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ABSTRACT 
Bridging topological state with conventional semiconductor platform offers an 
attractive route towards future spintronics and quantum device applications. Here, 
based on first principles and tight-binding calculations, we demonstrate the existence 
of topological states hosted by a two-dimensional (2D) metal alloy in Si surface, the 
BiAg/Si(111)-4×4 surface, which has already been synthesized experimentally. It 
exhibits a topological insulating state with an energy gap of 71 meV (~819 K) above 
the Fermi level and a topological metallic state with quasi-quantized conductance 
below the Fermi level. The underlying mechanism leading to the formation of such 
non-trivial states is revealed by analysis of the “charge-transfer” and “orbital-filtering” 
effect of Si substrate. A minimal effective tight-binding model is employed to reveal 
the formation mechanism of the topological states. Our finding opens new 
opportunities to detect topological states and measure its quantized conductance in a 
large family of 2D surface metal alloys, which have been or are to be grown on 
semiconductor substrates. 
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INTRODUCTION 
With the feature of quantized spin Hall conductance (SHC) [1,2], the topological 

states of two-dimensional (2D) materials were extensively studied due to their 
fundamental interest and potential applications ranging from spintronics to quantum 
computation. While the prediction of topological edge states has been well developed 
[3-5], to date only two systems of HgTe/CdTe and InAs/GaSb quantum well [6,7], 
have been confirmed with nontrivial edge states of quantized conductivity but having 
too small a band gap.  

Earlier studies have shown topological edge states of Bi on non-semiconducting 
substrates, such as Bi(111)/Bi2Te3 [8-10], Bi(110)/Graphite [11], and Bi(111)/Sb [12], 
but with unwanted hybridization between the overlayer topological states and 
substrate trivial states. To overcome this problem, an interesting idea was proposed to 
take advantage of the so-called “orbital-filtering” effect of substrate [13], so that 
topological state can be induced by depositing metal, such as Bi honeycomb lattice on 
semiconductor surface, such as Si [13], SiC [14] or Ge [15] surface, without 
hybridization. The resulting large non-trivial gap and the conductive edge state has 
been experimentally confirmed on SiC surface recently [14]. The topological edge 
state has also been theoretically predicted and experimentally confirmed in a 2D 
superconductor overlayer in FeSe/SrTiO3(001) [16], which offers an intriguing 
platform to study topological superconducting states. However, all these experiments 
are based on spectroscopy measurements without showing the quantized edge 
conductivity. The challenging is largely due to a lack of experimental samples with 
large single surface domain of a perfect metal overlayer. Therefore, the search for 2D 
topological states continues, especially bridging topological state with conventional 
semiconductor platform to realize topological states at high temperature is of great 
interest. 

Taking a known experimental example of BiAg alloy on Si(111)-4×4 surface (see 
Fig. 1a) [17], here we show that the BiAg/Si(111)-4×4 surface has four topologically 
non-trivial bands stemming from the pxy orbitals of Bi atoms, which are well 
decoupled from other states, attributed to the charge transfer and orbital-filtering 
effect of silicon substrate. A minimal effective tight binding (TB) model on a 
honeycomb lattice is employed to explain the existence of these topological states. 
Specifically, the topological insulating (TI) state above the Fermi level exhibits a SHC 
of -2×e/4π within the non-trivial gap of ~71 meV, while that of the topological 
metallic (TM) state below the Fermi level is mixed with trivial metallic states but still 
shows a finite width of quantized conductance plateau up to ~50 meV. Our findings 
suggest that the common 2D surface metal alloys on semiconductors provide a viable 
family of candidate materials for searching large gap topological states with robust 
quantized conductance plateau. 

 
METHOD AND COMPUTATIONAL DETAILS 

The electronic and topological properties of BiAg/Si(111)-4×4 surface were 
calculated using Vienna ab initio simulation pack (VASP) [18,19] and WANNIER90 
[20] within the framework of density functional theory (DFT). Generalized gradient 
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approximation in the form of Perdew-Burke-Ernzerhof [21] and 
projector-augmented-wave potentials with the energy cutoff of 500 eV [22] were 
respectively used for describing the electron-electron and electron-ion interactions. 
Structural optimizations were performed using a conjugate gradient method on a 
3×3×1 Monkhorst-Pack sampling until the remnant force on each atom was less than 
0.01 eV/Å, while a dense Gamma-centered sampling (6×6×1) is employed for charge 
density calculations and establishing the maximally localized Wannier functions 
(MLWFs). 

 
RESULTS AND DISCUSSION 

The top view of BiAg/Si(111)-4×4 surface is displayed in Fig. 1a, which is 

prepared by depositing about one monolayer Ag onto the mixed Si(111) α- 3 3× /β-

3 3× -Bi surface followed by annealing at ~250 °C [17]. One unit-cell of 

BiAg/Si(111)-4×4 surface has seven bismuth atoms and twenty silver atoms. Besides 
a single Bi atom located at T1 site, other Bi atoms form two triangles located over T4 
and H3 sites. Hence, we name the three types of bismuth as Bi@T1, Bi@T4, and 
Bi@H3, whose positions can be seen more clearly from Fig. S1 [23]. The Bi@T4 and 
Bi@H3 constructs a perfect Ruby lattice pattern [24], which is highlighted in Fig. 1a. 
The outmost Si atoms of the top bilayer can also be distinguished through the number 
of its nearest Bi or Ag atoms. 

Figure 1b shows the calculated electronic band structures of BiAg/Si(111)-4×4 
surface without considering spin-orbit coupling (SOC), and one clearly sees four 
bands near the Fermi level which are well decoupled from other bands. In addition to 
the quadratic points emerging at the Γ point, band crossing takes place along the path 
from Γ to M point, while no degeneracy (Dirac point) existing at K point. By plotting 
the charge density distribution of the four isolated bands in Fig. 1c, we conclude that 
these bands stem mainly from the pxy orbitals of Bi@T4 and Bi@H3, while the 
contributions from other atoms are almost negligible except the pz orbitals of the Si 

atoms with three nearest Ag atoms. Notably, the tiny different charge density 
isosurfaces of Bi@T4 and Bi@H3 imply that they are not exactly equivalent due to the 
substrate effect, which breaks the inversion symmetry so that no Dirac point forms 
between the two middle bands at K point. The absence of any electronic states from 
Ag atoms around the Fermi level can be attributed to the significant charge transfer 
from the BiAg alloy to silicon substrate, as shown in Fig. 1d. Furthermore, the 
increased electronic density at the interface indicates bond formation, particularly the 
formation of Bi-Si bonds that have pushed the pz orbital of Bi atoms away from the 
Fermi level. This in turn enables the isolation of pxy bands near the Fermi level to be 
well decoupled from other electronic sates. Such mechanism is similar to Bi 
honeycomb lattice on a semiconductor substrate [13]. To confirm this, we performed a 
computational experiment of calculating the band structure of isolated BiAg alloy 
without substrate (as a hypothetical model system), as shown in Fig. S2 [23]. In 
addition to the states arising from the Bi pxy orbitals, one can clearly see the metallic 
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states dominated by Ag atoms and pz orbital of Bi atoms around the Fermi level, 
which were removed by the “orbital-filtering” and “charge-transfer” effect of Si 
substrate. 

Taking the SOC into account, the degeneracy at quadratic points and band 
crossing points are lifted, with significant spin splitting in eight bands, as shown in 
Fig. 2a. We notice a large SOC energy gap of ~71 meV is opened up above the Fermi 
level, and new degenerate points (Dirac cone) are formed at the six corners of the first 
BZ. Here we should point out that the Dirac cone is not protected by symmetry since 
a weaker SOC strength will destroy it (Fig. S3) [23]. Actually, the gap closing at K 
point between the two middle bands is the critical points of phase transition that we 
will show below. The Fermi surface contour is plotted in Fig. 2b, which illustrates 
highly anisotropic properties, consistent with the anisotropic dispersions of the four 
isolated bands near the Fermi level. 

Spin polarization in x, y, and z direction ( ( ) ,  ( ) ,  ( )x y zs k s k s k
r r r

), defined as 

( ) ( ) ( )s k k kα αϕ σ ϕ=
r r r

, (α = x, y, z) [25], in the Fermi surface contour were 

calculated to show the spin texture in Fig. 2c. In addition to the nonzero spin 

polarization in x and y directions, ( )zs k
r

 has the same order of magnitude as 

/ ( )x ys k
r

 and hence cannot be neglected. Based on the Hamiltonian of extrinsic SOC 

ˆ ˆ( )SOCH V∝ ⋅ ∇ ×σ p , it is easy to show that the nonzero / ( )x ys k
r

 components stem 

from the out-of-plane potential energy gradient due to the breaking of inversion 
symmetry in a surface, while the out-of-plane spin polarization is induced by in-plane 
potential energy gradient contributed mainly by surface BiAg alloy (Fig. S4 [23]), in 
which the surrounding Ag atoms played a significant role. Considering the nonzero 

( )zs k
r

 is always accompanied by anisotropic Fermi surface contours without a 

perfect circular shape [26], one can understand that the surrounding Ag atoms have 
modified the dispersions of the four bands by affecting the electron hopping between 
the pxy orbitals of Bi@T4 and Bi@H3. 

In order to further reveal the above mechanism, we construct a minimal effective 
TB model by placing both of px and py orbitals on a honeycomb lattice (Fig. 3a), 
where the second-neighbor hopping parameters, t1 and γ, can be regarded as the 
electron hopping induced by the surrounding Ag atoms. The Hamiltonian is written as 
H=H0+HSOC and details can be found in the supplemental materials [23]. 
Diagonalizing the Hamiltonian of H0 in reciprocal space, we obtain four bands plotted 
in Fig. 3b, which show the exactly same features as the isolated four bands of 
BiAg/Si(111)-4×4 surface shown in Fig. 1b, including the quadratic point, bands 
crossing point, and the absence of the Dirac point resulted from the different onsite 
energies attained by the orbitals in the different sub-lattices. When considering 
intrinsic SOC [27, 28], all the degenerate points are lifted and new Dirac points 
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emerge at the six corners of first BZ (Fig. 3c), similar to the above DFT results. Then 
we examine the band evolution with respect to the decrease of the electron hopping 
parameters (t1, γ), to simulate the effect of decreasing the perturbations of surrounding 
Ag atoms, as plotted in Fig. S5a, S5b, and S5c [23]. One can clearly see that the four 
bands (Fig. 3c) gradually evolve into the well-known four topological bands 
composing of two Dirac bands sandwiched by two flat bands (Fig. 3d) [27]. This 
indicates that the perturbations of surrounding Ag atoms only distort the shape (i.e., 
dispersion) of Dirac and flat bands but without closing or reopening any gap, so that 
the topology of all four bands remains intact. Thus, the fours bands in Fig. 3c and 3d 
share the same topological property.  

Next we investigate the topological properties of BiAg/Si(111)-4×4 surface. We 
first confirm the existence of non-trivial topological edge states, which can be directly 
compared with the experimental results of spectroscopic techniques [8-12,14,16]. The 
plane-averaged charge density along z-axis (Fig. S6 [23]) indicates the formation of 
2D electron gas at the surface of silicon substrate. Hence a recursive strategy is 
employed to construct the edge Green’s function of semi-infinite lattice from MLWFs 
[29], which were established by defining the pxy orbitals on honeycomb lattice to 
generate the initial guess for the unitary transformations. The Wannier-interpolated 
band structure is plotted in Fig. 4a, which shows good agreement with the DFT bands 
(Fig. 2a). The local density of states (LDOS) calculated from the edge Green’s 
function are plotted in Fig. 4b. One can clearly see two topological Dirac-like edge 
states respectively located at the energy window above and below the Fermi level, 
indicating that some finite amount of n-doping or p-doping can turn the system into 
either a TI or a TM. Next, we calculated the topological invariants to confirm the 
non-triviality of bands. By means of time-reversal polarization [30], we track the 
largest gap between the adjusted Wannier Charge Centers (WCCs) [31]. Figure 4c 
shows the determination of the Z2 invariant with kx treated as the pumping parameter 
running from 0 to π for an effective 1D system. Kramers pairs form at kx = 0 and π, 
but not elsewhere. Each blue dot represents the center of the largest gap between the 
adjusted WCCs. We see that the gap center jumps down over one WCC, which is odd. 
Thus Z2 index is 1, indicating the non-triviality. 

Knowing the existence of topological states in BiAg/Si(111)-4×4 surface, we 
further studies the SHC as obtained from the so-called spin Chern number calculation 
[32] to characterize the robustness of transverse electrical transport property against 
temperature perturbations and trivial metallic states, where a wide and stable 
quantized conductance plateau is desired. The definition of spin Chern number is 

21 ( )
2

s
s nk n

nBZ

C d k f k
π

= Ω∑∫
r r

 with the Fermi distribution function of fnk and the spin 

Berry curvature of 2( ) 2 Im
( )

nk x mk mk y nks
n

m n mk nk

j v
k

ψ ψ ψ ψ
ε ε≠

Ω = −
−∑

r
, here ψnk is the 

eigenstate of eigenvalue εnk of band n, jx is the spin-velocity operator defined as (szvx 
+ vxsz)/2, sz and νx/y is the spin operator and the velocity operator, respectively. Figure 
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4d shows the calculated SHC ( 2
4

SHC
xy s

eCσ
π

= × ) as a function of the electron filling. 

The quantized value of -2×e/4π within the SOC gap above the Fermi level indicates 
the characteristic transport property of quantum spin Hall (QSH) insulator, which is 
robust against finite perturbations because of a large non-trivial bulk gap (~71 meV) 
that cannot be easily closed. Moreover, because the non-trivial Dirac edge states are 
well isolated from other trivial metallic states below the Fermi level (see Fig. 4b), the 
TM state also shows a quasi-quantized feature with a width of conductance plateau up 
to ~50 meV, indicating certain degree of robustness against trivial metallic states 
[33,34]. 

The robust plateau of the SHC indicates a promising perspective for 
experimentally measuring the quantized conductivity of non-trivial edge states in 
BiAg/Si(111)-4×4 surface, similar to that observed in HgTe/CdTe and InAs/GaSb 
quantum well [6,7], but with large energy gap. The well-developed doping technology 
based on semiconducting substrates, such as gating that can realize carrier doping 
with the concentration ranging from 1012 to 1014 cm-2 [35-37], can be taken advantage 
of to include system with non-intrinsic topological states.  

Specifically, for transport experiments and future device application, one needs to 
dope one electron/hole per unit-cell (doping concentration: 4.83×1013 cm-2) to move 
the Fermi level up/down to the energy range of non-trivial states. Given that the 
BiAg/Si(111)-4×4 surface is composed of 2D monolayer of BiAg alloy and 
semiconducting substrate, standard gating technology should be easily applicable to 
dope this system. Both back gate (Vb) and top gate (Vt) are feasible to reach the 
desired doping level of ~1013 cm-2, as shown in Fig.5a and 5b. This same method has 
been successfully used to measure the conductance of QSH states in HgTe/CdTe 
quantum wells, in which the carrier concentration was tuned from n- to p-type 
through applying an external gate voltage [6]. Additionally, we would like to 
discussing other possible doping strategy that is substituting the atom of host material 
itself, which has been found effective for Bi2Te3 [38], Bi2Se3 [39], and Bi2Te2Se [40]. 
Phosphorus/boron substituting Si atom of substrate provides a feasible method of 
realizing doping because they are well-established industrial technologies [41-43]. 
Moreover, we below that substituting Bi@T1 with group VI/IV elements can also 
realize electron/hole doping without disturbing the topological property of 
BiAg/Si(111)-4×4 surface. The feasibility of such method is based on previous orbital 
analysis. As we discussed above, the pxy orbitals of Bi@T4 and Bi@H3 contribute 
mainly to the four non-trivial bands near Fermi level, while Bi@T1 and other atoms 
have little contributions. Taking tellurium (Te) as an example, our calculations show 
that Te atom prefers to substituting Bi@T1 than Bi@T4 and Bi@H3 by about 91.8 and 
69.6 meV/unit-cell, respectively. The atomic structure of the BiAg/Si(111)-4×4 
surface with Bi@T1 being substituted by Te atom is shown in Fig. S7 [23]. Te atom 
plays the role of electron doping and moves the Fermi level up to the energy gap of TI 
state successfully (Fig. 5c), while maintaining the nontrivial topology as characterized 
by the Dirac-like edge states (Fig. 5d). SHC calculation (Fig. 5e) also confirms the 
robust transport property of the topological state against atomic substitution. 
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We note that the system we explore here represents a 2D metal alloy of BiAg on 
Si(111)-4×4 surface, which is different from that of growing a metal overlayer such as 

Bi on Au-covered Si surface, such as Au/Si(111)- 3 3× surface [44] in several 

important aspects. In our system, Bi atoms sit in a Ruby lattice, while in that system it 
is a hexagonal or trigonal lattice. Consequently, the resulting topological band 
structures and underlying formation mechanism are also different. 
 
CONCLUSION 

We demonstrate from first-principle calculations that the already-synthesized 
BiAg/Si(111)-4×4 surface has robust topological nontrivial edge states rising from the 
pxy orbitals of Bi, which are well decoupled from the other electronic states due to 
charge transfer and bond formation between BiAg alloy and Si substrate. The 
topological property is confirmed by calculations of edge states, WCCs, spin Chern 
number, and analyzed with a minimal effective TB model. Electron doping will 
transform BiAg/Si(111)-4×4 surface into a 2D TI with a nontrivial gap of 71 meV, 
corresponding to a temperature up to 819 K for a QSH effect. Hole doping converts 
BiAg/Si(111)-4×4 surface into a 2D TM, where a finite quantized conductance 
plateau of ~50 meV is still observable because of the limited interference from the 
trivial metallic states. Therefore, BiAg/Si(111)-4×4 surface provides a promising 
material platform for detecting nontrivial topological edge states and investigating its 
exotic transport properties, and we await future experiments to confirm our theoretical 
predictions. 
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Figures 

 
Figure 1. (Color online) (a) Schematic representation of BiAg/Si(111)-4×4 surface 
with the unit-cell indicated by a rhombus. Only the Si atoms of top bilayer were 
plotted for clarity. Bi@T4 and Bi@H3 are bonded together to highlight the Ruby 
lattice pattern. (b) Band structure of BiAg/Si(111)-4×4 surface without considering 
SOC. The Fermi level is set to zero. (c) The charge density distribution of the four 
isolated bands at all the K points sampled in BZ. (d) Illustration of charge transfer 
between the BiAg alloy and the silicon substrate, which is calculated by subtracting 
the charge density of freestanding BiAg alloy and surface-exposed silicon substrate 
from the total charge density of BiAg/Si(111)-4×4 surface. The yellow (blue) 
isosurfaces indicate the increase (decrease) of electronic density. 
 
 

 
Figure 2. (Color online) (a) SOC included band structure and (b) Fermi surface 
contour of BiAg/Si(111)-4×4 surface. The Fermi surface contour formed by the Dirac 
cone near the Fermi level was very small and hence not plotted. (c) The spin 

polarization ( ) ,  ( ) ,  ( )x y zs k s k s k
r r r

 at the Fermi surface contour. Red (green) 

color represents parallel (anti-parallel) to the projected direction of x, y, and z, 
respectively. 
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Figure 3. (Color online) (a) Schematic of the pxy orbitals TB model on honeycomb 
lattice with the illustrations of neighbor hopping (t0

ppσ, t0
ppπ) and second-neighbor 

hopping (t1, γ). λ indicates the intrinsic SOC strength between px and py orbitals. εA 
and εB are the onsite energy of the pxy orbitals on different sub-lattice. (b, c) Band 
dispersions of the TB model (b) without and (c) with considering SOC. (d) The 
typical four topological bands evolved from the bands in figure (c) by removing the 
perturbations of surrounding Ag atoms away. 

 
 

 
Figure 4. (Color online) (a) The Wannier-interpolated band structure and (b) the 
semi-infinite edge states of BiAg/Si(111)-4×4 surface with considering SOC. (c) 
Evolutions of WCCs versus kx at the nontrivial gap above the Fermi level. Blue dots 
mark the center of the largest gap between adjusted WCCs. (d) The SHC as a 
function of electron filling. 
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Figure 5. (Color online) A schematic illustration of the experimental setup for 
realizing electron/hole doping by using (a) back gate (Vb) and (b) top gate (Vt) voltage. 
(c) Band structure, (d) semi-infinite edge states, and (e) calculated SHC of 
BiAg/Si(111)-4×4 surface with Bi@T1 being substituted by Te atom. The Fermi level 
is set at the middle of non-trivial gap. 

 

 


