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Abstract

Modeling the behavior of materials composed of elements with different bonding and electronic

structure character for large spatial and temporal scales and over a large compositional range,

is a challenging problem. A case in point are amorphous alloys of Si, a prototypical covalent

material, and Li, a prototypical metal, which are being considered as anodes for high-energy-

density batteries. To address this challenge, we develop a methodology based on neural networks,

that extends the conventional training approach to incorporate pre-trained parts that capture the

character of different components, into the overall network; we refer to this model as the “implanted

neural network” method. We show that this approach works well for the Si-Li amorphous alloys for

a wide range of compositions, giving good results for key quantities like the diffusion coefficients.

The method is readily generalizable to more complicated situations that involve two or more

different elements.
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I. INTRODUCTION

The modeling of materials with atomistic detail is subject to severe limitations: one can

model either systems that are very small (in spatial and temporal scales) with reliable ab

initio quantum mechanical methods, or simulate large systems for long time-scales but with

increasing loss of accuracy as the size increases. The latter is the result of using approximate

classical interatomic potentials to capture the quantum mechanical interactions between

electrons and ions that are responsible for bonding of atoms in a solid. The challenge in

developing reasonable potentials is exacerbated in situations where the nature of bonding

is complex and defies classification in the usual categories like covalent, metallic, ionic, etc.

Often, materials that are of great practical interest exhibit this kind of complex bonding

arrangement between the constituent atoms, that can even vary as the material is cycled

through its phases during the application.

A case in point is lithium alloys that show promise for high-energy density batteries, which

are highly desirable in portable electronics and transportation1,2. Among the candidate

electrode materials for high-energy density batteries, Si has received extensive attention as

a promising anode material because of its high capacity for lithium absorption (4200 mAh

g−1), which compares very favorably to the common anode material graphite (372 mAh

g−1)3. However, upon Li insertion, a Si electrode can expand up to 400% in volume and the

anode fractures. This greatly reduces the number of recharging cycles before the battery

fails4,5. Understanding the nature and the details of these structural transformations is

crucial to designing a reliable electrode. It also poses a great challenge to modeling, with

the obvious need for capturing length scales from the atomistic structure and time scales

related to atomic diffusion to those related to large deformation and fracture. The complex

nature of the Si-Li interaction in LixSi, with x = 0− 4.25, which evolves from pure covalent

at x = 0 to pure metallic at x > 2.5, makes this challenge even more daunting. This is

confirmed by the recent work of Xia and Carter6, who found that methods like kinetic-

energy-functional approaches show limited ability to predict alloy formation energies for the

amorphous Si-Li system, which indicates the limitations in transferability of these functionals

for such complex physical systems.

In this work we present a new method for meeting these challenges using neural net-

works to represent the atomic interactions in complex environments. The use of neural
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networks to model materials was pioneered by Behler and Parrinello7. We found that all

the variants of an atom-based neural network (ANN) that we were able to come up with

could not adequately cope with the complexities of a system like the Li-Si alloy; based on

this observation, we introduced sub-networks for datasets that are designed for species of

atoms in their pure- and multi-element environments (bulk Si, bulk Li and the interaction

between these two species, respectively), as well as sub-networks for specific phases includ-

ing those of amorphous Si and Li-Si alloys. We then trained these networks in hierarchical

building stages, that is, successively more complicated situations; consequently, the com-

bined network is trained in a wide range of structures and can capture the physics of the

system over the entire compositional range of interest. Recently, a similar approach consist-

ing of hierarchical construction of NNs, based on different elements and their combinations

in a material, has been introduced, under the name of “stratified neural network” (SNN)

potentials8. In contrast to the SNN approach, which uses element-oriented NNs and their

combinations in the hierarchical building of the final NN potential, in our method we employ

dataset-oriented NNs that are used to transfer the pre-trained (through data) NNs to any

level of the hierarchical construction of the final NN potential. We call this new method the

“implanted” neural network (INN) model, since the parts of the network that correspond

to a specific dataset of interest are not re-trained but maintain their identity in the com-

bined network, while connections to the rest of the network are allowed to adjust at later

stages of training. The present INN method substantially reduces the prediction errors and,

more importantly, helps avoid overfitting, two major sources of problematic behavior in NN

potential construction.

We emphasize that our approach is qualitatively different from other types of approaches

in which weight-sharing is used to take advantage of the inherent symmetries of the prob-

lem, such as translational symmetry in images, as implemented in convolutional neural

networks9,10. Instead, the freezing of weights in the INN achieves adaptability of the network

to a wide range of structures and compositions with little added complexity of the model,

while the inherent symmetries (translational, rotational and permutational symmetries of

the atomic structures) are captured by the Behler-Parrinello type of symmetry functions7.

We describe both the construction of the INN model and its application to simulate

the diffusion of Li and Si atoms in the alloy at various compositions, which is of central

importance in understanding the mechanisms of lithiation/de-lithiation. We find that our
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INN model leads to significant improvements both in reducing the errors when the network

is applied to validation data, and in reproducing experimental results for the complicated

process of diffusion in the amorphous Li-Si alloy.

II. MODEL CONSTRUCTION AND VALIDATION

To provide a direct comparison between the present model and potentials obtained with

the conventional ANN method11,12, we constructed two different Li-Si potentials one with

the INN method and the other with the ANN method. Since the SNN method relies on the

ANN approach for the construction of pure element NNs, it is subject to the same limitations

as ANN at the level of pure-element network construction. Therefore, hereafter we compare

our INN method with the ANN approach, which has limitations in predictions even for

pure Si. In general, the development of the neural network (NN) potential models have two

components: the database to be used for the training and validation of the potential, the

procedure for building the architecture of the NN, and the execution of the training and

validation. We describe those next, separately.

A. Database for training and validation

Our database consists of four subsets: (i) the Si crystal (c-Si), (ii) the Li crystal (c-Li),

(iii) the combined amorphous Si (a-Si) and c-Si bulk structures, and (iv) the amorphous Li-Si

(a-LiSi) at various concentrations. For the pure element data sets, we included the cubic-

diamond (cd) and tetrahedrally-bonded amorphous structures of Si and the fcc, bcc and

R9 crystal phases of Li. In addition, we included lattice distortions (contraction, expansion

and shearing) for the cd Si and bcc Li structures. For the a-Li-Si dataset, we used the

a-LixSi alloy structures that were reported in our earlier work13, with 0 ≤ x ≤ 4.25 in

increments ∆x = 0.125. These structures were generated using density functional theory

(DFT) calculations to obtain the energy optimized geometry at zero temperature. We also

included structures generated by molecular dynamics (MD) simulations for c-Si, a-Si, bcc Li

and a-Li-Si, at temperatures ranging from 300 K to 800 K at 100 K intervals; these extend

the range to configurations away from equilibrium. At each temperature the sampling is

performed with NVT runs after the structures are thermalized in NPT simulations for 1 ps
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to determine their zero-pressure configurations at the desired temperature. The geometry

optimizations and MD simulations were performed using DFT calculations with the SIESTA

code14. To reduce the number of similar structures in the database, we thinned the training

data set by analyzing the cross-correlation of atomic positions between consecutive steps in

MD simulations and relaxation calculations. Specifically, we selected one out of every 100

steps in the MD simulations and one out of every 1000 steps (including the last step) in the

relaxations; this procedure left 9× 103 structures in the database, from the original 48× 103

structures.

B. Construction of NNs in ANN and INN Potentials

The total energy in NN potentials is given by E =
∑

iEi, where, the sum is over the

number of atoms in the system and the atomic energy Ei of atom i is defined for each type

of atom. For the NN in our potential, we employ the successful model architecture that has

been used in many previous studies7,11,15–20. The NN architecture represents the contribution

of atomic energies with respect to input descriptors extracted from the Cartesian coordinates

of the neighboring atoms in the local chemical environment of each atom. To extract the

respective structural characteristics for the local environment of each atom, we used radial

and angular symmetry functions11 that are given by

G1
i =

∑
j 6=i

eηR
2
ijfc (Rij) (1)

G2
i =

∑
j,k 6=i

21−ξ (1 + λ cos θijk)
ξ eζ(R

2
ij+R

2
ik+R

2
jk)

× fc (Rij) fc (Rik) fc (Rjk) (2)

with the sumations running over the neighbors j and k of atom i, θijk = cos−1 (RijRjk/RijRjk)

and Rij = |Rij|; η, ζ, λ, ξ are the parameters that define the symmetry functions, Rij is the

distance between atom i and atom j, and fc(R) is the cutoff function defined as

fc(R) =


1
2

[
cos
(
πR
Rc

)
+ 1
]

for Rij ≤ Rc

0 for Rij > Rc,
(3)

with Rc = 6.0 Å the cutoff radius (see Supplemental Material21 for the parameter val-

ues). For simplicity in notation, we define the following labels for the two-body (X–Y) and
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three-body (X–Y–Z) descriptors to the input layer (input vector): D(Si)=(X–Si, X–Si–Si),

D(Li)=(X–Li, X–Li–Li), and D(LiSi) for the rest of the contributions, for each X element in

the system, (X=Si, Li). We preprocess the input in three steps: (i) We shift each descriptor

to have zero mean; (ii) we then apply principal component analysis (PCA) to decorrelate

the different descriptors; (iii) finally, we scale each descriptor to have a standard deviation

of one. Explicitly, the input to INN, the set of symmetry functions Gk,j, is standardized and

transformed using PCA to the set Pk,j:

Pk,j =
Gk,jW

T − tA
tS

. (4)

where W is the covariant matrix of the linear transformation in PCA, tA and tS are the

average and standard deviation of the elements in the transformed vectors of the symmetry

functions.

Since our preprocessing stage had the extra step of PCA projection, a step that is not

used in previous applications of this NN architecture, we present here the derivation of

forces. The force Fi,α acting on atom i is given by the partial derivative of the total energy

with respect to the Cartesian coordinates Ri,α of the atom, where α = x, y, or z. In the

INN potential, the total energy E is calculated as a sum over all atomic energies Ek. This

gives the expression for the force Fi,α:

Fi,α = − ∂E

∂Ri,α

= −
N∑
k=1

∂Ek
∂Ri,α

(5)

= −
N∑
k=1

Mk∑
j=1

∂Ek
∂Gk,j

∂Gk,j

∂Ri,α

(6)

= −
N∑
k=1

Mk∑
j=1

∂Ek
∂Pk,j

∂Pk,j
∂Gk,j

∂Gk,j

∂Ri,α

. (7)

an expression in which all derivatives can be calculated analytically. In particular, the

derivatives ∂Ek/∂Pk,j are calculated using the recurrence relation of gradients in the back-

ward propagation algorithm22 without propagating loss function and only using the gradient

update routines as it is implemented in Torch723.

For the construction of the INN potential that represents the Si atoms, we used the

following method, which is illustrated schematically in Fig. 1.

(a) In the first stage, a subset of nodes N1 is trained using the subsets of the training

database that consists of only c-Si. Since there is no contribution from Li interactions to

6



j

8

20

20

8
20

E

SiïSiïSi

SiïSi

SiïLi

SiïLiïSi

SiïLiïLi

N N

input hiddenï1 hiddenï2

output

ANN model

b

j

8

20

20

8
20

N2

N3

N1

N2

N3

N1
a

a

b
SiïSiïSi

SiïSi

SiïLi

SiïLiïSi

SiïLiïLi c
c c

input hiddenï1 hiddenï2

INN model

output

E

a

b

FIG. 1. Schematic representations of the construction of the ANN and INN models for Si: the

descriptors consist of radial Si-X terms (circles) and angular Si–X–Y terms (inverted triangles),

where X, Y = Si or Li; the ANN model contains N nodes in each of the two hidden layers all

trained simultaneously, whereas the INN model contains N1 nodes for c-Si, N2 nodes for a-Si, and

N3 nodes for the Si-Li interactions, trained in three separate stages, labeled a (red arrows), b (green

arrows) , c (cyan arrows).

descriptors in the c-Si training database, the descriptors D(Li) and D(LiSi) contain zero

values, which lead to fixed values in the preconditioned input vector. This allows us to keep

the D(Li) and D(LiSi) fixed while the weights of the Si NN are optimized. This stage makes

it feasible to build a specialized Si sub-network that can capture the structure of the crystal

phase.

(b) In the second stage, the weights of c-Si NN with N1 nodes are implanted into a NN with

additional N2 nodes and the training is carried out for the combined c-Si and a-Si training

database. In this stage, all the weights between input, N1 nodes and output, as well as the

D(Li) and D(LiSi) inputs are fixed while only the weights from/to the N2 additional nodes

are optimized. This ensures that the implanted network for Si-Si interactions generates the

correct energy output for the c-Si subset, as well as that for the a-Si subset of structures.

(c) In the third and final stage, the Si-Si and Si-Li sub-networks are combined into a single
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NN with N3 additional nodes to capture the interactions between Li and Si. The same

procedure as in the second stage is applied in the last stage, to prevent any change for the

weights of the implanted Si-Si nodes (N1 +N2), and only the weights from/to the additional

N3 nodes are optimized.

In a similar fashion, we constructed the network that represents the Li atoms. Specifically,

the pure Li sub-network is trained using the c-Li data set with D(Si) and D(LiSi) fixed during

the optimization in stage (a) and is combined with the Li-Si sub-network in stage (c), with

only the N3 additional nodes added to the initial N1 nodes. Since the pure Li part of the

training database has only crystal phases, the Li sub-network is constructed only in two,

rather than three stages.

We also considered whether or not there is a need to divide the a-Li-Si dataset into subsets,

and then train the corresponding NNs for implanting them into the final Li-Si INN potential.

To determine this, we generated three subsets of different Li concentrations, low (x < 0.75),

medium (0.75 < x < 1.5) and high (x > 1.5). Upon training of these intermediate NNs

using Si and Li implants, we found that the number of additional nodes needed for the

final training step of the INN does not depend on the Li concentration because it is always

comparable to N3 of the third stage.

C. Training and validation of ANN and INN potentials

To generate the training database, we selected 85% of the structures and their DFT

energies randomly from the thinned database. The rest of the data are reserved as the

validation set for choosing hyper-parameters like the number of hidden layers and nodes.

We additionally create an independent validation set from MD simulations of a-Si at 1200 K.

For a fair comparison, we applied PCA transformations, Eq. (4), and used the same thinned

database to train both ANN and INN models. The main differences between the two models

is the construction of the INN potential in three stages, as opposed to the construction of

the ANN potential which is done in the conventional way, in a one-shot fitting process of the

weights, as illustrated in Fig. 1. We found that for the ANN potential, two hidden layers

and N = 30 nodes in each layer gives the best results, that is, the lowest root-mean-square

error (RMSE) for the validation set.

All NNs in this study are trained using the Torch7 NN package23 and tests of the Li-Si
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FIG. 2. The errors between the energy predictions of INN and the results of DFT calculations for

Li, Si and its amorphous alloys. The colored areas show the Li concentration change where the

lightest color does not include any Li and darkest color indicate pure Li structures. While blue

dots show the the error at structures in the training database, green dots show validation data

errors.

potentials are carried out using LAMMPS program24 through our own implementation of

the potential within the Knowledgeable Interatomic Models (KIM) API25. Similar to the

ANN model, the choice of two hidden layers gives the best results. We have tested several

choices of the number of nodes for each sub-network; we found that the best INN Li-Si

potential is obtained with (N1, N2, N3) = (14, 12, 6) for the Si INN and (N1, N3) = (10, 6)

for the Li INN. Comparing the INN and ANN methods, we find that the the total number

of nodes per hidden layer is lower for INN (48 nodes, 32 for Si and 16 for Li) than for ANN

(60 nodes, 30 for Si and 30 for Li). In this sense, the ANN may be viewed as a special case

of INN, in which none of the pre-trained NNs are implanted into the NN architecture. For

the present model, this would correspond to N3 = 30 and N1 = N2 = 0, see Fig 1.

The difference between INN predictions and DFT results for the energy per atom of the

various structures and compositions used in the training set are presented in Fig. 2: 94% of

the energy values predicted by the INN are within 5 meV/atom of the DFT results, where

more than 83% of the structures are amorphous in the thinned database. This level of

accuracy matches or exceeds the performance of other binary ANN potentials developed for

amorphous structures26. As far as the ANN accuracy is concerned, the same level is reached

for the training set, that is, 94% of the energy values are within 5 meV/atom of DFT results,
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FIG. 3. Root-mean-square errors (in eV/atom) for the total energies of Li-Si structures, from the

ANN model (blue curves) and the INN model (red curves), for the training and validation data.

whereas for the validation dataset the ANN predictions have significantly higher error (see

Supplemental Material21 for ANN predictions.)

A crucial consideration in producing NN-based potentials is to avoid overfitting. To

explore this issue, we show in Fig. 3 the root-mean-squared error (RMSE) of both models for

the training and validation data sets, as a function of the epoch number. While the RMSE

for the two models is quite similar for the training data, the behavior for the validation

data is strikingly different. A common method for identifying overfitting is to monitor the

error of the validation set; non-monotonic behavior of this error signals overfitting. This

is indeed the case for the ANN potential, with the error in the validation data decreasing

up to a certain epoch number but then increasing. By contrast, the error in the validation

data is a monotonically decreasing function of the epoch number for the INN potential. The

oscillations in the RMSE of the validation dataset for the ANN model are considerably larger

than for the INN model, and can be reduced with a smaller learning rate (see Supplemental

Material21). However, we found that every attempt at training the ANN potential suffers

from overfitting when our thinned database is used. One can use the so called “early

stopping” method15,16, in which the training stops when the error in the validation data starts

to increasing, but there is no guarantee that this trick will eliminate overfitting. Indeed, the

much larger fluctuations in the error associated with the validation data is a sign that the

ANN potential has inherent limitations and cannot avoid overfitting. While ANN models

have been reported to work well for many other materials using standard optimization
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of crystalline bulk Si, in eV/atom relative to the equilibrium energy E0, as a function of volume,

normalized by the equilibrium volume V0; the DFT energies are shown as black circles.

approaches, the results for the Li-Si system show that this method leads to overfitting since

the diversity of the structures, in geometric configurations and concentration of different

elements, is significantly increased. We cannot rule out the existence of hyperparameters

that would improve the performance of the ANN method; instead, we found that the INN

approached developed here is straightforward and leads to significantly less overfitting for

the set of hyperparameters we have tried. In fact, recent work in deep learning methods

indicates that a model’s superiority may fundamentally arise from how easy it is to train,

that is, how easy it is to find a set of hyperparameters that work well27.

The oscillations of the error in the validation data is much smaller for the INN, and

comparable to those in error of the training data. In addition, the average error for the

validation data is smaller for the INN potential than that for the ANN potential for the entire

range of epochs. Finally, we note that the RMSE on the validation set is 4.5 meV/atom

and 6.9 meV/atom for the INN and ANN potentials, respectively. The maximum error on

the validation set is 18 meV/atom for the INN potential, and 33 meV/atom for the ANN

potential.

A signature of overfitting is that potential shows unphysical variations in important

quantities. Indeed, as shown in Fig. 4, the total energy of the c-Si phase as a function

of volume has unphysical variation near the minimum for the ANN potential; this is clear

indication of overfitting for the ANN potential. In contrast to this, the INN potential shows

smooth behavior comparable to that of the DFT results. A measure of the similarity of the
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TABLE I. Lattice constants a0, bulk modulus B (calculated using Birch-Murnaghan equation of

state28) and elastic constants, C11, C12, C44 of the bulk phases of Si (cubic diamond ) and Li

(bcc), as obtained with the ANN and the INN potentials, and comparison to the results of DFT

calculations and experiment. The numbers in parentheses for B are obtained from finite differences

near the minimum of the total-energy curve.

Si Li

ANN INN DFT Exp. ANN INN DFT Exp.

a0 (Å) 5.55 5.51 5.51 5.43 3.60 3.65 3.65 3.49

B (GPa) 81.4 82.3 82.7 97.6 4.5 11.4 10.8 11.0

(169.5) (72.4) (86.3) (30.6) (11.4) (14.4)

C11 (GPa) 166.6 83.3 149.0 166.0 40.5 12.5 16.7 13.7

C12 (GPa) 170.9 67.0 54.9 64.0 25.6 10.8 13.2 11.5

C44 (GPa) 37.4 76.2 99.2 79.0 11.9 6.0 7.3 6.9

INN and DFT results is the value of the bulk modulus B, which is the second derivative of

the energy with respect to the volume, see Table I). For a fair comparison, we used the ANN

potential determined after 7650 steps of training (“early stopping”), at which point the error

in the validation data is smallest. For the INN potential, we used the form obtained after

30000 training steps, since the decrease in the error for the validation data is monotonic.

We expect that if we had not used the early stopping method for the ANN potential the

comparison of the total energy as a function of volume would likely be even more unfavorable

than what is shown in Fig. 4.

As another measure of the high accuracy of the INN potential, we report in Table I

the predictions for the lattice constants and bulk modulus and elastic constants for the c-Si

and c-Li phases, and the corresponding DFT and experimental values. To calculate the bulk

modulus, we used the Birch-Murnaghan equation of state (EOS)28. For the elastic constants,

we apply small displacements to the crystal structures as implemented in LAMMPS and use

the Cauchy stress tensor with the applied strain to determine C11, C12 and C44. For the DFT

calculations, we use the same methods with the SIESTA code. We also present the bulk

modulus that is calculated using the finite difference method for comparison in Table I. The

difference in lattice constants between INN predictions and DFT calculations is less than

0.1%. Our results for the bulk modulus and elastic constants are overall in good agreement
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FIG. 5. Features of the crystalline and amorphous bulk phases of Si at 300 K, and of the liquid

phase at 2000 K, as obtained from the INN potential.

with the DFT and experimental results for both elements29,30. The only exception is the

value of C11 of Si, for which the INN potential predicts a lower value than the DFT and

experimental values. The values obtained for the bulk modulus and elastic constants with

the ANN potential are significantly different from both the DFT and experimental values.

The main reason for this is that the training in the ANN method can lead to overfitting

as discussed above, which produces unrealistic results when calculating derivatives of the

energy, as is involved in the calculation of the bulk modulus and elastic constants.

III. APPLICATIONS

We next employ the INN potential to explore the behavior of various phases and processes

of the system of interest. Specifically, we consider the structure of the crystalline and

amorphous phases of Si at finite temperature (300 K), the structure of the liquid at 2000 K,

the formation energy of various Li-Si structures, and the diffusion coefficient for Si and Li

atoms in the lithiated amorphous structures. We emphasize that the structure and properties

of these phases and processes are not part of the training data set, so in this sense these can

be considered predictions of the INN potential that can be compared to either first-principles

calculations or to experimental results, as appropriate.

A common check of effective potentials is how well they reproduce the properties of the

system at finite temperatures, especially the structures of the liquid and amorphous phases
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representative atomic structures (yellow spheres: Si atoms, purple spheres: Li atoms).

after quenching. For a comprehensive analysis of the predictions of the Li-Si INN potential,

we conduct a series of MD simulations. The liquid phase at 2000 K, the crystalline and

amorphous phases at 300 K are obtained with the following procedure: First, a supercell

with 1728 Si atoms in the cd phase is generated and relaxed to its zero pressure configuration,

which is heated to 2000 K in 30 ps using the NPT ensemble. The amorphous phase of Si

is then obtained by quenching the system down to room temperature in 40 ps. For all

phases of Si, the radial distribution function (RDF) is calculated by taking an average

over an additional 3 ps of simulation using the NVT ensemble. We find that the INN

potential, in addition to describing well the solid crystal and amorphous phases of Si, gives

a good description of the liquid phase and the procedure of quenching. In Fig. 5 we

show the calculated RDF of the liquid phase and compare it to those of the cd and a-Si

phases. The liquid and amorphous RDF curves are in good agreement with those reported

in experiments31 and DFT calculations13. As mentioned, the training database does not

include any information on the liquid phase of Si nor any information for the structure at

temperature above 800 K.

A simple application of the Li-Si INN model is the formation energy of lithiated a-Si struc-

tures. We calculated the formation energy of structures with Li content up to a-Li0.75Si. As

was done for the calculation of the formation energy within the DFT approach13, we add
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FIG. 7. Diffusion coefficients of Li and Si elements in a-Li-Si alloys. The results of present INN

Li-Si potential is compared with the results of MEAM in Ref.34, DFT calculations in Ref.35 and

the experimental coefficients taken from Ref.36.

Li atoms into pure a-Si structure that is obtained from DFT calculations. For the sake of

direct comparison between DFT results and ANN/INN predictions, we use a periodic unit

cell containing 64 Si atoms initially, as was the case for the DFT calculations. Once the

total energies of the structures are obtained, the formation energies of a-LixSi per Si atom is

calculated in the usual manner13. The procedure is repeated up to 5 times to obtain reason-

able average formation energies. We compare our results with the energies determined from

ab-initio calculations and ANN potential in Fig. 6. While the results from both potentials

give lower formation energies than the DFT calculations, the values from the INN potential

are closer to the DFT results than those of the ANN potential. The slope of the formation

energy (Ef ) curve vs. the Li content x is an important quantity because it determines the

voltage (V ) during the lithiation cycle13, which is given by V (x) = −∂Ef/∂x32. For a com-

parison between the measured voltages and our results, we take the averages of the slopes

between x =0.2 and 0.75, for the DFT, INN and ANN curves; the values we find are 0.31,

0.32, and 0.20 V, respectively. While the DFT and INN potential results are reasonable

estimates for the average voltage compared to the experimental value32,33, 0.3 V, the ANN

potential gives a substantially lower voltage which is out of the range of the experimental

data in the selected region of x.
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A more challenging application of the INN Li-Si potential is to address directly issues

related to the performance of actual anodes such as the dynamics of the lithiation process.

We carried-out MD simulations at room temperature to determine the diffusion coefficients

of Si and Li atoms in the a-LixSi alloys. We use a timestep of 0.1 fs which ensures a stable

total energy with a drift of less than 5% over timescales of 10 ns. Starting from the a-LixSi

structures at various concentrations as obtained from DFT calculations13, we scaled the

periodic cells from the original size to a 2× 2× 2 supercell, corresponding to 896 atoms for

x = 0.75, and 2688 atoms for x = 4.25.

In the larger cells, we heat the samples to 300 K over a time of 1 ps, and then perform MD

simulations for 2 ps to reduce the order due to repeating the original structures as periodic

images. We analyzed the RDF of Si and Li atoms in the MD simulations and found that

the INN potential maintains the basic character of the a-Li-Si phases without long-range

order, and that Si bonds brake and re-form through the diffusion of Li atoms. We determine

the mean-square-displacement (MSD) of atoms in the MD simulations for times up to 40ps.

Fitting the late-time part of the MSD curves with a linear term in t, we obtain the diffusion

coefficients for 10 different concentrations of a-Li-Si alloys (see Supplemental Material21 for

RDF and MSD curves for x = 1.25, 2.5, 3.75 of a-LixSi). In Fig. 7, we show our results

for the diffusion coefficients of Si and Li atoms in the amorphous alloys, and compare with

results from DFT calculations35, simulations with the modified embedded atom method

(MEAM) potential34, and experiment36. The predictions from our INN potential close to

the experimental values36–38, within about one order of magnitude. This is a substantial

improvement over the other theoretical results, which differ from experiment by many orders

of magnitude. While our diffusion coefficients of Li are still higher than the experimental

values, the average of the diffusion coefficients is about 3.5 × 10−11 cm2/s, a value that

is in very good agreement with the average Li-ion diffusion coefficient, 2.6 × 10−11 cm2/s

measured using diffusion-induced NMR at 246 K39.

As a first step towards modeling diffusion dynamics of a-Li-Si, we study the dependence of

diffusion on the local atomistic structure for Li atoms using the INN potential. Previous work

has shown that the diffusion probabilities (PD) of individual atoms in disordered structures

depend crucially on the density of their neighbors at different distances40,41. Larger density

of neighbors at the first two peaks of the neighbor shells reduces PD, whereas larger density

of neighbors away from the peaks increases PD
42,43. In Fig. 8, we present PD for a Li atom
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FIG. 8. Logarithm of the probability PD of a Li atom to diffuse more than 1 Å in the next 200 fs

as a function of its number of neighbors, nnx, for x=Li (other Li neighbors), x=Si (Si neigbhors)

and x=Li+Si (either kind of neighbors). The data was taken from an MD simulation of a-Li3.75Si

at 300 K and the analysis was carried out over 261 diffusion events. The dashed lines are linear

fits to logPD.

FIG. 9. Atomic structure of a hard (top row) and soft (bottom row) site, each one viewed from

five different angles for better perspective. The atom at the center (black) is a Li atom, its nearest

neighbor Si (yellow) and Li (purple) atoms are shown linked to it by bonds, and the next neighbors

are shown unlinked.

in a-Li3.75Si, as a function of nnx, the number of nearest neighbors lithium (x=Li), silicon

(x=Si), and total (x=Li+Si). A neighbor is defined as being within the range of dnear and

dfar from the atom, where dnear = 2.2 Å for x=Li and 2.1 Å for x=Si, and dfar = 3.1 Å for

x=Li and 2.8 Å for x=Si. As seen in Fig. 8, increasing the number of neighbors reduces PD
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exponentially. In Fig. 9 we show examples of neighborhoods in which the Li atom is not

moving (referred to as a “hard spot”) and is moving (a “soft spot”), according to the criteria

specified in Fig. 8. The increased number of neighbors (both Li and Si) of the Li atom in

the hard spot, leads to decreased diffusivity. Further study is needed to understand how

the connection between the structure and dynamics lead to the lithiation and crystallization

rates observed in experiments.

IV. CONCLUSION

In the present work we developed a new approach to creating effective potentials for

systems containing elements that behave very differently in their respective bulk phases;

the system we studied here consists of Si, a prototypical covalently bonded solid, and Li, a

prototypical metal. The combined system is one of the interesting candidate materials for

anodes in high-energy density batteries. The novelty of the approach consists of training

parts of a neural network to represent the qualitatively different components of the system

(the Si and Li atomic structures) before implanting these parts into the larger network that

is trained to capture the energetics of the combined system; thus, we refer to the model

as the implanted neural network potential. This method of training the network in stages

avoids overfitting, which can hamper the performance of NN potentials. Our results show

that the INN potential for the Li-Si system can capture both the pure element phases and

amorphous mixed phases. We calculate the diffusion coefficients for Li and Si atoms by

performing MD simulations with the INN potential, and find good agreement with available

experimental measurements.

Our approach has two distinct advantages over conventional ways of fitting potentials.

First, the use of a neural network makes the fitting of complex systems straightforward,

without the limitations imposed by having to choose specific functional forms. Second, the

idea of pre-training NNs for selective datasets and then implanting these parts of the net-

work to represent the qualitatively different components provides a flexibility that is missing

from both full-network and element-oriented stratified network trainings. This flexibility is

essential in capturing the behavior of systems that are composed of more than one elements

and in which each element behaves in a qualitatively different manner. It also helps avoid

overfitting, because at each neuron implanting stage there are only few weights to be opti-
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mized for the new dataset which greatly reduces the complexity of the optimization problem

in NN’s with large number of input and hidden nodes. For example, only the weights for N3

nodes per hidden layer in the Li-Si NN need to be fitted to construct the full Li-Si potential

at the final stage, and the complexity of this optimization problem is reduced from N3 = 30

in the ANN model to N3 = 6 in INN model. By reducing the complexity of the fitting

problem, we significantly improved the trainability of the neural network potential with the

INN approach; this includes the ease of finding good hyperparameters as well as trainability

of the neural network itself. It is plausible that a different set of hyperparameters could

improve the accuracy of either model.

The approach presented here is readily generalizable to systems with more than two

elements, subject to the additional cost incurred by the training of subnetworks. The number

of subnetworks that need to be trained is (2nel − 1), where nel is the number of elements,

assuming that each trained subnetwork can then be implanted in the full NN. For the INN

Li-Si potential, we would then have to train 22 − 1 = 3 subnetworks, for Li, Si and Si-

Li. However, in some cases the subnetworks may need to be subdivided further, as in the

case of Si in the present model, which was subdivided into the crystalline and amorphous

components to accommodate these two distinct bulk phases with different characteristics;

no subdivision was needed for the subnetwork of Li which has only crystalline bulk phases.

While the larger number of subnetworks adds to the computational cost of training, the

smaller size for each subnetwork in terms of number of nodes reduces this cost significantly,

as explained above.

Finally, any NN-based potential can be continuously improved by adding more data to

the training set and refitting the weights, without having to change the functional form. For

instance, one way to significantly improve the accuracy of the forces produced by the model

is to use the DFT calculated forces as part of the training set for a range of configurations;

we are currently investigating this type of approach.
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