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Resonantly enhanced Raman scattering in dielectric nanostructures has been recently proven to
be an efficient tool for nanothermometry and for the experimental determination of their mode-
composition. In this paper, we develop a rigorous analytical theory based on the Green’s function
approach to calculate the Raman emission from crystalline high-index dielectric nanoparticles. As
an example, we consider silicon nanoparticles which have a strong Raman response due to active
optical phonon modes. We relate enhancement of Raman signal emission to Purcell effect due to
the excitation of Mie modes inside the nanoparticles. We also employ our numerical approach to
calculate inelastic Raman emission in more sophisticated geometries, which do not allow a straight-
forward analytical form of the Green’s function. The Raman response from a silicon nanodisk has
been analyzed with the proposed method, and the contribution of various Mie modes has been
revealed.

I. INTRODUCTION

Non-plasmonic nanostructures made from high-index
dielectrics and semiconductors have recently attracted a
great interest, owing to their low-loss optical response
and electric and magnetic Mie resonances in the visi-
ble spectrum range1–4. Such nanostructures have re-
cently revealed many features, which previously were
available only for their plasmonic counterparts. Exam-
ples include single-molecule sensing5,6, efficient harmonic
generation7–9, and, among others, photothermal activ-
ity10. This progress has stimulated the development of
all-dielectric photonic devices, including nanoantennas,
metasurfaces and optical interconnects1,3,4. However,
plasmonic structures have a higher level of local electric
field enhancement due to the resonant excitation of local-
ized surface modes, and are actively used for enhancing
the Raman signal from external sources, e.g., molecules
or nanocrystals11–14. In stark contrast with metal, non-
plasmonic materials often support their own internal Ra-
man response, which – as proven – can be exploited as
an additional degree of freedom for optical characteriza-
tion15–17.
Semiconductors, which are often considered the main

relevant materials for all-dielectric photonics18 have
strong inherent Raman response due to their crystalline
lattice structure. In particular, crystalline silicon (Si) has
a sharp Raman line around 520 cm−119, caused by the in-
teraction of light with optical phonons. Recently, it has
been experimentally demonstrated 17 that this Raman
response can be resonantly enhanced through the excita-
tion of Mie resonances inherent to non-plasmonic nanos-
tructures. In particular, this has allowed for developing
efficient nanothermometry10 based on the Raman emis-
sion from high-index dielectric nanoparticles. Neverthe-
less, the proper theoretical approach for the description
of the Raman emission from resonant Mie nanostructures

has not been established yet.
In this paper, we develop a rigorous analytical theory

based on the Green’s function approach for the calcula-
tion of Raman emission from crystalline high-index di-
electric nanoparticles. We rigorously show that Raman
scattering in silicon nanoresonators is enhanced by the
Purcell effect associated with the resonant excitation of
Mie modes. This result fits well with recent studies of the
Purcell enhancement in Mie-resonators20–22. The paper
is organized as follows: In Section II we delineate the
general theoretical approach for the description of the
Raman emission from localized Raman sources based on
the Green’s function approach. In Section III we apply
the proposed method to calculate the Raman emission
intensity from Si nanoparticles and derive the analyti-
cal expression for Raman emission intensity at the low-
est magnetic dipole resonance. Moreover, we discuss the
effect of higher order Mie modes excitation. Here we
utilize commercial packages for simulation of the Raman
emission, which shows a consistent agreement with the
analytical results. In Section IV we apply the proposed
method for numerical calculation of the Raman emission
for the Si nanodisk, whose geometry does not allow the
simple analytical Green’s function approach. We com-
ment on the influence of different resonant modes of the
nanodisk on the intensity of Raman emission.

II. RAMAN SCATTERING FROM DIELECTRIC

NANOSTRUCTURES

In this section, we apply the Green’s function method
to develop a model of Raman signal enhancement from
a single spherical dielectric nanoparticle of radius a with
refractive index n =

√
ε; ε is the dielectric permittiv-

ity. In previous experimental articles, it has been shown
that the refractive index of bulk crystalline silicon works
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well for nanoparticles with sizes comparable to those we
analyze in this paper23–25. We assume that the Raman
signal is generated by inelastic scattering of a plane wave
impinging the nanoparticle along the z-axis direction,
as shown in Fig. 1. We fix the electric field polariza-
tion along the x-axis (E0||x). Although Raman scatter-
ing is a spontaneous quantum process, it allows a clas-
sical description, which we employ below. We charac-
terize the lattice vibrations by the phonon coordinate
Q(r, t) = q(r) exp(−iΩt) within the classical description
of Raman scattering based on the Raman polarizability
tensor26. The weak distortions of the crystalline lattice
results in the fluctuations of the polarizability tensor α̂ of
nanoparticle material allowing the following expansion:

αij(r, ω,Q) = α0
ij(r, ω) +

∑

k

∂αij(r, ω)

∂Qk

∣∣∣∣
Qk=0

Qk(r, t),

(1)

where αij are polarizability tensor components and Qk

are the components of phonon coordinates. The first
term here stands for the elastic scattering, while the sec-
ond one is responsible for the generation of Raman polar-
ization.We emphasize that the expansion (1) is written
for the local polarization of media related to optical ex-
citation of lattice oscillations. The typical scale of this
polarization is several interatomic distances, which al-
lows us to consider them as point sources. The approach
describing the Raman sources in the point dipole approx-
imation is discussed in27, and it has been successfully ap-
plied to model the Raman response of graphene layers28

In the spectral representation, the Raman polarization
can be described as

PR(r, ω, ωs) = α̂R(r, ω, ωs)E1(r, ω). (2)

Here αR
ij(r, ω, ωs) =

∑
k

∂α0
ij(r, ω)

∂qk

∣∣∣∣
qk=0

qk(r) is the

Raman tensor, and ωs = ω − Ω denotes that Eq. (2)
stands for the Stokes component of Raman scattering,
and E1(r, ω) is the electric field inside the nanoparticle.
The Raman tensor is fully defined by the structure of
phonon mode spectrum, hence the tensor is defined by
the symmetry of crystalline lattice as well as the spec-
trum of phonon modes. In general, there can be several
independent phonon modes in the crystal that have their
own phonon coordinates Qσ, where σ labels the phonon
mode number. Consequently, the Raman tensor α̂R,σ

should be defined for the each mode σ.

The total intensity of the Raman signal generated by
a particular phonon mode σ can be calculated by means

of the power flow integration over the entire sphere:

IσR =
1

2
Re

∮
[E(r, ωs)×H∗(r, ωs)]dS

=
1

4

∮
[E∗(r, ωs)×H(r, ωs) +E(r, ωs)×H∗(r, ωs)]dS.

(3)
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FIG. 1. Geometry of the problem. We consider elastic and
inelastic scattering of a plane wave by a Si spherical nanopar-
ticle of radius a = 110 nm in air. The incident field excites the
Raman polarization, which generates the Raman signal over
the nanoparticle volume. Components of Raman polarization
(or Raman dipole moment) are connected with incident field
components through the Raman tensor, which is determined
by the lattice symmetry properties.

Here E(r, ωs) and H(r, ωs) are the electric and magnetic
components of the field generated by the Raman polar-
ization Pσ

R(r) induced by the incident electric field E0.
The amplitudes of electric and magnetic fields can be
expressed via the Green’s function of the system:

E(r, ωs) = ω2
sµ0

∫

V

dV ′Ĝ(r, r′, ωs)P
σ
R(r

′), (4)

H(r, ωs) = −iωs

∫

V

dV ′
[
∇× Ĝ(r, r′, ωs)

]
Pσ

R(r
′), (5)

with µ0 being the free-space magnetic susceptibility. One
can exploit Eqs. (4) and (5) in order to rewrite the inten-
sity according to Eq. (6). With the help of the Green’s
function properties (see Appendix A), we simplify it even
further, obtaining Eq. (7):
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IσR =
ω3
sµ0

4i

∮

∂V,

∫∫

V ′,V ′′

dSdV ′dV ′′(Pσ∗
R (r′)Ĝ∗(r′, r)×∇× Ĝ(r, r′′)Pσ

R(r
′′)− Ĝ(r, r′′)Pσ

R(r
′′)×∇×Pσ∗

R (r′)Ĝ∗(r′, r)).

(6)

IσR =
ω3
sµ0

2




∫∫

V ′,V ′′

dV ′dV ′′Pσ∗
R (r′)Im

[
Ĝ(r′, r′′)

]
Pσ

R(r
′′)− k2s

∫∫∫

V ′,V ′′,V

dV ′dV ′′dV Im(ε)Pσ∗
R (r′)Ĝ∗(r′, r)Ĝ(r, r′′)Pσ

R(r
′′)


 .

(7)

Eq. (7) is obtained for a general type of radiative
sources distributed over the nanoparticle volume and de-
fined by the polarization vector Pσ

R(r). The Raman scat-
tering is almost a totally incoherent process, and the
coherence scale is defined by the phonon propagation
length, which is in the order of tens of nanometers for
typical materials28,29. This allows us to use the ideally
incoherent approximation and, thus, we assume that the
Raman sources are fully incoherent:

〈α̂σ′

R (r′, ω), α̂σ′′

R (r′′, ω)〉 =
vα̂σ′

R (r′, ω)α̂σ′′

R (r′′, ω)δσ′σ′′δ(r′ − r′′), (8)

where δσ′σ′′ is the Kronecker symbol and v is the nor-
malizing volume. Hence, the averaging over the phonon
correlations simplifies the expression in Eq. (7):

〈IσR〉 =
ω3
sµ0v

2

[∫
dV ′Pσ∗

R (r′)Im
[
Ĝ(r′, r′)

]
Pσ

R(r
′)

−k2s

∫∫

V ′,V

dV ′dV Im(ε)Pσ∗
R (r′)Ĝ∗(r′, r)Ĝ(r, r′)Pσ

R(r
′)


 .

(9)

Finally, Eq. (9) defines the total emission intensity of the
Raman signal from the nanoparticle. The physical mean-
ing of Eq. (9) is that the radiated Raman power equals
to the total power generated inside the nanoparticle (the
first term in Eq. (9)), and the second term account for the
Raman power dissipated in the nanostructure due to the
ohmic losses. As we are interested in the Raman emission
from all-dielectric materials where the losses are negligi-
bly low, we omit the second term in Eq. (9), e.g., the
crystalline silicon for wavelengths higher 600 nm range
satisfies this requirement.
In order to simplify the expression for Raman intensity

even further, we introduce the Purcell factor in terms of
the Green’s function:

F σ
p (ω, r) =

6πc

ω

[
nσ∗
R ImĜ(ω, r, r)nσ

R

]
, (10)

where nσ is the unit vector of Raman polarization Pσ
R =

P σ
Rn

σ
R. In that way, the intensity of the Raman emission

defined by the mode with polarization σ can be expressed

through the Purcell factor averaged over nanoparticle
volume with the weight of the Raman polarization am-
plitude Pσ

R(r):

〈IσR〉 =
vω4

sµ0

12πc

∫
dV F σ

p (ωs, r)|P σ
R(r, ωs, ω)|2. (11)

This expression reflects the spontaneous character of Ra-
man emission. The full incoherence of different phonon
modes requires the summation over σ in order to obtain
the total Raman emission intensity SR =

∑
σ I

σ
R. Thus,

the intensity of radiation emission is proportional to the
square of dipole moment and enhanced by the local den-
sity of states, which is defined by the imaginary part of
the Green’s function. Note that both polarization am-
plitude PR(r, ωs, ω) and Purcell factor can be resonantly
enhanced due to the Mie resonances in the all-dielectric
nanostructure. However, the resonance of the Raman po-
larization occurs at the pumping frequency ω, as it is de-
fined by the field distribution at the pumping frequency
E0(r, ω) (see Eq. (2)), while the emission of Raman sig-
nal occurs at shifted frequency ωs, at which the Purcell
factor should be calculated.

III. SPHERICAL SILICON NANOPARTICLES

We illustrate the results obtained in the previous
Section by studying the Raman emission from a Si
nanosphere excited by a plane wave. The generated Ra-
man emission is defined by the optical phonon modes of
silicon30 with three orthogonal polarizations σ = x, y, z.
The corresponding modes have different Raman tensors

α̂
(x,y,z)
R = α · R̂(x,y,z), where α is the phonon-polarization

independent scalar. Here we fix the orientation of the
cubic crystalline lattice according to the coordinate basis
(see Fig. 1), which gives us expressions for R-tensor19:

Rz =



0 1 0
1 0 0
0 0 0


 Ry =



0 0 1
0 0 0
1 0 0


 Rx =



0 0 0
0 0 1
0 1 0


 .

In order to study the Raman emission from the Si
spherical nanoparticle, we start with the identification
of the mode structure by considering elastic scattering of
a plane wave. The scattering spectrum obtained within
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FIG. 2. a) Elastic scattering cross section of the nanoparti-
cle with radius a = 110 nm. The scattering cross section is
normalized over the geometrical one (πa2). Mode decomposi-
tion with magnetic dipolar (MD), electric dipolar (ED), and
magnetic quadrupolar modes (MQ) is also presented. b) Spec-
trum of electric energy stored inside the nanoparticle. It is
normalized to electromagnetic energy stored in the same vol-
ume in a free space W0 = 1/2|E0|

2. MD and MQ resonances
are plainly visible, however ED does not contribute to the
total energy. Insets: the electric field amplitude distribution
profiles inside the nanosphere at the MD and MQ resonances.

the Mie theory is shown in Fig. 2 (a). One can clearly
see the peaks corresponding to the excitation of the mag-
netic dipole (MD), electrical dipole (ED), and magnetic
quadrupole (MQ) modes. The total scattering cross sec-
tion is shown along with the contribution of each mode.

The intensity of Raman emission is proportional to the
intensity of the electric field inside the sphere. Thus,
it is reasonable to plot the electric energy stored inside
the sphere, which is defined by the volume integration of
the energy density W = 1/2

(
|E|2d(ωε)/dω

)
. The cal-

culated spectrum is shown in Fig. 2 (b). One can see
that the contribution of the ED mode into the total en-
ergy stored inside the nanosphere is low comparing to
MD and MQ modes. Thus, one should not expect sig-

nificant enhancement of the Raman scattering at the ED
resonance. The Raman polarization PR(r, ωs, ω) can be
computed through Eq. (2), based on the field distribution
inside the nanosphere in accordance with Mie theory:

E1 =

∞∑

n=1

En (cn(ω)Mo1n(k2)− idn(ω)Ne1n(k2)) , (12)

where Ne1n and Mo1n are vector spherical harmonics,
En = inE0

2n+1
n(n+1) , k2 is the wavevector taken inside

the sphere, the coefficients cn and dn are frequency-
dependent (see Appendix B).

The Purcell enhancement factor (10) can be found
through the Green’s function of the dielectric sphere31,
given by the expressions:

Ĝ(22)(ω, r, r′) =
ik2
4π

∞∑

n=1

n∑

m=0

(2 − δ0)
2n+ 1

n(n+ 1)

(n−m)!

(n+m)!
×

×
(
Me

o
mn(k2)⊗

[
M′(1)

e
o
mn(k2) + c(2)n (ω)M′

e
o
mn(k2)

]
+

+Ne
o
mn(k2)⊗

[
N′(1)

e
o
mn(k2) + d(2)n (ω)N′

e
o
mn(k2)

])
, (13)

r < r′,

Ĝ(22)(ω, r, r′) =
er ⊗ er

k2
δ(r− r′)+

+
ik2
4π

∞∑

n=1

n∑

m=0

(2− δ0)
2n+ 1

n(n+ 1)

(n−m)!

(n+m)!
×

×
([

M
(1)
e
o
mn(k2) + c(2)n (ω)Me

o
mn(k2)

]
⊗M′

e
o
mn(k2)+

+
[
N

(1)
e
o
mn(k2) + d(2)n (ω)Ne

o
mn(k2)

]
⊗N′

e
o
mn(k2)

)
, (14)

r ≥ r′.

Here Me
o
mn(k2) and Ne

o
mn(k2) are vector spherical har-

monics (see Appendix B) with superscript (1) obtained
by replacing spherical Bessel functions jn(ρ) by spheri-

cal Hankel function of the first kind h
(1)
n (ρ). We adopt

the simplified notation that Ne
o
mn(k) ⊗ N′

e
o
mn(k) =

Nomn(k) ⊗ N′
omn(k) + Nemn(k) ⊗ N′

emn(k) and sim-
ilarly for other terms; δ0 = 1 when m = 0 and δ0 = 0
when m 6= 0.

For comparative analysis of both factors of Raman
scattering enhancement, we plot the electric field inten-
sity |E|2/|E0|2 spectrum, which is proportional to the
electric energy, and the Purcell factor averaged over all
polarizations, in Fig. 3. The Purcell factor was calcu-
lated for the shifted Stokes frequency ωS = ω −Ω. Both
quantities demonstrate resonant behavior in the vicinity
of Mie resonances.

Next, we perform explicit calculations for the Raman
enhancement in the vicinity of the MD resonance tak-
ing into account only one term in the expansion of the
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FIG. 3. Purcell factor (black curve) and electric field intensity
(red curve) for the nanoparticle with radius a = 110 nm. The
Purcell factor is averaged over the nanoparticle volume and
dipole polarizations. Both factors are multiplied in resulting
Raman signal.

exciting field and Green’s function:

〈SR〉 =
9vω3

sk2µ0

20
|E0|2|c1(ω)|2×

[
Re

(
c
(2)
1 (ωs)

)] ∫ a

0

r2j41(k2r)dr. (15)

Both exciting electric field and dyadic Green’s
function depend on the resonant Mie coefficients

c
(2)
1 (ω), d

(2)
1 (ω), c1(ω), d1(ω), which is reflected in the

Eq. (15). Thus, for a given excitation frequency ω the
Raman signal will be resonantly enhanced either when

|c1(ω)| or c
(2)
1 (ωs) reaches their maximal values. As

shown in Fig. 4 two significant peaks, one of which is
shifted by optical phonon frequency, should appear for
each resonance. One peak appears when the Raman fre-
quency ωs = ω−Ω is resonant, and depicts the enhance-

ment in c
(2)
1 (ωs) due to the Purcell factor. The second

peak in Fig. 4, in the vicinity of 600 nm, occurs when the
exciting field is enhanced and c1(ω) becomes resonant.
The intensity of Raman emission from Si nanoparticle

with radius a = 110 nm for different excitation wave-
length given by Eq. (11) is presented in Fig. 4. Normal-
izing volume v is defined by the intrinsic phonon corre-
lation length of the material. This picture is in accor-
dance with the spectrum of electric energy at the excita-
tion wavelength shown in Fig. 2(a). The double-resonant
character is not observed for MD mode as the phonon
energy is much smaller than the peak width due to the
relatively low Q-factor of the MD mode. However, the
splitting for MQ mode, which is high-Q enough, is ob-
served.
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FIG. 4. Comparison of analytical and numerical results of
the incoherent Raman signal intensity spectrum normalized
to Raman intensity from the same volume of bulk silicon,
given by SR0 = (vω4

sµ0nV |αE0|
2)/(12πc). Inserts: the Ra-

man electric field distribution inside the sphere for X- (up)
and Z- (down) phonon modes on the MD resonance, and X-
Y- Z- for MQ resonance.

In order to support these results, we have developed
an approach based on numerical simulation and imple-
mented it using Comsol Multiphysics package. We model
the incoherent Raman emission by dividing a sphere into
subdomains and defining in each of them the Raman po-
larization in accordance with the excited field distribu-
tion. We consider every subdomain as an elementary
Raman dipole and independently calculate the Raman
signal from each domain. Afterwards, the intensity from
each domain is summed over the whole sphere. The re-
sulting intensity depends on subdomain volume, which
is equal to normalizing volume v. The results of the nu-
merical modeling are shown in Fig. 4 by the dashed-blue-
line. We see that the numerical simulations are in a good
agreement with analytical ones. The difference in MQ
amplitude is defined by the finite size of the subdomains
in the numerical method, with non-uniform Raman po-
larization Pσ

R(r) over the domain and finite coherence
length, while in analytical computation we have point
dipoles distribution, which are fully incoherent. More-
over, there are additional limitations such as the mesh
domain size in numerical simulations and the finite size
of the element volume of integration of the analytical for-
mula.

Based on these numerical calculations, the distribution
of Raman signal inside the nanosphere generated by one
subdomain, which is a unit source of Raman emission.
The insets in Fig. 4 show the electric field distribution
for different excitation wavelength corresponding to MD
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FIG. 5. Geometry of the problem. We consider elastic and
inelastic scattering of a plane wave by a Si nanodisk of radius
a = 110 nm and height h = 190 nm in vacuum. Three cases of
incident field are shown: normal incidence and side incidence
with p- and s-polarization.

and MQ resonances for different phonon polarizations.
While a plane wave couples to eigenmodes of the sphere
with m = 1, even or odd for different resonances, (see
Eq. 12), the Raman signal can be coupled to spherical
harmonics of any arbitrary azimuthal number. One can
also compare the distribution of Raman electric field at
the frequency ωs with the electric field at the excitation
frequency ω. Due to the symmetry of the MD polariza-
tion and the symmetry of Raman tensor, the field distri-
bution of Raman signal generated by z-polarized phonon
is rotated with respect to the exciting field.
This approach allows us to calculate the Raman emis-

sion from more complicated nanostructures. In particu-
lar, resonant Si nanodisks are very often used as build-
ing blocks for all-dielectric photonics devices, including
oligomers and metasurfaces as they can be easily fabri-
cated via planar technology.

IV. RAMAN SCATTERING BY SILICON

NANODISKS

We apply the developed numerical method to com-
pute the intensity of Raman signal generated form a
single Si nanodisk with radius a = 110 nm and height
h = 190 nm, which parameters are close to parameters
of the sphere examined in previous section. In case of a
spherical nanoparticle the multipole harmonics with dif-
ferent azimuthal number m are degenerate due to spheri-
cal symmetry of the problem. The nanodisk has only ax-
ial symmetry, thus, the degeneracy is partly lifted. These
modes can be excited by a plane wave incident from dif-
ferent directions: normal incidence, and side incidence of
p− and s− polarized plane waves, as shown in Fig. 5.
The scattering cross section is depicted in Fig. 6 for all
three cases. One can see that both MD and MQ modes
are spectrally splitted, which is more pronounced for MQ
resonance due to higher Q-factor. We leave the discussion
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FIG. 6. Elastic scattering spectrum of the nanodisk with
radius a = 110 nm and height h = 190 nm for three cases
of incident wave: normal incidence, and side incidence for
two polarizations. Left peaks (about 900 nm ) have magnetic
dipolar resonance character and peaks between 600 nm and
650 nm are magnetic quadrupolar, by analogy with sphere.

of higher order resonances (electric quadrupole, octupole,
and etc.) out of the scope of this paper, and they will be
elaborated in a subsequent paper.

The resonant modes observed in the elastic scattering
influence the Raman scattering. Although some of these
modes may not be seen in the elastic scattering spectrum,
they can contribute into overall Raman emission due to
breaking of the symmetry by the Raman polarization ten-
sor. Moreover, the resonant peaks can be additionally
doubled due to the Purcell factor enhancement similar
to the case of nanosphere. In Fig. 7 the Raman inten-
sity is shown as a function of the excitation wavelength.
It is obvious that the intensity of Raman signal gen-
eration depends on the incidence conditions. However,
we also observe a multi-peak structure of the spectrum,
which stems from the resonantly enhanced emission by
the Purcell effect at different phonon polarizations. In
order to analyze it in more details, we circumstantially
show the contribution of every phonon mode in the re-
sulting spectrum for normal incidence only (see inset in
Fig. 7). We observe that the total Raman emission curve,
shown by the dashed line in the inset, consists of three
contributions from different phonon polarization. The
largest contribution comes from X- and Y-phonons, with
a single peak structure because of the enhancement of
the pumping field. There is no Purcell contribution due
to specific structure of X- and Y-phonon tensor. For Z-
phonon, on the contrary to X- and Y-phonons, we see
the active resonant peak at the longer wavelength, due
to the Purcell enhancement of the emitted Raman signal,
similarly to the splitting shown in Fig. 4. Moreover, the
contribution of second nanodisk MQ mode is faintly no-
ticeable on higher wavelengths, yet weakly enhanced. For
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FIG. 7. Raman scattering by nanodisk with radius r =
110 nm and height h = 190 nm spectrum for three cases of
incident wave: normal incidence, and side incidence for two
polarizations. Insert: detailed phonon-mode decomposition
for normal incidence. The Z-phonon has maximal contribu-
tion at ∼ 625 nm when the Purcell effect for left quadrupolar
has it’s maximal influence. The X- and Y-phonon modes are
enhanced when the elastic field inside the sphere is maximal.

a lateral incidence, the mode splitting is also observed for
every phonon mode, and more careful analysis of Purcell
enhanced response is possible.

CONCLUSIONS

In conclusion, we have derived a rigorous analytical
theory based on the Green’s function approach to calcu-
late the Raman emission from crystalline high-index di-
electric nanoparticles. For nanoparticles of simple geom-
etry with well-known dyadic Green function, analytical
calculations can be performed and significantly simpli-
fied in the case of non-absorbing material. It has been
demonstrated for the Raman scattering by the resonant
Si spherical nanoparticle, as an example. The strongest
enhancement has been observed for magnetic resonances,
because of the higher field confinement inside the parti-
cle. We have also employed the numerical approach to
the calculation of inelastic Raman emission in more so-
phisticated geometries. This approach can be applied for
a particle of an arbitrary shape. The Raman response
from Si nanodisks has been analyzed within the proposed
numerical method and the contribution of the various
Mie modes has been revealed. We have shown that the
spectral dependence of the Raman signal intensity on the
incident wavelength can reveal the modal structure of the
particle more clearly than in elastic scattering. The ob-
tained results provide the basis for future studies of the

resonantly enhanced Raman scattering in high-index all-
dielectric nanostructures and its possible applications.
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APPENDIX A. Point dipole radiation

In order to obtain formula (7) we use the dyadic Green
function formalism27:

∇r′′ ×∇r′′ × Ĝ(r′′, r)− k2εĜ(r′′, r) = Îδ(r′′ − r),
(16)

where Î is unity matrix, multiply by P(r) from the right:

∇r′′ ×∇r′′ × Ĝ(r′′, r)P(r) − k2εĜ(r′′, r)P(r) =

Îδ(r′′ − r)P(r), (17)

and then multiply by P∗(r′)Ĝ∗(r′, r′′) from the left:

P∗(r′)Ĝ∗(r′, r′′) · ∇r′′ ×∇r′′ × Ĝ(r′′, r)P(r)−
−k2εP∗(r′)Ĝ∗(r′, r′′)Ĝ(r′′, r)P(r) = (18)

= P∗(r′)Ĝ∗(r′, r′′ )̂Iδ(r′′ − r)P(r)

Reciprocally for conjugated:

∇r′′ ×∇r′′ × Ĝ∗(r′, r′′)− k2ε∗Ĝ∗(r′, r′′) = Îδ(r′ − r′′)
(19)

∇r′′ ×∇r′′ ×P∗(r′)Ĝ∗(r′, r′′)− k2ε∗P∗(r′)Ĝ∗(r′, r′′) =

= P∗(r′ )̂Iδ(r′ − r′′) (20)

∇r′′ ×∇r′′ ×P∗(r′)Ĝ∗(r′, r′′) · Ĝ(r′′, r)P(r)−
−k2ε∗P∗(r′)Ĝ∗(r′, r′′)Ĝ(r′′, r)P(r) = (21)

P∗(r′ )̂Iδ(r′ − r′′)Ĝ(r′′, r)P(r)

Subtracting (18) from (21) and when integrating over
V ′′ with vector-dyadic relation transforming volume in-
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tegration into surface integration we get

P∗(r′)ImĜ(r′, r′′)P(r′′) =

=
1

2i

∮

∂V

dS(P∗(r′)Ĝ∗(r′, r)×∇× Ĝ(r, r′′)P(r′′)−

(22)

−Ĝ(r, r′′)P(r′′)×∇×P∗(r′)Ĝ∗(r′, r))+

+k2
∫

V

dV Im(ε)P∗(r′)Ĝ∗(r′, r)Ĝ(r, r′′)P(r′′),

and then substitute (22) into (6).

APPENDIX B. Mie scattering amplitudes

Vector spherical harmonics presented in Mie theory
and dyadic Green‘s function decomposition:

Memn(k) =
−m

sin(θ)
sin(mφ)Pm

n (cos(θ))zn(ρ)eθ−

− cos(mφ)
dPm

n (cos(θ))

dθ
zn(ρ)eφ (23)

Momn(k) =
m

sin(θ)
cos(mφ)Pm

n (cos(θ))zn(ρ)eθ−

− sin(mφ)
dPm

n (cos(θ))

dθ
zn(ρ)eφ (24)

Nemn(k) =
zn(ρ)

ρ
cos(mφ)n(n + 1)Pm

n (cos(θ))er+

+cos(mφ)
dPm

n (cos(θ))

dθ

1

ρ

d

dρ
[ρzn(ρ)]eθ− (25)

−m sin(mφ)
Pm
n (cos(θ))

sin(θ)

1

ρ

d

dρ
[ρzn(ρ)]eφ

Nomn(k) =
zn(ρ)

ρ
sin(mφ)n(n + 1)Pm

n (cos(θ))er+

+sin(mφ)
dPm

n (cos(θ))

dθ

1

ρ

d

dρ
[ρzn(ρ)]eθ+ (26)

+m cos(mφ)
Pm
n (cos(θ))

sin(θ)

1

ρ

d

dρ
[ρzn(ρ)]eφ,

where n = 0, 1, 2, . . . , m = −n, . . . n, e and o mean
two independent solutions for even and odd functions of
azimuthal angle. Pm

n are associated Legendre polynomi-

als, k2 = ω2

c2
ε, ρ = ka = 2πa

λ

√
ε, a is nanoparticle radius.

eρ, eθ, eφ - are unit vectors of spherical basis.

From Mie theory we know fields inside the spherical
nanoparticle

E1 =
∞∑

n=1

En (cn(ω)Mo1n(k2)− idn(ω)Ne1n(k2)) (27)

H1 = − k2
ωµ0

∞∑

n=1

En (dn(ω)Me1n(k2) + icn(ω)No1n(k2)) ,

(28)

where Ne
o
mn and Me

o
mn are vector spherical harmonics,

subscript ‘2’ of k represents that wavevector is taken in-
side the sphere, En = inE0

2n+1
n(n+1) ,

cn(ω) =
[ρ1hn(ρ1)]

′ jn(ρ1)− [ρ1jn(ρ1)]
′ hn(ρ1)

[ρ1hn(ρ1)]
′ jn(ρ2)− [ρ2jn(ρ2)]

′ hn(ρ1)
(29)

dn(ω) =

√
ε [ρ1hn(ρ1)]

′ jn(ρ1)−
√
ε [ρ1jn(ρ1)]

′ hn(ρ1)

ε [ρ1hn(ρ1)]
′ jn(ρ2)− [ρ2jn(ρ2)]

′ hn(ρ1)
,

(30)

while coefficients presented in dyadic Green function (14)
have different numerator:

c(2)n (ω) =
[ρ1hn(ρ1)]

′
hn(ρ2)− [ρ2hn(ρ2)]

′
hn(ρ1)

[ρ2jn(ρ2)]
′
hn(ρ1)− [ρ1hn(ρ1)]

′
jn(ρ2)

d(2)n (ω) =
n2 [ρ1hn(ρ1)]

′
hn(ρ2)− [ρ2hn(ρ2)]

′
hn(ρ1)

[ρ2jn(ρ2)]
′
hn(ρ1)− [ρ1hn(ρ1)]

′
jn(ρ2)n2

hn and jn - are spherical Hankel and Bessel functions,

ρ1 = k1a =
2πa

λ
, ρ2 = k2a =

2πa
√
ε

λ
. (31)

Scattered fields are:

Es =

∞∑

n=1

En

(
−bn(ω)M

(1)
o1n(k1) + ian(ω)N

(1)
e1n(k1)

)
,

(32)

Hs =
k1
ωµ0

∞∑

n=1

En

(
an(ω)M

(1)
e1n(k1) + ibn(ω)N

(1)
o1n(k1)

)
,

(33)

where

an(ω) =
ε [ρ1jn(ρ1)]

′
jn(ρ2)− [ρ2jn(ρ2)]

′
jn(ρ1)

ε [ρ1hn(ρ1)]
′
jn(ρ2)− [ρ2jn(ρ2)]

′
hn(ρ1)

, (34)

bn(ω) =
[ρ1jn(ρ1)]

′
jn(ρ2)− [ρ2jn(ρ2)]

′
jn(ρ1)

[ρ1hn(ρ1)]
′
jn(ρ2)− [ρ2jn(ρ2)]

′
hn(ρ1)

. (35)
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