate the transition point. Also,
the transition pressure may be sensitive to the measure-
ment method, sample type, and non-hydrostatic stress
condition.

The structural phase transition of solids also poses a
considerable challenge to theoretical models. The high-
pressure phases of these materials using density func-
tional calculation within the local density approximation
(LDA) have been reviewed by Mujica et al.1. LDA under-
estimates the transition pressure for the first transition
of a series under increasing pressure. Most of the first
transitions are reconstructive, and the initial phases are
semiconducting. The semiconductor-metal or diamond-
β-tin transition for Si is the most studied: Hennig et
al.2 have shown that LDA and GGA functionals under-
estimate the transition pressure. Older meta-GGAs pre-
dict a less accurate transition pressure than GGA does3,4.
However, the hybrid functional HSE06, and the Random
Phase Approximation (RPA), and diffusion Monte Carlo
(DMC) predict the transition pressure in agreement with
experiment, but at an increased computational cost. The
recent meta-GGA SCAN5 on the other hand yields an
accurate prediction for Si6 at a GGA-like cost, suggest-
ing that SCAN is a promising functional for the study

of structural transition. In this paper, we calculate the
transition pressure for group IV, III-V, and II-VI mate-
rials using SCAN as well as LDA and PBE.

The critical pressure of a structural phase transition
is a sensitive test of an approximate density functional,
because it depends upon a small change of total energy
arising from a large change of electron density4. By con-
trast, the lattice constant for a given structure is rel-
atively much more accurate, even in the simplest den-
sity functional approximation, because it depends upon
a small change of energy arising from a small change of
electron density4.

In ground-state density functional theory (DFT)7,8,
the density functional for the exchange-correlation en-
ergy EXC is the only needed approximation. Jacob’s
ladder9 is often used to order the approximate function-
als, in which higher rungs are potentially more sophisti-
cated and accurate. The first three rungs of approxima-
tions can be described by the formula

EXC[n↑, n↓] =

∫
nεXC(n↑, n↓,On↑,On↓, τ↑, τ↓) d

3r. (1)

Here n = n↑ + n↓ is the total electron density. Onσ
is the spin-density gradient and τσ = Σocci

1
2 |Oψi,σ|

2 is
the orbital kinetic density for Kohn-Sham orbitals ψi,σ
of spin σ.

Equation (1) represents the local spin density approx-
imation (LSDA)7, the first rung of Jacob’s ladder, if the
spin densities nσ are the only ingredients of the exchange-

correlation energy per particle εxc(~r). In this approxi-
mation, a general nonuniform electron gas is considered
locally uniform. The exchange-correlation energy for a
uniform gas is well known. Therefore the LSDA is exact



2

for a uniform gas and accurate for very slowly-varying
spin densities. It is expected to work for simple met-
als, but it works better than it was expected to work
for atoms and molecules, in which the electron density is
far from homogeneous. Since LSDA overly favors homo-
geneity, it overestimates the cohesive energy of molecules
and solids, and underestimates bond length and lattice
constant.

The second rung of Jacob’s ladder is the generalized
gradient approximation (GGA), in which spin densities
and their gradients at a point are the ingredients of εxc.
The Perdew-Burke-Ernzerhof (PBE)10 is a popular GGA
functional. It is constructed to satisfy 11 known ex-
act constraints on the exchange-correlation energy func-
tional. PBE favors inhomogeneity more than the LDA
does. It underestimates the cohesive energy and overes-
timates the lattice constant of a solid.

The third rung of Jacob’s ladder is the meta-GGA.
The “Strongly Constrained and Appropriately Normed”
(SCAN)5 functional is a new meta-GGA, designed to sat-
isfy all 17 known exact constraints that a semilocal func-
tional can. In SCAN, the exchange-correlation energy
per particle εxc for a spin-unpolarized density depends
on the orbital kinetic densities only via the dimension-
less variable

α = (τ − τw)/τunif.

Here τw = |On|2/8n is the von Weizsäcker kinetic en-
ergy density, which is exact for any system with a sin-
gle orbital shape, and τunif = (3/10)(3π2)2/3n5/3 is the
Thomas-Fermi uniform density limit. Without being fit-
ted to any bonded system, SCAN accurately6 describes
materials with different types of bonding: covalent (char-
acterized by α ≈ 0 for single bonds), metallic (α ≈ 1)
and weak (α � 1)). SCAN provides a different and ap-
propriate GGA description in each of these three lim-
its or bonding situations.11 The satisfaction of many
universal constraints (bounds, scaling relations, limits,
etc.) makes SCAN more predictive than GGAs or meta-
GGAs that satisfy fewer exact constraints. At a com-
putational cost at most only a few times greater than
that of PBE, SCAN meets many condensed-matter chal-
lenges: ferroelectrics12,13, metal surfaces14, formation
energies15, structure prediction15, liquid water16, and liq-
uid silicon17.

II. COMPUTATIONAL METHOD

We performed density functional calculations for en-
ergy per unit cell as a function of cell volume with the
VASP18,19 code (Vienna ab initio simulation package).
VASP uses the projector augmented wave (PAW) method
and a plane wave basis set. Scalar relativistic effects are
included via the PAW pseudopotential. For elements
from the fourth row and further down the periodic ta-
ble, semi-core d electrons are considered as valence elec-

trons, with the exception of Sb, Se and Te in which only
outermost s and p electrons are considered as valence.
Three levels of functional approximation were used: the
Ceperley-Alder LDA20 as parametrized by Perdew and
Zunger21, the Perdew-Burke-Ernzerhof (PBE)10 GGA,
and the SCAN5 meta-GGA. The integration grids (k-
mesh) over the Brillouin zone were generated by the Γ-
centered method. The total energy was converged to 1
meV per atom with respect to the energy cut-off and the
k-mesh. In the structural optimization, the forces on the

atoms were below 0.01 eV Å
−1

. The kinetic energy cut-
off for the plane wave expansion and the k-mesh size are
provided in the Supplementary Information.

To calculate the transition pressure, we used the fact
that the Gibbs free energies G (which reduce in our cal-
culations to enthalpies at zero temperature) per formula
unit of the two competing crystallographic phases with
the same chemical formula must be equal at phase equi-
librium under conditions of constant pressure and tem-
perature. Our approach is formally equivalent to finding
the equilibrium transition pressure as minus the slope of
the common tangent to the binding energy curves of the
two phases, but in practice our approach is numerically
simpler and thus more accurate. Using the Murnaghan
equation of state22, enthalpy as a function of pressure
can be expressed as

H(P ) = E+PV = E0+
B0V0
B

′
0 − 1

[(1+
B

′

0

B0
P )(B

′
0−1)/B

′
0−1].

Here E0 and V0 are the equilibrium energy and volume
per formula unit, while B0 and B

′

0 are the bulk modulus
and pressure derivative of the bulk modulus at zero pres-
sure. These parameters, extracted from our calculated
energy as a function of cell volume for each considered
solid phase and functional, are reported in the Supple-
mentary Information, along with the fitting range for the
equation of state.

III. RESULTS & DISCUSSIONS

Our results are presented in Tables I-III and discussed
below.

Si and Ge
Si and Ge crystallize in the tetrahedrally-bonded di-

amond structure at ambient conditions. The first high-
pressure phase is a tetragonal β-tin phase. For these
transitions, Gaál-Nagy et al.34 have shown that the zero-
point energy (ZPE) and the finite temperature (300 K)
phonon correction lower the transition pressure by 1.3
GPa.

Si undergoes this semiconductor-metal transition at
11.2 − 12.6 GPa23. With the ZPE and the finite tem-
perature correction34 included, we find the transition
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Table I: The calculated equilibrium transition pressure (in GPa) for the group IV materials within the LDA, PBE
and SCAN XC functionals. ZPE and vibrational effects are not included in the calculated value. The experimental

pressure (in GPa) to the right of the vertical bar corresponds to the forward transition and the left one to the
reverse transition

LDA PBE SCAN Other works Expt.

Si (diamond→ β-tin) 7.1 9.8 14.5 3.5− 10f, 12.2g 11.3− 12.6a

Ge (diamond→ β-tin) 6.6 7.9 11.3 9.8l 10.6(5)b

Sn (β-tin→bct) 10.3 5.4 16.2 19h, 10.4i 9.5c, 13m, 15− 20n

Pb (fcc→hcp) 11.6 13.9 16 13j 14d

SiC (zb→NaCl) 59.4 64.8 74 67k 35|100e

a Reference23

b Reference24

c Reference25

d Reference26

e Reference27

f Reference2

g Reference4

h Reference28

i Reference29

j Reference30

k Reference31

l Reference32

m Reference29

n Reference33

pressure to be 5.8 GPa with LDA, 8.5 GPa with PBE
and 13.2 GPa with SCAN. LDA and PBE underestimate
the transition pressure; this is in accord with previous
studies2,3. In fact, it was the serious underestimation3,4

by our earlier TPSS meta-GGA that provided the initial
motivation to develop SCAN. The SCAN result is in good
agreement with experiment. It agrees with the high-
level approximations HSE06 (13.3 GPa)4 and RPA (12.2
GPa)4. However, it is also important to compare the re-
sult with a more accurate method like quantum Monte
Carlo (QMC). Our SCAN transition pressure is in perfect
agreement with the DMC result of (14±1) GPa2. This is
because the SCAN energy difference (417 meV/atom) is
in agreement with the DMC result (424±20 meV/atom).
SCAN predicts an accurate energy difference of the two
phases in Si because it can distinguish the covalent and
metallic bonding of the low- and high-pressure phases
and properly stabilize the covalent single bond.

The transition pressure for Ge is 10.6 GPa24. Taking
ZPE and finite temperature correction34 into account,
LDA predicts a transition pressure of 5.9 GPa, PBE
gives 7.5 GPa, and SCAN gives 10.1 GPa in excellent
agreement with experiment.

Sn

Tin crystallizes in the β-phase (white tin) at normal
temperature and pressure. On application of pressure,

the beta phase undergoes a transition to the body-
centered tetragonal (bct) phase at about 9.5 GPa25

at room temperature. At 0 K the transition pressure
is estimated to be about 15 − 20 GPa33 or 13 GPa29

from the measured equation of state. The calculation
with LDA gives a pressure of 10.3 GPa, close to the
experimental pressure at room temperature. It also
agrees with the pressure reported by Ref. 29. However,
the SCAN result (16.2 GPa) is in agreement with the
experimental transition pressure of Ref. 33 at 0 K. PBE
underestimates the transition pressure.

Pb

The tetrahedrally-bonded structure is completely
absent in Pb. It crystallizes in the fcc structure. It
undergoes a transition to the hexagonal close-packed
structure at 14 GPa26. LDA predicts a smaller transition
pressure of 11.6 GPa, while PBE predicts 13.9 GPa, and
SCAN predicts 16 GPa in agreement with experiment.

SiC

SiC undergoes a phase transition from the 3C-SiC
polytype form to the rock-salt structure at about 100
GPa27. The high-pressure phase persists until 35 GPa
under decompression, indicating a very large hysteresis.
The predictions of LDA, PBE, and SCAN fall within the
experimental error bar.
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GaP

Gallium phosphide is a wide band-gap semiconductor.
It crystallizes in the zincblende structure at ambient
conditions. The high-pressure phase of GaP was initially
reported to be the tetragonal β-Sn structure by X-ray
diffraction experiments54,55. However, Nelmes et al.35

showed that only a distorted Cmcm structure is compat-
ible with the observed ADX diffraction pattern and also
with the Ruoff x-ray pattern, ruling out the existence
of the β-tin structure. Mujica et al.48 studied the
high-pressure phases of GaP with a density functional
calculation within LDA. They found the coexistence
pressure for the zincblende and Cmcm phases as 17.7
GPa. Our calculation with LDA predicts a pressure of
18.1 GPa, low compared to the experimental value of 26
GPa35. PBE gives a better pressure of 20.7 GPa. SCAN
predicts a transition pressure of 25.9 GPa, in excellent
agreement with experiment.

GaAs

GaAs is an important semiconductor for its technolog-
ical uses in solar cells, semiconductor lasers, diodes etc.
At about 17 GPa, it was initially reported to undergo
a phase transition from the zinc-blende structure to an
orthorhombic structure with space group Pmm256. But,
later the high-pressure phase was confimed to be a struc-
ture having space group Cmcm36. Theoretical study49

on the stability of high-pressure phases of GaAs showed
that the Cmcm structure is indeed favored over other re-
ported candidates like rock-salt, Pmm2 structure. Our
calculations using LDA and PBE predict a lower pressure
as 12.4 GPa and 14.1 GPa respectively, low in compari-
son to experiment. SCAN gives a transition pressure of
17.1 GPa, in agreement with experiment.

Although experiments and theoretical studies have
shown that GaAs-II is the Cmcm structure, a recent
QMC study57 has investigated the zb→ NaCl transition.
QMC predicts 17 GPa for this semiconductor-metal
transition. So we have also made calculations for this
transition. Both LDA (12.7 GPa) and PBE (14.6
GPa) underestimate the transition pressure, while the
SCAN result (18.7 GPa) is in good agreement with the
QMC value. Furthermore, Our results for this transition
pressure are higher than that for zb→ Cmcm, indicating
that the zb → Cmcm transition is energetically favored
over the zb → NaCl transition.

GaN, InN, and AlN

GaN, AlN, and InN crystallize in the wurtzite struc-
ture at ambient conditions. However, they can also be
modified into the zincblende structure using an epitax-
ial technique. The wurtzite phase has a wide band gap,
so it is useful for optoelectronic devices that operate in
high-frequency ranges. On application of pressure, the
wurtzite phase undergoes a transition to the rock-salt
NaCl phase.

For AlN, the experimental phase transition has been
reported to occur at 22.9 GPa by Ueno et al.38, or at
14 GPa by Xia et al.37 and at 20 GPa by Uehara et
al.39. Xia et al. also observed that the high-pressure
phase stays in the NaCl structure down to atmospheric
pressure, indicating a large hysteresis. Our calculation
with LDA gives a transition pressure of 7.2 GPa, PBE
gives 13.1 GPa and SCAN predicts 12.5 GPa. Taking
the uncertainty due to the hysteresis into account, our
results are close to the middle of the hysteresis cycle.

Different values for transition pressure have been re-
ported for GaN as well. Xia et al.42 using an EDX
method reported 37 GPa, while Ueno et al.41 (ADX
method) found 52.2 GPa. Another experiment40 re-
ported a forward transition pressure of 47 GPa and 30
GPa upon decompression. Our calculation with LDA
predicts a pressure of 42.3 GPa, PBE predicts 46.2 GPa
and SCAN predicts 42.1 GPa. All calculated pressures
are in agreement with experiment within the reported ex-
perimental values 37− 52.2 GPa. Interestingly, the LDA
pressure is here similar to SCAN, and the RPA result
(42.5 GPa)51, and is higher than the LDA value reported
by Serrano et al.50.

For InN, Xia et al.43 found the transition to occur at
10 GPa and the reverse transition at 5 GPa, while Ueno
et al.41 reported the transition pressure as 12.1 GPa.
Our calculated transition pressures are 8.9 GPa (LDA),
12.2 GPa (PBE) and 10.6 GPa (SCAN), in reasonable
agreement with experiment.

InP and InAs
InP and InAs crystallize in the zincblende structure at

normal conditions. The first transition is from zincblende
to the NaCl structure. The transition pressure for InP is
9.8 GPa1, or 10.8±0.05 GPa44. Our calculated pressures
with LDA (6.2 GPa) and PBE (8.4 GPa) are smaller than
the experimental results. SCAN predicts the transition
pressure as 10.6 GPa, in good agreement with experi-
ments.

The transition of InAs occurs at 7 GPa45,58. LDA
predicts the transition to occur at 4.2 GPa. The PBE
prediction (6 GPa) is close to experiment, while the
SCAN result (7.5 GPa) is in better agreement with
experiment.

AlP and AlAs
AlP and AlAs crystallize in the zincblende structure

at normal conditions. On application of pressure, they
were found to transform to a metallic phase- the NiAs
structure. The NiAs phase for AlAs was first predicted
theoretically by Froyen et al.59 before it was verified ex-
perimentally by Greene et al.47.

For AlAs, the transition is found to occur at 12 GPa47,
while the reverse transition occurs at 2 GPa. Our cal-
culated pressure with LDA, PBE, and SCAN are well
within 2− 12 GPa (Table II).

The transition of AlP was reported to occur between
4.8 − 14.246. The pressure with LDA is 6.8 GPa, small
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Table II: The calculated equlibrium transition pressure (in GPa) for the group III-IV compounds within the LDA,
PBE and SCAN XC functionals. ZPE and vibrational effects are not included in the calculated value. The

experimental pressure (in GPa) to the right of the vertical bar corresponds to forward transition and the left one to
reverse transition.

LDA PBE SCAN Other work Expt.

GaP (zb→Cmcm) 18.1 20.7 25.9 17.7o 26a

GaAs (zb→Cmcm) 12.4 14.1 17.1 12.1p 11.2|17.3b

GaN (wur→NaCl) 42.3 46.2 42.1 42.5r, 33.7q 30|47f, 52.2g, 37h

InN (wur→NaCl) 8.9 12.2 10.6 10q 12.1g, 10i

AlN (wur→NaCl) 7.2 13.1 12.5 9.2q 0|14c, 22d, 20e

InP (zb→NaCl) 6.2 8.4 10.6 5.6o, 7.4t 9.8(5)j, 10.8(5)k

InAs (zb→NaCl) 4.2 6.0 7.5 3.9o 7.0l,

AlP (zb→NiAs) 6.8 9.4 11.5 7.7s 4.8|14.2m

AlAs (zb→NiAs) 6.7 8.9 10.7 7s 2|12n

AlSb (zb→Cmcm) 3.7 5.1 6.6 4.7s 2.2|8.1a

a Reference35

b Reference36

c Reference37

d Reference38

e Reference39

f Reference40

g Reference41

h Reference42

i Reference43

j Reference1

k Reference44

l Reference45

m Reference46

n Reference47

o Reference48

p Reference49

q Reference50

r Reference51

s Reference52

t Reference53

compared to the middle of the hysteresis interval (9.5
GPa). PBE and SCAN predict 9.4 GPa and 11.5 GPa
respectively, and are in better agreement with the
experimental result.

AlSb
The low-pressure phase of AlSb is the zincblende

structure. Different structures were assigned as the
high-pressure phase until Nelmes et al.35 identified it as
an orthorhombic structure with space group Cmcm. A
theoretical study of Mujica et al.52 also shows that the

transition to the Cmcm structure is favored over the
zincblende → NiAs transition, as in AlP and AlAs. The
transition was reported to occur at 8.1 GPa35 with a
hysteresis60. Our calculated pressure for the zincblende
→ Cmcm transition with LDA is underestimated, while
PBE and SCAN are in reasonable agreement with
experiment (Table II).

ZnO
ZnO undergoes a transition from its low-pressure

wurtzite structure to the semiconducting rock-salt struc-
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ture at 9.8 GPa61 or at 9.1 GPa62, with a large hystere-
sis. Our LDA pressure (9.1 GPa) is higher than that
reported by Jaffe et al.63. The LDA, PBE, and SCAN
results are close to the onset of the transition on an in-
crease of pressure. The LDA and SCAN pressures are
also in agreement with the RPA result (9.18 GPa)51.

ZnS
ZnS crystallizes in the zincblende structure at ambient

pressure. On application of pressure, it transforms to
the rock-salt structure at 17.4 ± 1.2 GPa65 or at 14.7
GPa86. However, a more recent experiment66 reports
the pressure as 16.9 GPa. The calculated pressures with
LDA, PBE, and SCAN are within the experimental
range 15 to 17.4 GPa.

ZnSe
ZnSe undergoes a phase transition from zincblende

to the metallic rocksalt at about 12 − 20 GPa67. Galit
et al.68 have reported that ZnSe undergoes a transition
to a narrow-gap semiconducting phase87, and to the
metallic rocksalt phase at 17 GPa. The low-pressure
phase was recovered at 10.5 GPa under decompression.
For the zincblende to rocksalt transition, our results
with LDA (12.1 GPa), PBE (13.7 GPa) and SCAN
(15.9 GPa) are in reasonable agreement with experiment.

ZnTe
Unlike ZnS and ZnSe, ZnTe undergoes a transition

to the semiconducting trigonal cinnabar structure. The
transition pressure is about 9.5 GPa69. Our calculations
with LDA (8.7 GPa), PBE (9.7 GPa) and SCAN (10.5
GPa) are in agreement with experiment.

CdS and CdSe
Both CdS and CdSe have the wurtzite structure under

normal conditions. They undergo a wurtzite to rocksalt
transition on the application of pressure 2-3 GPa. For
CdS, the transition is reported to occur at 2.54 GPa70

or at 3 GPa71. The transition pressure with LDA is 2.4
GPa, smaller than the experimental pressure. PBE pre-
dicts a higher transition pressure. SCAN is in excellent
agreement with experiments.

For CdSe, the transition pressure is 2.72 GPa72. The
calculated pressure with LDA is 2.3 GPa. PBE predicts
a higher pressure, while the SCAN result (3.2 GPa) is in
excellent agreement with the experimental result.

CdTe
Although there was an initial report of a zincblende

→ rocksalt transition at 3.53 GPa73, Nelmes et al.88

found an intermediate trigonal cinnabar phase with a
transition pressure at 3.5 GPa. Using the electrical
resistivity method, a recent experiment reports the tran-
sition pressure as 3.8 GPa74. The calculated pressures
with LDA, PBE, and SCAN are in reasonably good

agreement with the experimental results.

Si Ge Sn Pb Si
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Figure 1: Ratio of the calculated transition pressure Pc

and the experimental pressure P̄e. P̄e is the average of
all experimental forward pressures (from Tables I-III).
An accurate functional might make this ratio less than
or about equal to 1, in view of hysteresis, uncertainty,

and vibrational effects in the experiments. Reverse
pressures have been measured for only 13 out of the 25

materials.
Si Ge Pb Si
C

Ga
N

Ga
As

Zn
O

0.4

0.6

0.8

1.0

1.2

1.4

Pc
Prpa

LDA
PBE
SCAN

Figure 2: Comparison of the calculated transition
pressure Pc with the RPA transition pressure Prpa.

HgS
HgS crystallizes in the cinnabar structure at normal

conditions. On application of pressure, it undergoes a
structural transition to the rocksalt structure at 20.5
GPa75. Both LDA and PBE underestimate the tran-
sition pressure, while SCAN is in excellent agreement
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Table III: The calculated equilibrium transition pressure (in GPa) for the group II-VI materials within the LDA,
PBE and SCAN XC functionals. ZPE and vibrational effects are not included in the calculated value. The

experimental pressure (in GPa) to the right of the vertical bar corresponds to the forward transition and the left one
to the reverse transition

LDA PBE SCAN Other work Expt.

ZnO (wur→NaCl) 9.1 11.6 8.8 6.6q, 9.3q, 9.18r 1.9(2)|9.1(2)a, 9.8b

ZnS (zb→NaCl) 15.2 16.8 18.3 14.35s, 15.4t, 17.2u 10|14.7c, 17.4d, 16.9e

ZnSe (zb→NaCl) 12.1 13.7 15.9 15.2f, 11v, 14.7u 12− 20f

ZnTe (zb→cinn) 8.7 9.7 10.5 10.3u 8|9.5g

CdS (wur→NaCl) 2.4 4.4 2.9 3.1w 1.2|2.54h, 3i

CdSe (wur→NaCl) 2.4 4.1 3.3 2.5v 1.7|2.72j

CdTe (zb→cinn) 3.8 4.8 4.2 2.5v 2.67|3.53k, 3.8l

HgS (cinn→NaCl) 11.1 15.8 21.9 26.57x 20.5(7)m

HgSe (cinn→NaCl) 6.7 10.4 15.8 7y, 11.5y 14.6(6)n, 15.5o

HgTe (cinn→NaCl) 2.3 5.2 6.6 2.5y, 6.5y 8p,o

a Reference62

b Reference61

c Reference64

d Reference65

e Reference66

f Reference67,68

g Reference69

h Reference70

i Reference71

j Reference72

k Reference73

l Reference74

m Reference75

n Reference76

o Reference77

p Reference78

q Reference63

r Reference51

s Reference79

t Reference80

u Reference81

v Reference82

w Reference83

x Reference84

y Reference85

with experiment.

HgSe and HgTe

A theoretical study85 by Mujica et al. has shown
that LDA and PBE work well for the first transition
(zb to cinn), and underestimate pressure for the cinn to
rocksalt transition. Our LDA and PBE results (except
PBE result for HgTe, which is smaller in our case) agree

with their results. SCAN is in better agreement with
experiments.
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Table IV: The mean percentage error (MPE) and mean
absolute percentage error (MAPE) for XC-functionals
LDA, PBE and SCAN. The experimental reference value
is P̄e, as defined in the caption of Fig. 1.

LDA PBE SCAN
MPE -30.92 -10.17 0.36

MAPE 31.14 24.54 11.78

IV. OVERALL ANALYSIS

Figure I and Table IV compare the predictions of the
XC functionals LDA, PBE, and SCAN to experiment.
Except for a few materials, LDA underestimates the co-
existence pressure, in agreement with the conclusions of
Mujica et al.1. PBE improves upon the LDA prediction,
but it still underestimates the pressure in many cases
and overestimates in a few. On the other hand, SCAN
predictions are in good agreement with the experimental
transition pressures.

The predictive power of density functionals in the
present context depends upon how well they capture the
energy difference of the two phases. The systematic un-
derestimation by LDA can be understood by the fact that
it favors homogeneity. Since the high-pressure phases
are more close-packed structures, their electron density
is somewhat more homogeneous. As a result, LDA works
better for the high-pressure phase than it does for the
low-pressure phase, thereby underestimating the true en-
ergy difference. The better PBE results are due to an im-
proved energy difference. PBE lowers the total energy of
the more inhomogeneous phase more, and thus increases
the difference. The ability of SCAN to predict an accu-
rate transition pressure is due to its better description of
diverse kinds of bonding, including the covalent bonding
in diamond-structure Si and Ge.

It has been argued that the inaccurate prediction of
transition pressure by semilocal functionals is due to their
inaccurate description of the band gap. The HSE06 func-
tional gives the correct transition pressure for the dia-
mond to β-tin transition for silicon, and also gives an
accurate band gap. However, our calculation shows that
SCAN gives an accurate transition pressure although it
only partly improves the band gap13, calling the rele-
vance of the gap into question.

It is important to remark that we have neglected the
zero-point motion of ions and the effect of temperature in
our calculations. Most of the experimental pressures are
measured at room temperature, whereas the calculated
pressures correspond to 0 K. This makes the compari-
son of the experiment and theory difficult. However, in
the case of Si and Ge, inclusion of these effects makes
the performance of SCAN even better. The temperature
dependence29,33 in the case of Sn explains in part the ap-
parent overestimation of the pressure within SCAN. We
expect the agreement between experiment and the SCAN

results to be good for other materials as well.

Hysteresis can also be a major issue in the compari-
son. The kinetic barrier between two coexisting phase
often hinders the transition, leading to the hysteresis.
This makes it hard to locate the true equilibrium transi-
tion point experimentally. The middle of the hysteresis
cycle is sometimes taken as an estimate of the equilib-
rium transition pressure, and half the width of the cycle
as its uncertainty.

Because of all these uncertainties, our fixed-nucleus
equilibrium transition pressures can be more cleanly com-
pared to those of a fifth-rung density functional, the ran-
dom phase approximation or RPA in a density functional
context89, also implemented for calculation of the equilib-
rium transition pressure at fixed nuclear positions. Fig-
ure 2 shows this comparison for our seven materials for
which an RPA transition pressure is known51,90, and sug-
gests an almost systematic improvement as we climb the
ladder from LDA to PBE to SCAN to RPA. For iso-
electronic energy differences16,90–93 in condensed matter,
for which RPA is typically accurate, SCAN results are
often close to those of the expensive RPA. For the ma-
terials where QMC equlibrium transition pressures are
known, SCAN is close to QMC (with a 6% difference for
Si diamond → β-tin and 10% for GaAs zb → NaCl).

The clearest and most dramatic message from Fig. 2
is the great improvement from LDA to PBE to SCAN
for the equilibrium transition pressures of the covalent
semiconductor-metal transitions (e.g., Si and Ge), due to
an increasing relative stabilization of the covalent semi-
conducting phase under increasing functional sophistica-
tion. Specifically, the PBE enhancement factor over LDA
exchange increases above one as the magnitude of the lo-
cal density gradient increases, stabilizing the more inho-
mogeneous phase. The SCAN enhancement factor over
LDA exchange is greater than one even at bond centers
where the density gradient is zero, so long as the vari-
able α defined in section I is close to zero there, and this
further stabilizes covalent bonds. In contrast, “GGAs for
solids”, such as AM0594 and PBEsol95, yield better lat-
tice constants and bulk moduli than LDA or PBE, and
better surface energies14 than PBE, but can be worse2

than both for the transition pressure in Si.

PBE includes almost no van der Waals (vdW) attrac-
tion, AM05 and PBEsol provide an intermediate-range
vdW corrretion to PBE, which as expected stabilizes
preferentially the higher-density phase and so reduces the
transition pressure. While SCAN includes intermediate-
range vdW6,14, it also includes other effects (i.e., rec-
ognizes different chemical environments characterized by
different chemical bonds) which raise the transition pres-
sure in 19 of the 25 cases studied here.

Just as SCAN halves the PBE mean absolute error for
the transition pressures in Table IV, it does the same15,96

for the formation energies of solids and for their predicted
ground-state crystal structures. In a recent and very ex-
tensive test for main-group molecules97 the non empirical
SCAN outperformed all other tested meta-GGAs, includ-
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ing those heavily fitted to molecular data. Molecules have
much in common with semiconductors.

V. CONCLUSIONS

We have investigated the performance of the non-
empirical, general-purpose, semilocal density functionals
LDA, PBE, and SCAN for the first structural phase tran-
sitions of 25 group IV, III-V, and II-VI compounds. LDA
underestimates the transition pressures, while PBE can
under- or overestimate. SCAN provides a systematic
improvement over LDA and PBE, and its predictions
are in reasonable agreement with experimental results.
For those materials where a comparison can be made,
SCAN yields transition pressures as good as computa-
tionally more expensive methods like the hybrid func-
tional HSE06, RPA, and QMC. We conclude that SCAN
is a usefully accurate and efficient method for predicting
transition pressures in these and probably other solids.
For tests on some other solids, see Ref. 90.
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