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We use non-equilibrium dynamical mean-field theory with iterative perturbation theory as an impurity solver
to study the recovery of SU(2) symmetry in real-time following a hopping integral parameter quench from a
mass-imbalanced to a mass-balanced single-band Hubbard model at half-filling. A dynamical order parameter
γ(t) is defined to characterize the evolution of the system towards SU(2) symmetry. By comparing the momen-
tum dependent occupation from an equilibrium calculation (with the SU(2) symmetric Hamiltonian after the
quench at an effective temperature) with the data from our non-equilibrium calculation, we conclude that the
SU(2) symmetry recovered state is a thermalized state. Further evidence from the evolution of the density of
states supports this conclusion. We find the order parameter in the weak Coulomb interaction regime undergoes
an approximate exponential decay. We numerically investigate the interplay of the relevant parameters (initial
temperature, Coulomb interaction strength, initial mass-imbalance ratio) and their combined effect on the ther-
malization behavior. Finally, we study evolution of the order parameter as the hopping parameter is changed
with either a linear ramp or a pulse. Our results can be useful in strategies to engineer the relaxation behavior
of interacting quantum many-particle systems.

I. INTRODUCTION

Research on non-equilibrium quantum phase transitions has
seen dramatic progress in the past decade.1–4 Many experi-
mental and theoretical studies have focused on pump-probe
experiments in solid state systems where the material is driven
out-of-equilibrium by a pump laser,5–10 or in cold atom sys-
tems driven11–14 by a change in the strength of the interactions.
In a real-time quantum phase transition, symmetry breaking or
recovery often plays an important role. For example, the phase
transition between paramagnetic and anti-ferromagnetic15–17

behavior following a Coulomb interaction quench is associ-
ated with the spontaneous breaking of lattice symmetries and
time-reversal; the transition to a Floquet topological insu-
lator in graphene,18 and bilayer (LaNiO3)2/(LaAlO3)N thin
films19,20 is triggered by the time-reversal symmetry breaking
induced by a circularly polarized laser but does not entail any
breaking of lattice symmetries.

If the electronic system driven out-of-equilibrium is
strongly correlated, theoretical and numerical techniques to
deal with it are limited, which makes the problem especially
challenging. The Hubbard model is widely considered one
of the simplest models to capture the most essential features
of strongly correlated systems (either solid state materials or
cold atom systems). Non-equilibrium dynamical mean-field
theory (DMFT),2,4,21,22 in which the original lattice problem
is mapped onto an Anderson impurity problem with a self-
consistently determined bath, has proved to be a powerful tool
in solving the Hubbard model. The non-equilibrium real-time
evolution of physical observables can be obtained within the
framework of DMFT.

Even though the methods used to solve the Anderson im-
purity model in equilibrium are well developed, solving the
model out-of-equilibrium remains difficult and techniques are
still under development.23–26 While the hybridization expan-
sion continuous time quantum Monte Carlo solver is numer-
ically robust in equilibrium, it can suffer from the dynamical
sign problem away from equilibrium and the simulation time
is usually rather short. The weak coupling continuous time

auxiliary-field quantum Monte Carlo–a numerically exact im-
purity solver–is limited to a single-band model at half-filling
and short evolution times. Unfortunately, the dynamical sign
problem increases exponentially with evolution time, which
limits its applicability. Analytically, the iterative perturba-
tion theory (IPT) impurity solver at weak and the non(one)-
crossing approximation (NCA, OCA) at strong Coulomb in-
teractions have been shown to be powerful impurity solvers in
their respective limits.17,27

Due to the limitations of the impurity solvers for non-
equilibrium DMFT, the Falicov-Kimball (FK) model provides
a first attack on strongly correlated electronic systems be-
cause the projected impurity model is exactly solvable and
provides important information on the Hubbard model.22,28

The FK model is well studied both in equilibrium and out-
of-equilibrium.22,29 This raises the questions, “What is the
physical connection between the FK model and the Hubbard
model?” and “To what extent does the FK model reveal the
physics of the Hubbard model?”. To answer these questions,
previous works focused on studying the two models sepa-
rately, and compared the results of each model with the other.

For cold atom systems, Eckstein et al.28,30,31 studied the
evolution of physical quantities as a function of time driven
by a Coulomb interaction quench in the FK model and the
Hubbard model, respectively. For the FK model driven by a
Coulomb interaction quench, a non-thermal steady state (not
a thermalized state) results that can be statistically described
by the generalized Gibbs ensemble.28 For the Coulomb inter-
action quenched Hubbard model, a pre-thermalization behav-
ior and dynamical phase transition are observed.30 For a solid
state system driven by a constant electric field, Freericks et
al.22,32 studied the FK model and found damped Bloch oscil-
lations. Eckstein et al.33 studied the Hubbard model: except
for the damped Bloch oscillation observed in FK model, the
current decays to zero and remains there. Fotso et al.34 com-
pared the thermalization behavior of the FK model and the
Hubbard model driven by a DC electric field. The FK model
can have one of two generic evolution behaviors: (1) either a
monotonic or oscillatory approach to an infinite-temperature
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steady state or (2) either a monotonic or oscillatory approach
to a non-thermal steady state. In addition to the above two
possibilities, the Hubbard model may evolve to an oscillatory
state.

In contrast to previous studies, in this work we would like
to build the connection between the FK model and the Hub-
bard model by quenching the hopping parameter of the frozen
species (the one that is not able to hop on the lattice) in the
FK model to the Hubbard model. In order to avoid the singu-
larity of the FK model (bandwidth for one species is zero), we
use the mass-imbalanced Hubbard model with a large hopping
asymmetry and study the time-dependent evolution of observ-
ables following a quench between the mass-imbalanced and
mass-balanced Hubbard model. Here mass-imbalance (mass-
balance) means the spin-↑ and spin-↓ hopping parameter are
unequal (equal) to each other. Previous work has studied a
hopping parameter quench of the Hubbard model for equal
strength hopping of two spin species, and can be solved as a
Coulomb interaction quench problem with scaled time.35 In
this work, we show a quench on only one hopping parameter
leads to rather different physics.

One of the central results of our work is that a dynami-
cal phase transition appears. To put our results in context, it
is useful to summarize related work that also found dynami-
cal phase transitions. By quenching the Coulomb interaction
between two different phase regimes in equilibrium, Tsuji et
al.16 studied the dynamical phase transition between an anti-
ferromagnetic and paramagnetic state. Two dynamical tran-
sition points are observed with one the thermal transition and
the other related to a non-thermal antiferromagnetic phase.

By contrast, we study the evolution of SU(2) symmetry
recovery by quenching from the mass-imbalanced to mass-
balanced Hubbard model. This can be experimentally real-
ized in cold atom systems by tuning the lattice potential am-
plitude and the recoil energy.36 In the mass imbalanced Hub-
bard model, the SU(2) symmetry is broken. By quenching
the hopping integral of one spin species to be the same as
the other one, the Hamiltonian recovers its SU(2) symmetry.
However, the evolution of physical observables as a function
of time remains unclear. Our work fills that gap. We address
the following questions: (1) Is the SU(2) symmetry recovered
state the same as the equilibrium thermalized state? (2) What
is the dependence of the evolution process on the Coulomb
interaction, temperature, and the initial mass imbalance? (3)
How does the time-evolution change if we set up the quench
process as a linear ramp or pulse shape?

In this work, we show an SU(2) order parameter can in-
deed serve as a criteria for a dynamical phase transition. As
the SU(2) symmetry in observables is recovered following the
quench, the system is thermalized at the same time. We show
that the evolution of the SU(2) order parameter has a mono-
tonic dependence on the mass imbalance, temperature, and
Coulomb interaction. The pulse shape influences the time evo-
lution.

Our paper is organized as follows. In Sec.II, we describe
the mass-imbalanced Hubbard model and illustrate how we
calculate several physical observables within time-dependent
dynamical mean-field theory, such as the momentum depen-

dent occupation. We also define the order parameter we use
to characterize the SU(2) symmetry. In Sec.III, we charac-
terize the SU(2) symmetry recovered state as a thermalized
state. The dependence on the Coulomb interaction, the initial
temperature, and the initial mass-imbalance ratio is studied.
We compute the evolution of the order parameter for a linear
ramp and a pulse change of the hopping parameter in Sec.IV.
Finally, in Sec.V we summarize the main conclusions of this
work.

II. MODEL AND METHOD

The time-dependent mass-imbalanced single-band Hub-
bard model at half-filling is given by,37–41

H(t) =
∑
〈ij〉

−V↑c†i↑cj↑ − V↓(t)c
†
i↓cj↓ + h.c.

+ U
∑
i

(
n̂i↑ −

1

2

)(
n̂i↓ −

1

2

)
, (1)

where c†iσ (ciσ) creates (annihilates) an electron at site i with
spin σ, and n̂iσ = c†iσciσ is the corresponding density op-
erator. The notation 〈ij〉 indicates the hopping is restricted
to nearest neighbors, V↓(t) (V↑) is the time-dependent (inde-
pendent) hopping integral parameter for spin-↓ (spin-↑) elec-
tron (t is reserved to denote time). Here U denotes the
time-independent Coulomb interaction strength between spin-
↑ and spin-↓ fermions occupying the same site. In the large
coordination limit, the hopping parameters are rescaled as
V ∗σ = Vσ/

√
z where z is the coordination number. Through-

out this paper, we fix the spin-↑ hopping integral to be time
independent V ∗↑ = 1 and set V ∗↑ (1/V ∗↑ ) as our unit of energy
(time). The mass imbalance r = V↓(t)/V↑ is restricted to
lie between 0 and 1. The system is initially prepared in the
thermal equilibrium state of the mass imbalanced Hubbard
model with V↓(t < 0) 6= V↑ and finite repulsive Coulomb
interaction U > 0. Here the SU(2) symmetry of the sys-
tem is broken. The quench dynamics are studied by fixing
the Coulomb interaction U to be finite while quenching the
spin-↓ hopping integral to be V↓(t ≥ tq) = V↑ from an ini-
tial V↓(t < 0) 6= V↑ state, where tq is the ramp time of the
hopping parameter change.

We consider a Bethe lattice, which has a semi-elliptic den-
sity of states,

ρσ(ε) =
1

2πV ∗2σ

√
4V ∗2σ − ε2, (2)

with half bandwidth Dσ = 2V ∗σ . The mass-imbalanced Hub-
bard model (1) can be solved exactly using non-equilibrium
dynamical mean field theory (DMFT),2,4,21,22,30 which maps
the lattice model self-consistently onto a single-site Ander-
son impurity model. We use non-equilibrium dynamical mean
field theory with iterative perturbation theory as an impurity
solver to solve the mass imbalanced Hubbard model at finite
temperature. We enforce the paramagnetic solution and half-
filling of both spin-↑ and spin-↓ electrons. In the Hubbard
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FIG. 1. (Color online) The spin-resolved momentum dependent oc-
cupation as a function of energy at different times for the quenched
mass-balanced Hubbard model at half-filling. The mass-imbalance
at time t = 0− is fixed at r0 = V↓/V↑ = 1/4. The Coulomb in-
teraction is fixed at U = 1.0. The fitting function used for order pa-
rameter is γ(t) = γ0e

−λt. (a) spin-resolved momentum distribution
at initial temperature T = 0.2(β = 5.0), (b) the order parameter
as a function of time at T = 0.2, the fitting parameters are γ0 =
0.1874, λ = 0.2527. (c) spin-resolved momentum distribution with
initial temperature T = 0.1(β = 10.0), (d) the order parameter as a
function of time with initial temperature T = 0.1, the fitting param-
eters are γ0 = 0.1221, λ = 0.1408. We used solid and dashed lines
to stand for n(ε, t) with spin-↑(↓) electrons. The black dashed line
is the equilibrium calculation with the half-filled quenched Hamilto-
nian at effective temperature Teff = 0.5230(βeff = 1.912) (a) and
Teff = 0.3268(βeff = 3.060) (c), where the momentum dependent
spin-↑ and spin-↓ occupation is the same.

model, these constraints can be fulfilled by explicitly sym-
metrizing over the two spin species and setting the chemical
potential to be µ = U/2, respectively. Away from this mass
balanced Hubbard model limit, we again enforce half-filling
by fixing µ = U/2. However to ensure the paramagnetic
solution at half-filling, we symmetrize the Weiss’s functions
in the Keldysh time contour using particle-hole symmetry:
G0,σ(t, t′) = −G0,σ(t′, t). The DMFT self-consistent con-
dition for the Bethe lattice42 density of state is

∆σ(t, t′) = V ∗σ (t)Gσ(t, t′)V ∗σ (t′). (3)

The expectational value of an observableO at time t is given
by,

〈O(t)〉 =
1

Z0
Tr[e−βH(t<0)U(0, t)OU(t, 0)], (4)

where Z0 is the partition function of the Hamiltonian at t < 0,
U(t, 0) = T exp[−i

∫ t
0
H(t)dt] is the time evolution operator.

The momentum-dependent density matrix is written as

nkσ(t) = nσ(εk, t) = −iG<kσ(t, t), (5)

where G<kσ(t, t) is the lesser Green’s function at equal time t.
The momentum-dependent occupation depends only on εk be-
cause the self-energy is momentum independent. The kinetic
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FIG. 2. (Color online) The spin-resolved density of states Aσ(ω, t)
as a function of energy at different times for the quenched mass-
balanced Hubbard model at half-filling. The mass-imbalance at
time t = 0− is fixed at r0 = V↓/V↑ = 1/4. The tempera-
ture and Coulomb interaction are fixed at T = 0.2(β = 5.0) and
U = 1.0. The spin-resolved densities of states are plotted at time
t = 0, 2, 4, 20. We use solid and dashed lines to stand for Aσ(ε, t)
with spin-↑(↓) electrons. The black dashed line is the equilibrium
calculation with the half-filled quenched Hamiltonian at effective
temperature Teff = 0.5230(βeff = 1.9120) where the density of
states with spin-↑ and spin-↓ occupation are the same. The inset
shows the zoomed part with ω ∈ [−0.3, 0.3].

energy is given by

Ekin(t) =
∑
σ

∫
dεσρσ(εσ)nσ(εσ, t)εσ. (6)

The Coulomb interaction energy is given by

Eint(t) = U〈ni↑(t)ni↓(t)〉

= −i
∫
C
dt̄Σii↑(t, t̄)Gii↑(t̄, t) + 〈ni↑(t)〉/2, (7)

where C denotes the Keldysh contour.31 The total energy is

Etot(t) = Ekin(t) + Eint(t). (8)

The real frequency represented retarded Green’s is function is

GR
σ (ω, t) =

∫ ∞
0

dsei(ω+i0+)sGR
σ (t+ s, t). (9)

The density of states are calculated from the exact relation

A(ω, t) = − 1

π
ImGR(ω, t). (10)

The dynamical order parameter we use to characterize the
SU(2) symmetry is,

γ(t ≥ tq) =
1

Nk

∑
k

|Szk(t)|

=
1

Nk

∑
k

|nk↑(t)− nk↓(t)|

=

∫
dερ↑(ε)|n↑(ε, t)− n↓(ε, t)|, (11)
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FIG. 3. (Color online) Order parameter γ(t) as a function of time for the half-filled mass imbalanced Hubbard model(r0 = V↓/V↑ = 1/4, 1/2)
after a hopping integral quench from r0 = 1/4, 1/2 to r = 1 at U = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0. (a-b) r0 = 1/4 and T = 0.2(β =
5.0), (c-d) r0 = 1/2 and T = 0.2(β = 5.0) (e-f) r0 = 1/4 and T = 0.1(β = 10.0), (g-h) r0 = 1/2 and T = 0.1(β = 10.0). The
approximate decay rate as a function of Coulomb interaction strength is plotted as open dots in (b,d,f,h) with the solid line (quadratic function)
as a guide to the eye.

where tq is time of the hopping integral ramp to V↑ = V↓, and
ρ↑(ε) is the semi-elliptic density of states defined in Eq.(2)
with V↑ = 1.0. If the quenched system is thermalized after
long enough time, the effective temperature is calculated by
numerically solving the equation,31

E(0+) =
Tr
[
H(0+)e−βeffH(0+)

]
Tr
[
e−βeffH(0+)

] , (12)

where E(0+) is the same as Eq.(8), and H(0+) is the Hamil-
tonian after quench.

III. THERMALIZATION DRIVEN BY HOPPING QUENCH

The prethermalization behavior in the paramagnetic case
occurs when the momentum integrated quantities (Coulomb
interaction and spin-resolved kinetic energy) thermalize faster
than the momentum dependent quantities (momentum depen-
dent distribution).16 Thus, we must study the momentum de-
pendent observables as a function of time to determine if the
system is thermalized. Depending on the system details, there
may be convenient quantities for studying the thermaliza-
tion. For example, in the Coulomb interaction quench at zero
temperature problem, the Fermi-surface discontinuity in the
momentum-dependent occupations can serve as a good cri-
terion because the Fermi-surface jump disappears at the ther-
malized finite temperature.30 In our calculation we use the mo-
mentum integrated order parameter γ(t) in Eq.(11) for SU(2)
symmetry as the specific criterion in our case.

A. Characterization of a thermalized state

In Fig.1, we plot the spin-resolved momentum dependent
occupation number as a function of energy at different times
with fixed Coulomb interaction U = 1.0 and initial mass-
imbalance ratio r0 = 1/4. Here, for the purpose of better
visualization, we only plot half of energy axis (ε < 0). The
other part of momentum distribution (ε > 0) is constrained
by nσ(ε, t) + nσ(−ε, t) = 1 which is fixed by particle-hole
symmetry. The only parameter difference is T = 0.2(β =
5.0) for Fig.1(a) and T = 0.1(β = 10.0) for Fig.1(c). The
corresponding effective temperature for the final thermalized
state is calculated using Eq.(12). We find Teff = 0.5230 for
case (a) and Teff = 0.3268 for case (c), respectively.

At time t = 0, the momentum distribution for spin-↑ and
spin-↓ electrons are apparently separated. The black dashed
line is the thermalized value of the momentum distribution
with SU(2) symmetry. The area encapsulated by spin-↑ and
spin-↓ distributions is defined as the order parameter breaking
the SU(2) symmetry. As time evolves, the area is diminished
monotonically. (See t = 2 and 4 in Fig.1, for example.) Fi-
nally, at t = 20.0, the area vanishes which indicates the SU(2)
symmetry of the Hubbard model is fully recovered in the time
evolution of the states. By comparing the SU(2) recovered
distribution with the thermalized state at Teff = 0.5230, one
sees they match each other, indicating that the SU(2) symme-
try recovered state is just the thermalized state. Therefore, the
order parameter defined in Eq.(11) can serve as a measure of
whether the state is thermalized. In Fig.1 (b), we plot the order
parameter γ(t) as a function of time. We found the evolution
of the order parameter fits an exponential decay reasonably
well: γ(t) = γ0e

−λt. With γ0 = 0.1874 and λ = 0.2507,
the fitting function is a good approximation to the original
data. Figs.1(c-d) give very similar information except some
quantitative difference, mainly the small initial order parame-
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ter γ(t = 0) and small decay rate λ. A systematic discussion
of these difference is deferred to future sections of this paper.

To confirm our conclusion that the SU(2) symmetry recov-
ered state is a thermalized state, we plot the spin-resolved
density of states at different times in Fig.2. Here the den-
sity of states is calculated by Fourier transforming the two-
time retarded Green’s function to the real frequency axis us-
ing Eq.(9). In the non-interacting limit, the density of states
for the two spin species are identical after the hopping param-
eter quench. We used a small Coulomb interaction U = 1.0.
The density of states for spin-↑ and spin-↓ exhibit very small
differences at time t = 0+. We checked numerically that
larger Coulomb interaction will induce a larger difference
in the spin-resolved density of states. As time evolves, the
density of states for the two spin species move toward each
other and finally meet at t = 20. By comparing the density
of states for the thermalized state with effective temperature
Teff = 0.5230, we confirmed our conclusion in the previous
paragraph that the state is thermalized.

B. Decay rate dependence on the Coulomb interaction
strength

The exponential decay with time of the order parameter
depends on the Coulomb interaction, the initial mass imbal-
ance ratio, and the initial temperature. We will study the ef-
fect of one of the three factors by fixing the other two. In
Fig.3, we plot the order parameter of SU(2) symmetry (de-
viation) as a function of time for different Coulomb interac-
tions U with fixed initial temperature T and initial mass im-
balance ratio r0 = V↓/V↑. In the top panels, the order pa-
rameter γ(t) (log scale y-axis) at different Coulomb interac-
tions U = 0.5, 0.6, · · · , 1.0, 1.5, 2.0 are plotted as a function
of time. An approximate exponential decay is observed. The
larger the Coulomb interaction, the faster the decay rate of
the order parameter. In the lower panels, the decay rate as a
function of Coulomb interaction strength is plotted with open
dots.

The qualitative behaviors above can be understood from
two limits. In the non-interacting limit, the momentum distri-
bution after a hopping quench for different spins are n↑(ε) =
1/(eβε + 1) and n↓(ε) = 1/(eβεr0 + 1), respectively, where
r0 is the initial mass imbalance ratio. As time evolves, the
momentum distribution does not change because the momen-
tum is a good quantum number (no Coulomb scattering since
U = 0). This limit has an infinitely long approach time to the
thermalized state (SU(2) symmetry recovered). As a result,
the decay rate is zero in the non-interacting limit. In the infi-
nite Coulomb interaction limit (atomic limit), the mass imbal-
ance quench can be ignored (since the kinetic energy in either
case is negligible) and so has no effect on the thermal distri-
bution. In the infinite Coulomb interaction limit we can take
the decay rate λ =∞. Note, in the large Coulomb interaction
regime with relatively low temperature, an antiferromagnetic
state will appear. In this paper we restrict ourselves to the
weak interaction limit and relatively high temperature to en-
sure we have a non-equilibrium paramagnetic solution. Fur-
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FIG. 4. (Color online) (a) Order parameter γ(t) as a function of time
for the half-filled mass imbalanced Hubbard model(V↓/V↑ = 1/4)
after a hopping integral quench r = V↓/V↑ from r0 = 1/4 to
r = 1 at U = 1.0. The inverse temperatures are shown from
β = 3.0, 6.0, 9.0, 12.0, 15.0. (b) The approximate decay rate as a
function of initial temperature and thermalized temperature are plot-
ted as circles and pentagons, respectively. (c) Initial order parameters
at t = 0+ are plotted as a function of initial temperature with filled
squares for U = 1.0 and open circles for U = 2.0. As a comparison,
the corresponding order parameter γ(t = 0+) in the non-interacting
limit U = 0.0 is plotted as a solid line. Note, the order parameter de-
fined here γ can not capture the SU(2) symmetry broken in the zero
temperature limit T = 0. (d) The thermalized temperature is plotted
as a function of initial temperature with filled squares for U = 1.0
and open circles for U = 2.0. As a comparison, the corresponding
thermalized temperature Tth for U = 0.0 is plotted as a solid line.
(e-f) The kinetic energy and double occupancy at time t = 0+ are
plotted as a function of the initial temperature. The dashed line in
(f) denotes the double occupancy in the non-interacting limit. The
Coulomb energy is Eint(t = 0+) = UD(t = 0+).

ther, based on second order perturbation theory (the first order
terms will cancel due to particle-hole symmetry) a quadratic
function of Coulomb interaction αU2 is plotted in the lower
panels as a solid line, where α depends on the specific system
parameters. The larger the Coulomb interaction, the greater
the deviation from quadratic dependence of U (higher order
perturbation terms are needed).

By comparing Fig.3 (b) with r0 = 1/4, T = 0.2(β = 5.0)
and (f) with r0 = 1/4, T = 0.1(β = 10.0), we realized the
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FIG. 5. (Color online) (a) Order parameter γ(t) as a function of
time for the half-filled mass imbalanced Hubbard model(V↓/V↑ =
1/4) after an hopping integral quench r = V↓/V↑ from r0 =
0.2, 0.3, 0.4, · · · , 0.8 to r = 1.0 at U = 1.0 and T = 0.2(β = 5.0)
with different initial mass imbalance ratios. (b) The approximate de-
cay rate as a function of r0. (c) The initial order parameter after the
quench γ(t = 0+) as a function of r0 is plotted with filled squares for
U = 1.0 and open circles for U = 2.0. As a comparison, the corre-
sponding order parameter γ(t = 0+) with U = 0.0 is plotted with a
solid line. (d) The thermalized temperature as a function r0 is plotted
with filled squares for U = 1.0 and open circles for U = 2.0. As a
comparison, the corresponding thermalized temperature for U = 0.0
is plotted with a solid line.

decay rate in (f) is smaller than in (b) for each fixed Coulomb
interaction. We conclude from this comparison that the de-
cay rate depends on the initial temperature T = 1/β such
that the lower temperature, the longer the time needed to relax
to the thermalized state. A systematic study and discussion
on the initial temperature dependence is illustrated in Fig.4.
By comparing Fig.3 (b) with r0 = 1/4, T = 0.2(β = 5.0)
and (d) with r0 = 1/2, T = 0.2(β = 5.0), one sees the de-
cay rate in (d) is smaller than in (b) for each fixed Coulomb
interaction. We conclude from this comparison that the de-
cay rate depends on the initial mass imbalance ratio r0 such
that the larger mass imbalance ratio (closer to the final mass-
balance Hubbard model Hamiltonian), the longer the time that
is needed to evolve to the thermalized state. A systematic
study of the evolution of the dependence on the initial mass
imbalance ratio is illustrated in Fig.5.

C. Decay rate dependence on the initial temperature

By fixing the Coulomb interaction to be U = 1.0 and
the initial mass-imbalance ratio r0 = 1/4, we plot the or-
der parameter as a function of time at different temperatures
in Fig.4(a). At time t = 0+, one sees the order parameter is
larger if the initial temperature T = 1/β is smaller. Since the
Coulomb interaction is weak here, this behavior can be under-

stood from the non-interacting limit. In the non-interacting
limit, the order parameter after the hopping parameter quench
from V↓(t < 0) = V↑r0 to V↓(t > 0) = V↑ is given by,

γ(t = 0+) =

∫ +2V↑

−2V↑

dερ↑(ε)

∣∣∣∣ 1

eβε + 1
− 1

eβεr0 + 1

∣∣∣∣ , (13)

where r0 = V↓(t < 0)/V↑ is the initial mass imbalance ratio.
The order parameter γ(t = 0+) as a function of temper-

ature T = 1/β is plotted in Fig.4(c) with a solid line for
U = 0.0. This plot can be understood physically from the
zero temperature and infinite temperature limits. In the zero
temperature limit the states with energy ε < 0 (ε > 0) are
fully occupied (vacant). As one quenches the hopping inte-
gral of spin-↓ electrons, the occupation at each ε is the same
as before (occupied up to ε = 0) and the order parameter
will be zero. In the infinite temperature limit every state is
equally populated and independent of its energy. The order
parameter will be zero after hopping parameter quench. In
between these two limits, there exist a characteristic temper-
ature T ≈ 0.3365(β ≈ 2.972) where order parameter in-
creases (decreases) monotonically with the temperature below
(above) the characteristic temperature.

Note, the order parameter defined here γ(t = 0+) can not
capture the SU(2) symmetry broken character in the zero tem-
perature limit T = 0 at finite Coulomb interaction. Even at
the temperature T = 0, the SU(2) symmetry is broken for fi-
nite Coulomb interactionU > 0, yet the order parameter gives
γ(t = 0+) = 0. The initial order parameters at time t = 0+

for U = 1.0 and U = 2.0 are plotted with filled squares and
open circles, respectively. One sees the biggest deviation from
U = 0 occurs at the characteristic temperature.

Increasing the temperature beyond the characteristic one
will decrease the deviation from the non-interacting limit.
This can be explained as a competition between the kinetic en-
ergy and the Coulomb interaction. In high temperature region,
the kinetic terms overcome the Coulomb terms and dominate
the behavior of the order parameter. The kinetic energy and
double occupancy at time t = 0+ are plotted in Fig.4(e-f).
Here we plot the double occupancy D instead of the Coulomb
interaction energy Eint = UD in order to make a comparison
with the non-interacting limit (D = 0.25). With increasing
temperature, the kinetic energy and double occupancy head
toward the value characterizing the non-interacting limit. This
physical picture in the high temperature regime can be further
confirmed by plotting the decay rate of the order parameter as
a function of temperature in Fig.4(b).

First, we confirm the conclusion that in the low temperature
regime, the decay rate increases monotonically with initial
temperature. Physically, the relaxation process to the thermal-
ized state is driven by Coulomb scattering. Increasing the ini-
tial temperature will enhance the thermal fluctuations of elec-
trons and enhance the collision probability leading to a larger
decay rate. However, the decay rate tends to increase slower
and finally saturates in the high temperature regime. When
the temperate is high (kinetic energy overcomes the Coulomb
energy), the states of the initial equilibrium state tend to con-
verge, and the decay rates tend to saturate. Since the temper-
ature is only well-defined in the initial equilibrium states and
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the final thermalized states, we limit ourselves to the qualita-
tive analysis above.

Next, we plot the thermalized temperature as a function of
initial temperature at U = 1.0 in Fig.4(d) with filled squares.
A comparison with U = 0.0 and U = 2.0 are plotted with a
solid line and open circles. A characteristic initial temperature
is observed at T ≈ 0.33, where Coulomb interactions tend
to increase (decrease) the thermalized temperature compared
to the infinitesimal Coulomb interaction limit. A numerical
investigation shows that the ratio of the thermalized temper-
ature and the initial temperature is Tth/T > 1 for r0 < 1,
and Tth/T < 1 for r0 > 1. For the limit r0 = 1, we have
Tth/T = 1, since the Hamiltonian does not change at all.

D. Decay rate dependence on the initial mass imbalance ratio

By fixing the Coulomb interaction to be U = 1.0 and initial
temperature to be T = β = 5.0, we plot the order parameter
as a function of time for different initial mass imbalance ra-
tios r0 in Fig.5. In Fig.5(a), the order parameters is plotted as
a function of time. At time t = 0+, one sees the order pa-
rameter is larger if the mass-imbalance ratio is smaller. The
initial order parameter γ(t = 0+) as a function of r0 is plotted
in Fig.5(c) with filled squares. This can be understood again
by considering the non-interacting limit in Eq.(13). The order
parameter γ(t = 0+) at U = 0.0 and U = 2.0 are plotted in
Fig.5(c) with a solid line and open circles, respectively. The
order parameter decreases monotonically as r0 is increased
until the limit r0 = 1 (order parameter is zero). The devia-
tion from the non-interacting limit is larger as the initial mass
imbalance ratio decreases. Further, in Fig.5(b), the approx-
imate decay rate is plotted as a function of the initial mass
imbalance ratio r0. Our results indicate that the decay rate
decreases monotonically with increasing initial mass imbal-
ance ratio. Finally, the thermalized temperature as a function
of r0 for U = 1.0 is shown with filled squares. To illus-
trate the effect of Coulomb interaction, the data for U = 0.0
and U = 2.0 are plotted with a solid line and open circles,
respectively. The thermalized temperature decreases as one
increases the initial imbalance ratio. In the limit r0 = 1, the
initial temperature equals the final thermalized temperature.

IV. DEPENDENCE ON THE RAMP SHAPE AND PULSE
FORM

Experimentally, the change of parameters in the Hamilto-
nian takes a finite amount of time. To model this, we suppose
there exist a linear ramp to achieve the final parameter,

V↓(0 ≤ t ≤ tq) = V i↓ + (V f↓ − V
i
↓ )t/tq, (14)

where tq is the time used to achieve the final SU(2) recovered
Hamiltonian, V i↓ = V↑/4 is the initial hopping parameter at
time t = 0−, V f↓ = V↑ is the final hopping parameter for
spin-↓ electrons at time tq after which the Hamiltonian is time
independent and SU(2) recovered. The pulse shape is plotted
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FIG. 6. (Color online) (a),(b) Order parameter γ(t) as a function of
time for the half-filled mass imbalanced Hubbard model after a hop-
ping integral quench ramp V↓(t ≤ tq) = V i↓ + (V f↓ − V

i
↓ )t/tq at

U = 1.0. (a) Normal scale for vertical axis at β = 5.0. (b) Log scale
for vertical axis at β = 5.0. (c),(d) Order parameter γ(t) as a func-
tion of time for the half-filled mass balanced Hubbard model after a
hopping integral pulse V↓(t ≤ tq) = V i↓ + (V f↓ − V

i
↓ ) sin(πt/2tq)

at U = 1.0. (c) Normal scale for vertical axis axis. (d) Log scale for
vertical axis at β = 5.0. We only plot the order parameter γ(t) for
times for which the Hamiltonian has SU(2) symmetry, t ≥ tq . The
pulse shape are plotted in (e) for Eq.(14) and (f) for Eq.(15).

in Fig.6(e). In Fig.6(a-b), we plot the evolution of the or-
der parameter as a function of time for different quench times
tq = 0.0, 1.0, 5.0, 10.0 at fixed Coulomb interaction U = 1.0
and inverse temperature β = 5. The decay rates for differ-
ent linear ramps are approximately the same while a longer
quench time leads to a longer relaxation time to a thermalized
state. This is consistent with our previous study of the decay
rate dependence on the initial mass imbalance: In the linear
ramp time (0 < t < tq), the ratio is smaller, so the decay
rate in that time region is smaller. At time t = tq , the order
parameter will be larger than the quenched case (tq = 0).

Finally, we studied the case in which we have the mass bal-
anced Hubbard model at time t = 0 and apply a pulse change
to the spin-↓ hopping parameter change,

V↓(0 ≤ t ≤ tq) = V f↓ + (V i↓ − V
f
↓ ) sin(πt/tq), (15)

with different quench time (width of pulse) tq =
1.0, 3.0, 5.0, 7.0, 9.0. V i↓ = V↑/4 is the minimum of hop-
ping parameter at time t = tq/2, V f↓ = V↑ is the final hop-
ping parameter for spin-↓ electrons at time tq after which the
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Hamiltonian is time independent and SU(2) recovered. The
pulse shape is plotted in Fig.6(f). We plot the order parameter
as a function of time in the normal scale in Fig.6(c) and in a
log scale in Fig.6(d). As the quench time tq increases, the or-
der parameter γ(tq) is larger. Taken together, we see that the
pulse shape can be used as a way to engineer the relaxation
behavior of interacting, quantum many-particle systems.

V. DISCUSSION AND CONCLUSION

In this work, we theoretically studied the dynamical evo-
lution towards SU(2) symmetry of a system that is quenched
from an SU(2) broken one (mass-imbalanced Hubbard model)
to an SU(2) symmetry recovered one (mass-balanced Hubbard
model). This model can be experimentally implemented in
cold atom systems. We define the time-dependent order pa-
rameter γ(t) (total momentum-integrated difference between
spin-↑ and spin-↓ momentum distribution) to characterize the
SU(2) symmetry. By comparing the spin-resolved momentum
distribution of the SU(2) symmetry recovered state (obtained
for times such that γ(t) = 0) with a thermalized state (an
equilibrium state with effective temperature), we conclude the
SU(2) symmetry recovered state is a thermalized state. This
conclusion is further confirmed by computing the spin- and
time-resolved density of states.

Further, we observe the order parameter undergoes a nearly
exponential decay towards the SU(2) symmetry recovered
states. We studied the approximate decay rate and its rela-
tion to the initial temperature, Coulomb interaction strength,
and the initial mass-imbalance ratio. These dependences are
studied by varying one parameter while fixing the other two.

We found the order parameter in the weak Coulomb inter-
action region exhibits a nearly quadratic dependence on U ,
which can be interpreted with second order perturbation the-
ory. For larger Coulomb interaction values, the deviation from
quadratic dependence shows higher order terms must be taken
into account.

We studied the dependence of the approximate decay rate
on the temperature. The decay rate increases rapidly with tem-
perature in the low-temperature regime. By contrast, it satu-
rates at higher temperatures (when the Coulomb interaction
energy is overwhelmed relative to the kinetic energy). We
studied the initial order parameter after the quench γ(t = 0+)
and found a characteristic temperature where the order param-
eter increases (decreases) for temperatures below (above) the
characteristic temperature. The decay rate towards the ther-
malized state decreases as the initial imbalance ratio increases.
Finally, we studied the dependence on the ramp shape and the
pulse shape. Taken together, our results provide a guide to en-
gineer the relaxation behavior of interacting, quantum many-
particle systems.
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