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We propose a general method for constructing system-dependent basis functions for correlated
quantum calculations. Our construction combines features from several traditional approaches:
plane waves, localized basis functions, and wavelets. In a one-dimensional mimic of Coulomb sys-
tems, it requires only 2-3 basis functions per electron to achieve high accuracy, and reproduces
the natural orbitals. We illustrate its effectiveness for molecular energy curves and chains of many
one-dimensional atoms. We discuss the promise and challenges for realistic quantum chemical cal-
culations.

I. INTRODUCTION

Many tens of thousands of electronic structure calcu-
lations are performed each year, the vast majority in
a single-particle basis set of some sort. These calcu-
lations can be divided into two types: those that ex-
tract the energy from a set of single-particle occupied or-
bitals (denoted single-determinant) such as density func-
tional theory (DFT)1–5 or Hartree Fock (HF), and those
that go beyond a single determinant, such as configura-
tion interaction,6,7 coupled cluster methods,8–10 density
matrix renormalization group (DMRG),11–16 and some
types of quantum Monte Carlo. Going beyond a sin-
gle determinant is necessary for many systems, but is
typically much more demanding computationally. Such
calculations are more difficult because larger basis sets
are needed to achieve chemical accuracy (1 kcal/mol),
and computation times usually scale as a high power of
the number of basis functions. These larger basis sets
are needed to represent the electron-electron cusp in the
wavefunction which exists at every point in space.

A natural question arises: what would be the optimal
basis set for an electronic structure calculation, assum-
ing the basis is specifically adapted to that system? For a
single-determinant method, the answer is clear: the self-
consistent occupied orbitals are the optimal basis for that
calculation: used as a basis, they reproduce the exact en-
ergy and properties. The number of these basis functions
(for a spin-restricted calculation) is thus Ne/2, where Ne
is the number of electrons. Of course, this minimal basis
does not offer a computational shortcut: the occupied
orbitals must be determined in a separate, non-adapted
basis calculation. Here, we are concerned with multi-
determinant methods, and we will assume that the com-
putation time for a traditional single-determinant calcu-
lation is small in comparison to the multi-determinant
method.

For post-HF methods, there is no exact finite system-
adapted basis: any finite basis introduces errors. How-
ever, the natural orbitals are close to the most rapidly
converging single-particle basis, at least in terms of allow-
ing the greatest possible overlap with the exact ground

state.17,18 The natural orbitals are the eigenstates of the
single-particle density matrix (also known as the equal-
time one-particle Green’s function). The number of
nonzero eigenvalues (occupancies) is infinite. A (near)
optimal basis of Mno orbitals consists of the Mno natural
orbitals with the greatest occupancy.

One obvious weakness in using natural orbitals is that
one does not know them until after one has solved the in-
teracting system, using a post-HF method, with another
larger basis. Iterative natural orbital methods are a way
to reduce the computational expense, but approximate
natural orbitals that did not need a post-HF method to
determine them could be very useful.19 But natural or-
bitals have another key weakness: they are (normally)
completely delocalized across the system. This delocal-
ization prevents a number of shortcuts that can greatly
decrease computation times for large systems. Delocal-
ization is especially harmful for low-entanglement meth-
ods such as DMRG, since there is no area law for the
entanglement entropy in a delocalized basis.20

Here we describe an approach that starts with the oc-
cupied orbitals of a DFT (or HF) calculation, and yields
basis sets which produce high accuracy in correlated cal-
culations. We test this approach in 1D, using poten-
tials that make 1D mimic 3D in many respects, and
using DMRG.21 The computational effort for the basis
construction is minimal. The number of basis functions
needed is typically about 2Mno, where Mno is the mini-
mal number of natural orbitals needed to reach high ac-
curacy, or about two or three times the number of elec-
trons. We expect this method can be easily extended to
quasi-1D systems (such as large-Z atoms or chains of real
H atoms) and hope it can be applied more generally in
3D.

The first step produces what we call “product plane
waves” (PPWs) by multiplying the occupied orbitals by
a set of low momentum cutoff plane waves. The lowest
momentum is determined by the spatial extent of the
entire system. This simple ansatz converges well in our
tests in 1D, and we show how its convergence is within
about a factor of 2 compared to natural orbitals. But
a weakness of PPWs, shared with natural orbitals, is
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that the basis is not local. As the second major part of
this work, we describe fragmentations of the PPWs that
utilize wavelets22–66 to produce atom-centered adapted
orthogonal bases with good completeness and locality.
This approach requires only a modest additional number
of basis functions to yield the same accuracy as PPWs,
but with a smooth, local, and orthogonal basis.

II. BACKGROUND

A. The one dimensional Hamiltonian

Our non-relativistic many-electron Hamiltonian, ex-
pressed in second quantized form, either in a basis set
or on a grid, is67,68

ĤMB =
∑
i,j,σ

tij ĉ†iσ ĉjσ +
∑
k,`,σ′

Vijk`ĉ
†
iσ ĉ
†
jσ′ ĉ`σ′ ĉkσ

 ,

(1)
with fermionic operators ĉ labeled either by site or basis-
function i, j, k, ` and with spin σ (or σ′). We define the
‘exact’ solution as solving this Hamiltonian on a very fine
grid, which is close to the continuum limit.21,69 For both
the grid and for basis functions, we find the exact many-
particle ground state of these 1D reference systems using
DMRG. The one-electron integrals are

tij =

∫
drϕ∗i (r)

(
−∇

2

2
+ vext(r)

)
ϕj(r), (2)

where ∇2 = ∂2
x for the 1D calculations, vext(r) is the ex-

ternal potential, discussed below. In a basis, with func-
tions ϕi(r), the two-electron integrals are

Vijk` =
1

2

∫∫
drdr′ϕ∗i (r)ϕ∗j (r

′)vee(r− r′)ϕk(r′)ϕ`(r).

(3)
On a grid, the interaction takes a much simpler diago-
nal form with i = ` and j = k, with the integral tak-
ing the value vee(ri − rj). For grid calculations, we use
the ITensor library, along with matrix product operator
technology.70 In the basis, we use the Block DMRG code
since it is specifically tailored to avoid stationary states
that are not the ground state in a basis set and has im-
plemented the form of the Hamiltonian efficiently.14,71–74

Previously, we have explored 1D potentials which
mimic as closely as possible the behavior of real 3D
systems. A particularly convenient choice matching a
number of 3D features is a single exponential function,
vee(x− x′) = A exp(−κ|x− x′|) with A = 1.071 and κ =
0.419, and vext(x) = −Zvee(x), where Z is the atomic
number, just as in 3D. This particular function closely
mimics the results from a soft-Coulomb interaction, but
at a reduced cost for grid DMRG calculations.21,70 This
potential also more closely mimics 3D since it has a mild
singularity at zero distance. In 3D, the Coulomb inter-
action is divergent, but its effect is moderated, and inte-
grals over it are finite, because of the very small volume

FIG. 1. (color online) First two natural orbitals, labelled
by their occupation numbers, of (1D) He. An X marks the
location of the nucleus.

associated with the r → 0 region, and the associated in-
tegration factor 4πr2. In 1D, we get qualitatively similar
behavior from the slope discontinuity in the potential at
r = 0. A local density approximation (LDA) was also
derived for this interaction. Our finite difference grid
Hamiltonian looks like an extended Hubbard model,69

Ĥfine =
∑
i

(
− 1

2a2

(
ĉ†i+1ĉi − 2n̂i + ĉ†i ĉi+1

))
+
∑
i

vin̂i +
∑
i,j

(
vijeen̂i(n̂j − δij)

)
(4)

where the superscript “fine” indicates we will use this
lattice on the finest (original) grid of spacing a = 1/32,

n̂i = ĉ†i ĉi, external potential vi, and long-ranged electron-
electron interaction vijee on sites i and j. A distance of 60
from the outermost grid points to the first or last atom is
used for all systems that follow, allowing wavefunctions
to have extended tails.

The natural orbitals are the eigenvectors of the one-
particle reduced density matrix (RDM), which is the
equal-time one-particle Green’s function, with matrix el-
ements:

ρij = 〈ĉ†i ĉj〉. (5)

The eigenvalues of RDM are the occupation numbers and
the eigenvectors are the natural orbitals, which we order
in decreasing occupation. Fig. 1 shows the first two for
1D He, and we later show (Fig. 3) that, in a basis set
of these 2 orbitals alone, the expectation value of the
Hamiltonian is only 1 kcal/mol above the exact ground-
state energy. We use the term high accuracy to indicate
errors of less than 1.6 mHa, which corresponds to the 1
kcal/mol criterion commonly called “chemical accuracy”
in quantum chemistry.
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B. Wavelets

Wavelets were originally introduced by Haar in 191022

but they have since been modernized and expanded
by several works by Gabor,23 Grossman and Morlet,24

Meyer,25 Mallat,26 and Daubechies27–29 and many oth-
ers. These functions have become widely used in audio
and image compression (such as jpeg and mp3 file for-
mats). These were also connected to a quantum gate
structure, tensor network algorithms, and compression
of matrix product states.58–60

Consider a localized function f(x) located near the ori-
gin. We can form a basis from this function by translating
it by all integer translations, i.e., {f(x − j)} for integer
j. A wavelet transformation (WT) is a mapping of f(x)
to an new function f ′(x) defined by

f ′(x) =
∑
k

ckf(xd− k), (6)

where d is the dilation factor, which is normally taken
to be 2. The WT is defined by the coefficients ck. We
will only consider compact wavelets, for which the num-
ber of nonzero ck’s is finite. The scaling function of the
WT, S(x), is the fixed point of this mapping. The ck are
chosen cleverly to make the S(x − j) to be orthogonal
for different j, and to have a number of other desireable
properties, such as polynomial completeness up to a cer-
tain order.27 The scaling function is designed to represent
smooth, low momentum parts of functions. The scaling
function is not a wavelet, although it does form the top
layer of a wavelet basis. A wavelet is formed from S(x)
using another set of coefficients wk (which are defined in
terms of the ck):

W (x) =
∑
k

wkS(xd− k). (7)

The wavelets capture higher momentum features.
A wavelet basis consists of scalings and translations of

S(x) and W (x), and it is complete and orthonormal. It
is characterized by a coarse grid with spacing ∆. At all
integer multiples j of ∆, one puts a scaling function, of
size ∆, namely S(x/∆−j)/

√
∆. Then, at scales ∆, ∆/2,

∆/4, etc., one puts down a grid of scaled wavelets, with
the spacing and the size of the functions always equal.
All these functions together are complete, and they are
all orthogonal to each other. Some of the functions of a
wavelet basis are shown in Fig. 2.

Wavelet bases are an attempt to have locality in both
space and momentum simultaneously, as much as possi-
ble, subject to the constraint of orthgonality. The layer of
scaling functions represent all momenta from 0 to roughly
O(1/∆); the coarsest layer of wavelets represents mo-
menta from roughly O(1/∆) to O(2/∆), etc., but with
significant overlap in the momentum coverage between
different layers.

We have briefly described wavelet bases in terms of
continuous functions, but they can equally be described

FIG. 2. (color online) One of the scaling functions (solid blue
line) and some of the wavelets (dashed lines) of a wavelet
basis of type Coiflet-18. These functions are based on a fine
grid with spacing 1/32, and the level parameter z gives the
size-scale of each function as 2z/32. Both the scaling function
and rightmost wavelet are at z = 5.

in terms of WTs acting on an initial fine grid. The WTs
we use are based on the fine grid used by the grid DMRG
calculations, and these are what is shown in Fig. 2.

Many different types of wavelet transforms have been
constructed. Here we choose Coiflets, derived by
Daubechies,27 which are characterized by the number ν
of nonzero ck. We choose relatively high ν to get good
completeness and smoothness. Wavelets can be easily
extended to higher dimensions by taking products such
as S(x)S(y)S(z),61 so the principal features of 1D carry
over to 3D.56,75–81

III. PRODUCT PLANE WAVES

In this section, we describe our new approach to design
a specific system-dependent basis with as few functions
as is practical. We first argue that the exact natural or-
bitals provide a natural least possible number, but rely
on knowing the exact solution.17,18 We then show how to
combine planewave-type basis functions (PPWs), wavelet
technology, and adaptation via approximate DFT (or
other) single-particle orbitals, to create a basis with no
more than about twice this number, but still yielding high
accuracy. A crucial feature is that we never use more
than a few of each kind of function, so that we never
come close to being limited by the asymptotic conver-
gence properties of any one set of basis functions. Fur-
ther, the initial orbitals do not need to be obtained to
high accuracy. The purpose of these orbitals is to find
the important features (where the density is large) of the
system to act as a scaffold for the following calculations.
These orbitals can be obtained quickly at a low accuracy.
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A. Natural orbitals as a basis

We wish to find basis sets which, when solved exactly,
gives ground-state energies at most about high accuracy
(1 kcal/mol) above the exact, complete basis limit. We
wish to find basis sets that converge to this accuracy with
as few functions as possible, but also without needing
to know the exact solution to determine them. With
the fine grid DMRG wavefunction, we can calculate the
RDM exactly and find the exact natural orbitals. Since
our DMRG solutions do not break spin symmetry if the
number of electrons is even, the up and down RDMs are
identical. (For odd electron numbers, we average the
up- and down-RDMS and use that to define our natural
orbitals.)

FIG. 3. (color online) Energy errors for 1D He, Li, Be, H2,
and H4 when evaluated in a basis of Nf exact NOs of greatest
occupancy.

The first two natural orbitals for a 1D helium atom
were shown in Fig. 1. The natural orbitals yield the
smallest number of basis functions that can be expected
to yield high accuracy, i.e., when ordered by occupancy,
the least number Mno which, when used as a basis, yields
an error below high accuracy. Fig. 3 shows the energy er-
ror for a variety of systems, when the basis is chosen as
a finite number of the most occupied exact natural or-
bitals. We see that Mno = 2 for 1D He, but is 3 for
1D H2 either close to equilibrium (R = 2) or stretched
(R = 4). For 1D Li, Mno = 4, while 1D Be has Mno = 6.
Unstretched 1D H4 also has Mno = 4, but stretched 1D
H4 requires Mno = 7. Thus Mno increases with the num-
ber of electrons, and also (slightly) with the number of
centers.

Fig. 4 shows the first four natural orbitals for an 1D H4

chain, which is stretched. Clearly, the orbitals delocalize
over the entire chain. We also see from Fig. 3 that even
in this basis, there remains about 8 kcal/mol error, and
3 more orbitals are needed to reach high accuracy.

FIG. 4. (color online) Same as Fig. 1 but for 1D H4 at R = 4.
X’s mark the locations of the nuclei.

B. Constructing the basis

Given the orbitals from a HF or DFT calculation, per-
haps the simplest conceivable basis would be the occupied
HF or DFT orbitals, since this allows the reproduction
of the single determinant. One well-known approach for
enlarging this basis to allow for correlation is to use ad-
ditional eigenstates of the Fock matrix, selected by an
energy cutoff.42,81,82 It is clear, however, that this even-
tually becomes inappropriate. For a more complete basis,
one needs functions with positive energy, but there are
an infinite number of functions at zero energy far from
the molecule. To remedy this, we could put a box around
the molecule and include only functions within that box.
However, this can be very wasteful, since the box needs
to include extended tail regions, where additional basis
functions are not very useful. Instead of using energies,
we adopt a quite different approach, motivated by the
construction of variational wavefunctions—in particular,
Jastrow functions.

Single-particle determinantal states ϕ from DFT or
HF are rough approximations to the many-particle wave-
function, but can be improved substantially by multi-
plication by a Jastrow factor, J , which provides ex-
plicit correlation. Modifying a determinantal wavefunc-
tion with a Jastrow factor is often the first step in design-
ing a variational wavefunction for quantum Monte Carlo
calculations.83 The Jastrow factor acts as a multiplica-
tive factor for the wavefunction and simple form for J
is84

J (r1, r2, . . .) =
∏
i<j

J2(ri − rj). (8)

The J2 term is near 1 if ri and rj are far away, and be-
comes less than one as ri and rj come together, building
in the electron-electron cusp. We now ask the question:
what would be a good single-particle basis to represent
J or J2?

The fact that J2 is a function of the difference of two
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FIG. 5. (color online) Product plane wave (PPW) functions
for a 1D H2 at R = 3. Here the box size is L = 7.72, and
marked by pink vertical lines. The upper figure shows the
windowing functions cos(k1x) and sin(k1x) and the lower fig-
ure shows the first three PPWs (the first is just the LDA
orbital).

position vectors means that there is no benefit to increas-
ing resolution in one region relative to another, at least
for fitting J2. One does expect, however, that longer
wavelength functions are more important than short
wavelength functions. This suggests that a plane wave
basis, restricted to the general vicinity of the molecule,
with a momentum cutoff which is not too high, is a rea-
sonable approximate basis for a Jastrow function.

Since the Jastrow function in a variational wavefunc-
tion multiples the determinant of occupied DFT orbitals,
this suggests a very simple ansatz for a basis for corre-
lated calculations: the product of occupied orbitals and
low momentum cutoff plane waves, which we call a prod-
uct plane wave (PPW). To be more specific: let {bk(r)}
be a set of plane waves with a low momentum cutoff, and
let {ϕj(r)} be the occupied orbitals from a DFT/HF cal-
culation. Then our product plane-wave (PPW) basis is
{ϕj(r)bk(r)}. The momentum cutoff in {bk(r)} corre-
sponds to some minimal resolution. Linear combinations
of the bk(r) can represent a correlation hole at any posi-
tion within the system, while high momentum behavior
near the nuclei is captured by the {ϕj(r)}. bk=0 = 1, so
that the {ϕj(r)} themselves are part of the basis.

In generating a PPW basis, several choices must be
made. First, we want to put the molecule in a “box”
that defines the sequence of momenta in the plane waves.
Since the detailed correlations we want from the plane
waves are weak in the tails, and since the box size is only
used to define momenta, we do not include long den-
sity tails. We simply choose a small density cutoff, ρm,
to define the edge of our box, from our DFT (or HF)
calculation. Here ρm = 10−3 throughout, but we ex-
pect our qualitative results to be very insensitive to this
choice. For neutral atoms, the corresponding box sizes

FIG. 6. (color online) The first five PPWs (red dashed) af-
ter orthogonalization compared to the exact natural orbitals
(blue) for 1D H4 with R = 3. Here L = 13.8. These functions
are similar to those found in Ref. 85 from density-partitioning.

are 4.90, 5.34, 8.40, and 8.71 for Z = 1 to 4. A simple
example of a product plane wave basis is illustrated in
Fig. 5. The first two functions resemble the natural or-
bitals of 1D He in Fig. 1 and the natural orbitals here.
This resemblence between PPWs and NOs tends to con-
tinue for higher functions, although the precise order of
the functions can vary.

Let Nocc be the number of occupied orbitals in a DFT
or other approximate calculation. Let L be the width of
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FIG. 7. (color online) Finite-basis error of PPWs, to be con-
trasted with Fig. 3, which has exact NO’s.

the box defined by the cutoff ρm. Then choose an inte-
ger J ≥ 0 to create 2J + 1 functions, the identity and
cos(knx) and sin(knx), where kn = nπ/L, n = 1, . . . , J ,
and multiply each by the occupied DFT orbitals, creating
(2J + 1)Nocc primitive PPWs. Next, we exactly orthog-
onalize these orbitals via the Gram-Schmidt process, in
the order of k-values, starting with the identity. The re-
sults for 1D H4 are shown in Fig. 6 and compared to the
exact natural orbitals. These orthogonalized PPWs are
remarkably close to the exact natural orbitals, especially
for those orbitals that are occupied in the DFT calcula-
tion, but also even for those that are not. (The additional
wiggle in the 4th PPW is due to the orthogonalization
procedure).

Finally, in Fig. 7, we show the energies for our systems
as a function of the number of (orthogonalized) PPWs.
For 1D He and 1D H2, Nocc = 1, so increasing J by
1 yields two more PPWs (the sine and the cosine); for
the rest, Nocc = 2, and 4 PPWs are added each time.
A quick glance shows a remarkable similarity to the or-
dered natural-orbital energy errors of Fig. 3. The PPW
functions yield high accuracy with a few more functions
than Mno, showing that they do not just look similar to
the NO’s, they are similar in an energetically meaningful
sense. We denote MPPW as the least number needed to
reach high accuracy. A more careful inspection shows
that they are not quite as accurate, even for 1D He,
and that the difference grows with the number of elec-
trons and the number of atoms. It is most noticeable for
stretched 1D H4, where MPPW = 18, whereas Mno = 7.
But this is still a remarkably small number for a strongly
correlated system.

IV. WAVELET LOCALIZATION

So far, we have accomplished our goals of a basis func-
tion set with a low number of orbitals. Our PPWs yield
high accuracy with about 2Mno basis functions. But,
to be efficient, tensor network methods such as DMRG
require the low entanglement that comes from localized
basis sets. Other methods may also benefit from localized
basis functions, which make Hamiltonians sparse. Now
we study cases with more than one atom, showing how we
can use wavelet technology to break down a PPW into lo-
calized, smooth orthogonalized basis functions, centered
around each atom, without too large an increase in the
number of functions.

Traditional methods for localization rely on orthogo-
nal transformations within the set of basis functions one
already has. Not enlarging the set of functions puts a
strong limit on how localized the functions can be made.
However, if one enlarges the space without limit, one can
make the basis as local as one wishes. One can think of
“chopping up” each delocalized basis function (which we
can picture as a molecular orbital): partition all of space
into a chosen number of disjoint regions, or cells.86–91 For
example, one can make the number of cells the same as
the number of atoms, and define each cell by associating
each point in space with the closest nucleus, form a basis
by projecting each delocalized basis function into each
cell, i.e. multiplying it by a function which is unity for
points in the cell and zero outside, and repeating for all
delocalized functions. Linear combinations of chopped
up functions would allow one to reproduce any of the
original delocalized functions, but this would make a ter-
rible basis, for two reasons: 1) discontinuous basis func-
tions have infinite kinetic energy, and 2) the number of
localized functions scales as the square of the number of
atoms.

Using wavelets, we can retain this idea of “chopping
up” basis functions into different regions, but fix these
two problems. As discussed in II B, we define a complete
wavelet basis consisting of a grid of scaling functions with
lattice spacing ∆ (say with ∆ ∼ 1 Bohr), and an infinite
sequence of wavelets at scales ∆, ∆/2, ∆/4, etc, as shown
in Fig. 2. We will refer to any of these functions, either
a scaling function or a wavelet of any scale, as a WF
(wavelet-function).

Now to chop up a delocalized basis: expand all delo-
calized functions in terms of the WFs. Many WFs will
not have significant overlap with any functions, and can
be dropped. This procedure thus produces a localized
but smooth basis encompassing the original functions,
assuming one has chosen smooth wavelets. However, the
number of functions tends to be rather high, so we use
this only as a starting point.

Again we partition all of space into cells, associated
with atoms. Associate each WF to a cell. A natural way
to do this is to define a center of mass for each function,
and then the WF goes in the cell that contains its center
of mass. Now we can project each delocalized function
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FIG. 8. (color online) The function exp(−0.5 ∗ |x + 3|) +
exp(−|x − 3|) (black dashed) is divided into two orthogo-
nal pieces (red and green solid lines) using wavelets. The
wavelet basis used was based on Coiflet-24 with ∆ = 1, and
the dividing line separating the two cells (dotted line) was
x = 0.9. The small oscillating tails make the two function
pieces orthogonal. The two singularities each only appear in
one piece, because the high momentum wavelets representing
the singularities are more and more localized the higher the
momentum.

into each cell, simply by expanding the function in terms
of the WFs belonging to the cell. This cuts the delocal-
ized function into pieces which are all orthogonal. An
example of this procedure is shown in Fig. 8.

If we repeat this with additional delocalized functions,
the pieces in different cells will be orthogonal, even if they
came from different delocalized functions, since the WFs
of different cells are orthogonal. Within a single cell, the
pieces will not be orthogonal, and may have substantial
overlap. The final step is to recombine all the pieces in
a particular cell into a reduced set of orthogonal func-
tions for that cell, and repeat for all cells. Note that
while the original delocalized functions may be normal-
ized, the pieces come from a projection and will not be,
and some pieces may have very small normalization. It
is important to leave the pieces unnormalized. For each
cell, we wish to find the minimal set of basis functions
that can represent all the pieces to within a specified ac-
curacy. This is a well known linear algebra problem with
a simple solution. Let f ij be the piece of delocalized func-
tion i, expanded in terms of the WFs j belonging to a
cell c. Form a cell covariance matrix ρc as

ρcjj′ ≡
∑
i

f ijf
i
j′ (9)

Then the reduced basis we seek is the set of eigenvec-
tors of ρc (which is positive semi-definite) with eigenval-
ues above a specified cutoff, η. This cutoff is roughly
the mean-square error in representing all the differ-
ent pieces. This is often called a principal component
analysis.85,92–95 Here we call the entire process wavelet lo-

FIG. 9. Some of the WLOs for each cell of a 1D H4 chain.
Shown are the first two in both the first atom’s cell (far left)
and third atom’s cell. Green vertical lines are drawn midway
between each atom and weights of each function are labeled
near each curve. The calculation this was taken from was
b = 0, ∆ = 1.0, NJ = 0.

calization (WL) and the resulting basis functions wavelet-
localized orbitals (WLOs). Although the WLO proce-
dure could be applied to other delocalized bases, here we
will only consider its application to PPWs.

Fig. 9 shows the results of wavelet localization for
1D H4, with a spacing R = 2, discussed more in Sec.
IV A. For simplicity, the figure shows only the two lead-
ing eigenfunctions and their eigenvalues for only cells 1
and 3. The dashed lines show the dividing lines between
the different boxes; the nuclei are at x = −3, −1, 1, and
3. The functions are all orthogonal, with oscillations in
the tails of each function to ensure orthogonality between
boxes.

The parameter ∆, the spacing of the scaling functions,
is crucial, as it sets the size of the region in which func-
tions on adjacent boxes overlap. In the limit ∆→ 0, this
chopping up procedure reduces to the naive discontinu-
ous procedure mentioned at the beginning of this section.
The procedure also becomes poorly behaved if ∆ is larger
than the interatomic spacing. Roughly, one should set ∆
to a modest fraction of the interatomic spacing, but later
on we show results as a function of ∆ to determine opti-
mal values.

Lastly, we note that, for multi-center stretched sys-
tems, if R > La, the box for an atom, then we use La
instead of L for that cell. This can greatly increase the
number of functions to Na×Nfa, where Nfa is the num-
ber needed to reach high accuracy for the isolated atom,
but unneeded functions will be discarded by our wavelet
localization.
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FIG. 10. Error as a function of bond length R for 1D H2

using both pure PPWs and WLOs, for various values of J .
The sudden shift is at the Coulson-Fischer point of the LDA
calculation, beyond which a broken spin-symmetry solution,
with twice as many orbitals, has the lowest energy.

A. Performance of WLO bases

In this section, we wish to check that our WLOs work
well for some correlated quantum calculations, and find
out how many WLOs are needed for a given task. Our
procedure requires, at most, Nocc× (2J+1)×Ncell func-
tions. Thus, for a H4 chain that is unstretched (no spin-
symmetry breaking), Nocc = 2, we will usually choose
J = 1, and have 4 cells. A PPW calculation has 6
functions, and up to 24 (6 per cell) when fragmented.
However, in practice, up to half those functions can be
eliminated by the cutoff of our covariance matrix. This
removal of irrelevant functions becomes increasingly im-
portant as the number of atoms grows.

The prototype calculation is the dissociation of molec-
ular hydrogen. All single-determinant methods fail as
bonds are stretched and electrons localize on distinct
sites. Molecular hydrogen dissociates into an open-shell
biradical (two 1D H atoms). The molecular energy as a
function of separation is given in Fig 6 of Ref. 21. That
figure also shows the failure of LDA, with a Coulson-
Fischer point96 RCF = 3.53, where the unrestricted bro-
ken symmetry solution becomes lower in energy than the
spin-singlet within LDA. In Fig. 10, we show the error in
the energy curve, using pure PPWs, and also separating
into separate cells, using ∆ = 1 and η = 10−4.

Beginning with the PPWs (dashed lines), we see that
increasing J improves accuracy systematically, as ex-
pected. Moreover, for a given J = 1 or higher, we see that
the error increases systematically as the bond is stretched
until RCF is reached. This is because the LDA orbital is
becoming less and less close to the exact natural orbital as
the bond is stretched. Beyond this point, there is a great
decrease in error, as the the number of LDA orbitals dou-

FIG. 11. Finite-basis energy error as a function of covariance
cutoff η for 1D H2 at R = 2 with J = ∆ = 1. Without cutoff,
there are 24 functions in the basis. The integer near each
point is the number of functions in the basis.

bles (due to spin-symmetry breaking). Even the largest
PPW basis shown here (J = 2) does not achieve high
accuracy close to the CF point. But our WLOs do reach
high accuracy everywhere for J = 2, and almost every-
where with J = 1, using 3×2 = 6 functions for R < RCF ,
and double that beyond. (The wavelet localization does
not throw out any WLOs here.) Thus our basis set works,
even through the CF point. Of course, in practice, quan-
tum chemists want forces, and some smoothing procedure
would be adopted to avoid the kink at the CF point.

The strong changes with R in the error in the red
curve past the CF point can be attributed to the group-
ing of the scaling and wavelet functions. As the bond is
stretched, because the functions are fixed in real space,
some of the functions are assigned to the left cell, and
others to the right. This assignment can change sud-
denly, causing a drop in the eigenvalue weights in the
covariance matrix of one of the cells and decreasing the
number of functions. Note that this effect occurs only for
errors far below the high accuracy threshold.

Next we consider performance for longer chains of 1D
H atoms. Now the covariance cutoff becomes important
for curtailing the total number of functions. Figure 11
illustrates the effect of the covariance cutoff for H4 near
equilibrium. The higher the value of η, the more func-
tions are thrown away, but the greater the error is. If η
is set too small, then no functions are removed, not even
those that have essentially no effect on the energy. The
figure shows that the full basis has an error of about 0.1
kcal/mol. But high accuracy is achieved with η = 10−3

and only 14 functions. This is to be contrasted with
Mno = 6 from Fig 3 and MPPW = 14 from Fig. 7. In this
case (near equilibrium), the WLOs form a near-complete
localized orthogonal basis with no more functions than
PPW, and with lower error. Note that setting η = 10−4
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R 2 3 4 5 6
∆ Nf ∆E Nf ∆E Nf ∆E Nf ∆E Nf ∆E
0.5 16 0.24 16 0.33 26 0.11 24 0.09 23 0.21
1.0 14 0.43 16 0.26 24 0.15 22 0.11 22 0.16
2.0 16 0.37 15 1.50 28 0.04 25 0.08 24 0.15
4.0 18 0.34 18 0.52 29 0.04 25 0.10 25 0.17

TABLE I. WLO (J = 1) errors for 1D H4 as a function of sep-
aration, for various values for ∆. Chopping the PPWs yields
up to 48 functions, but setting η = 10−4 as the covariance
cutoff yields the number of functions and accuracy shown.
The units provided are in kcal/mol.

does not add in any more functions.

To see the effect as a function of bond length, in Table
I, we give energy errors and numbers of basis functions
for various values of R and several values of ∆, for a
J = 1 calculation with η = 10−4. (In all cases, J = 0
was found to yield errors higher than 1 kcal/mol.) We
see that the least number of functions needed occurs for
∆ = 1, especially as the chain is stretched.

R 1 2 3 4
η Nf ∆E Nf ∆E Nf ∆E Nf ∆E

10−4 42 0.47 51 0.10 50 0.63 49 0.25
10−3 42 0.47 43 1.29 49 1.08 40 0.83

TABLE II. Same as Table I, but for 1D H10, with J = ∆ = 1,
and two different covariance cutoffs.

Finally, we have run examples of 10-atom chains. We
achieve high accuracy for J = 1, ∆ = 1 throughout the
range of R shown in the table, with about 5 functions per
site when η = 10−4. This may seem like a large number
of functions, but keep in mind that, as R increases, this
is a strongly correlated system tending toward its ther-
modynamic limit. Moreover, we have required our total
energy to be accurate to 1 kcal/mol all along the curve,
not just the energy per atom. One would also expect
most energy differences to converge more rapidly than
the total energy. Table II also illustrates the benefits of
the covariance cutoff. By setting its value to 10−3, we sig-
nificantly reduce the number of functions as R increases,
but in the middle, our error is slightly greater than 1
kcal/mol. For many practical purposes, this should be
sufficient, but the larger lesson is that, for any desired
application, there is a controllable trade-off between ac-
curacy and number of functions.

We end with a heteronuclear diatomic, 1D LiH, to show
that our method still works in the absence of left-right
symmetry. Fig. 12 was calculated with J = ∆ = 1 and
η = 10−4. The LDA orbitals remain an excellent starting
point for approximating the NO’s, and the NO’s in the
WLO basis are identical (on this scale) to the exact NO’s.
The energy error is only 1.04, using 11 basis functions.

FIG. 12. The first two natural orbitals for stretched 1D LiH
(X’s denote nuclear centers with Li on right). The exact NO’s
are marked in red, and are indistinguishable from the WLO
NO’s (∆ = J = 1, η = 10−4), black dotted line, but slightly
different from the occupied LDA orbitals (green). Also shown
are WLOs with weights above 10−4 (dashed lines). The WLO
basis has 11 functions, and an error of 1.04 kcal/mol.

V. DISCUSSION AND CONCLUSIONS

We have presented algorithms to generate a basis set
that is adapted to a specific molecular system and de-
signed to be used in correlated calculations. The ba-
sis begins with an inexpensive DFT or HF calculations,
and the generation of additional functions from the oc-
cupied orbitals to allow correlation is even less expen-
sive. A product plane wave (PPW) ansatz adds addi-
tional functions using a product of low momentum plane
waves times each occupied orbital. In our 1D test sys-
tems, this ansatz produces results within high accuracy
using about twice as many functions as in an ideal natu-
ral orbital basis. Then, to generate basis functions local-
ized near each atom, we introduced a wavelet localization
procedure. Compared to standard localization methods,
which involve an orthogonal transformation of the exist-
ing functions without expanding the basis, wavelet local-
ization produces stronger localization with much smaller
orthogonalizing tails, at the expense of adding basis func-
tions. This procedure is particularly useful for DMRG
calculations, where locality in the basis is an important
criteria. It may also improve scaling on large systems in
other correlation approaches. Our method, as presented
here, should allow much larger systems to be treated than
previously possible in our 1D mimic of realistic electronic
structure (such as the 100-atom chains of Ref. 97).

Our procedure has only been given and tested upon
a 1D mimic of the 3D world. A naive generalization of
PPW to arbitrary 3D problems would involve many more
plane waves, roughly the cube of the number in 1D. For
a fixed momentum cutoff the number of plane waves also
grows with the length of the system, even in 1D. This
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would appear to generate far too many functions to be
practical, but the wavelet localization would counteract
this effect. We can think about how this works by con-
sidering one particular cell, centered on an atom. The
PPW basis generates occupied orbitals times plane waves
with a low momentum cutoff. The number of functions
needed to span this set in one cell should not be too large,
since the only high frequencies present are from the cusps
of the occupied orbitals at the nuclei, which in a Gaus-
sian basis can be represented by a small number of basis
functions. Otherwise, there are only a limited number of
low frequency modes in a single atom cell. This means
that there must be significant redundancy in the PPW
functions, particularly for many electrons. The principle
component analysis of the wavelet localization would re-
move this redundancy. This makes it clear that except for
very small molecules, one should not apply PPW on its
own, but in conjunction with wavelet localization. Nev-
ertheless, there are likely significant challenges in going
to 3D which we must leave for future work. In 1D, our
bases give high accuracy with only about twice as many
functions as in an equivalent natural orbital basis. It
seems reasonable that a variation of our 1D approach
can be found for 3D which is similarly less efficient than
a natural orbital basis by only a modest factor.

In the case of a He atom, this means roughly that 3D
He would need about the cube of the number of func-
tions as 1D He. This argument would apply to any basis,
including natural orbitals. Indeed, one finds one needs
about 15 NOs for chemical accuracy in 3D He,98 versus 2
or 3 for 1D He. Our PPW basis does not try to beat the
NOs, which is not possible; rather, it tries to duplicate
their completeness but based on a cheap calculation. In
1D, we obtain the same accuracy as with an NO basis if
we use about twice as many functions. In 3D, we hope
to do similarly–but this has not been tested.

One improvement to our PPW approach which we have
not explored here is to give more weight to the occupied
orbitals than to the additional functions coming from the
plane waves with nonzero momentum. This would be
fairly simple to implement in our wavelet localization, by
multiplying the J > 0 functions by a weighting factor less
than 1. One would expect this natural modification to
further reduce the number of functions needed for high
accuracy. We also note that our procedure could also be
applied without chopping, but still removing irrelevant
basis functions, by constructing the orthonormal basis
from the PPWs

gij =
∑
k

O
−1/2
jk f ik, (10)

where O is the overlap matrix of the f i. Now ρc = O,
so the principle component analysis consists of forming
a basis of the eigenvectors of the overlap matrix with
the largest eigenvectors, up to cutoff η. This procedure
reduces basis-set linear dependence; here it might reduce
the PPW basis size significantly without much loss of
accuracy.

A number of existing approaches also utilize or are
based on approximate natural orbitals. For example,
some Gaussian basis sets attempt to reproduce proper-
ties of atomic natural orbitals.99 A key difference with
our approach is that we start from the beginning with
orbitals adapted to the specific molecule under consider-
ation, based on a DFT or HF calculation. It would be
interesting to compare the number of functions needed
to reach chemical accuracy in 3D between our PPW ap-
proach and standard Gaussian basis sets. (We do not
have these Gaussian basis sets for our 1D test systems.)

Another common approach is to find approximate nat-
ural orbitals from a low-order correlation calculation,
such as second order perturbation theory, e.g. MP2.100

Our PPW method is simpler and faster, and it would
be interesting to compare the accuracy of these two ap-
proaches. One might also combine them: in cases where
the perturbation calculation was expensive to do in a
large basis, one might first get a PPW basis, which would
be much smaller than an unadapted basis, and then refine
it further by getting approximate natural orbitals with a
perturbation theory approach.

The localization using wavelets could be applied in a
broader context than we have used here, such as to stan-
dard Gaussian bases or to approximate natural orbitals
coming from a low order correlation method. This could
potentially improve the performance of DMRG or other
tensor network methods. By improving the sparsity of
the Hamiltonian, it may also improve the computational
scaling for DFT on large systems. In particular, us-
ing wavelet localization to impose locality only at the
atomic level may be more efficient than existing wavelet
approaches which do not recombine the wavelets into
a smaller number of functions. Specifically, one could
wavelet filter a standard Gaussian basis to produce an
orthogonal basis with more locality and sparsity than
traditionally localized Gaussian bases.

Since we are trying to produce basis sets for corre-
lated calculations, where basis set convergence is slower
than for DFT or HF calculations, we must think about
the effect of the basis on the electron-electron cusp. Our
choice of 1D potential interaction, which has a slope dis-
continuity at the origin, is designed to partially mimic
the electron-electron cusp behavior in 3D. In 3D, the po-
tential diverges as r → 0, but the effect is substantially
reduced by the 3D volume element. The moderate sin-
gularity we have in 1D is similar, but we cannot expect
our results to match 3D precisely. Also, when trying to
achieve chemical accuracy, the short range cusp behavior
is thought to be less relevant than intermediate distance
electron-electron correlation. This further complicates
the comparisons between 1D and 3D, and a 3D proce-
dure and benchmark calculations are clearly needed.

Another difficulty in implementing our approach in 3D
is the computation of the integrals defining the Hamilto-
nian, once the basis is defined. In our 1D implemen-
tation, all integrals are written in terms of sums over
the fine grid; this would not be practical in 3D. Wavelet
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bases, which are a crucial part of our wavelet localization,
are able to represent nuclear cusps more efficiently than
grids, so one might try to work directly in the wavelet ba-
sis, expressing all the final basis functions as linear com-
binations of wavelet functions.32,37,57 However, wavelets
are much less efficient than atom-centered Gaussians for
representing nuclear cusps, and so a much more efficient
approach might be to try to combine wavelets with a few
Gaussians per nucleus. Another approach to dealing with
nuclear cusps would be to use pseudopotentials, so there
are no cusps. Yet another is to employ a basis set that
inherently has a one dimensional structure.87,101–103 We
leave this set of 3D implementation problems for future
work.
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Pérez, “Approximating a wavefunction as an uncon-
strained sum of slater determinants,” Journal of Math-
ematical Physics 49, 032107 (2008).

46 Luigi Genovese, Brice Videau, Matthieu Ospici, Thierry
Deutsch, Stefan Goedecker, and Jean-Francois Mehaut,
“Daubechies wavelets for high performance electronic
structure calculations: The bigdft project,” Comptes
Rendus Mecanique 339, 149–164 (2011).

47 Tomas A Arias, “Multiresolution analysis of electronic
structure: semicardinal and wavelet bases,” Reviews of
Modern Physics 71, 267 (1999).

48 Boris N Khoromskij, Venera Khoromskaia, and H-J Flad,
“Numerical solution of the hartree–fock equation in mul-
tilevel tensor-structured format,” SIAM journal on scien-
tific computing 33, 45–65 (2011).

49 Szilvia Nagy and János Pipek, “An economic prediction
of the finer resolution level wavelet coefficients in elec-
tronic structure calculations,” Physical Chemistry Chem-
ical Physics 17, 31558–31565 (2015).

50 Jacob Fosso-Tande and Robert J Harrison, “Implicit sol-
vation models in a multiresolution multiwavelet basis,”
Chemical Physics Letters 561, 179–184 (2013).

51 G Beylkin and TS Haut, “Nonlinear approximations for
electronic structure calculations,” in Proc. R. Soc. A, Vol.
469 (The Royal Society, 2013) p. 20130231.

52 A Maloney, James L Kinsey, and Bruce R Johnson,
“Wavelets in curvilinear coordinate quantum calculations:
H+

2 electronic states,” The Journal of chemical physics
117, 3548–3557 (2002).

53 Gregory Beylkin, Nicholas Coult, and Martin J
Mohlenkamp, “Fast spectral projection algorithms for
density-matrix computations,” Journal of Computational
Physics 152, 32–54 (1999).

54 Anders MN Niklasson, CJ Tymczak, and Heinrich Röder,
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91 Per-Olof Widmark, Per-Åke Malmqvist, and Björn O
Roos, “Density matrix averaged atomic natural orbital
(ano) basis sets for correlated molecular wave functions,”
Theoretica chimica acta 77, 291–306 (1990).

92 Svante Wold, Kim Esbensen, and Paul Geladi, “Prin-
cipal component analysis,” Chemometrics and intelligent
laboratory systems 2, 37–52 (1987).
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