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Tight-binding Hamiltonians with single and multiple orbitals exhibit an intriguing array of
magnetic phase transitions. In most cases the spin ordered phases are insulating, while the disordered
phases may be either metallic or insulating. In this paper we report a Determinant Quantum Monte
Carlo study of interacting electrons in a geometry which can be regarded as a two-dimensional
Periodic Anderson Model with depleted interacting (f) orbitals. For a single depletion, we observe
an enhancement of antiferromagnetic correlations and formation of localized states. For half of
the f -orbitals regularly depleted, the system exhibits a ferrimagnetic ground state. We obtain a
quantitative determination of the nature of magnetic order, which we discuss in the context of
Tsunetsugu’s theorem, and show that, although the dc conductivity indicates insulating behavior
at half-filling, the compressibility remains finite.

PACS numbers: 71.10.Fd, Lattice fermion models (Hubbard model, etc.) 02.70.Uu

I. INTRODUCTION

Tight binding Hamiltonians provide insight into many
of the properties of strongly correlated electron systems,
from magnetism and metal-insulator transitions, to
superconductivity and charge ordering1,2. The simplest
of these, the single band Hubbard model (HM), is known,
for example, to be insulating and to exhibit long range
antiferromagnetic (AF) order at half-filling on a square
lattice3,4 for any ratio of the on-site interaction U to
hopping t, and to undergo a paramagnetic metal to
insulating AF transition above a nonzero critical Uc on
other geometries such as the honeycomb lattice. The
Nagaoka theorem5, notwithstanding the ferromagnetic
behavior, which is robust within mean-field theory2,3,
seems to be difficult to achieve when the single band
Hamiltonian is solved with more exact methods6.

The generalization of tight-binding Hamiltonians to
multiple bands opens up a richer variety of magnetic
behavior. In the case of the periodic Anderson
model (PAM), the interplay of the on-site repulsion
Uf on localized (f) orbitals with the hybridization V
to a noninteracting conduction (d) band results in a
competition of long range magnetic order arising from the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
(at small V ) and spin liquid behavior (at large V ).7–10

Not uncommonly in these more complex situations,
orbital ordering coexists with spin ordering11.

Many of these models offer quite remarkable insights
into strongly correlated materials; for instance, the
HM replicates several prominent qualitative features of
cuprate superconductors, such as the AF and d-wave
pairing, as well as stripe formation.12–17 The AF-singlet
transition and strongly renormalized effective electronic
mass in the PAM, and its strong coupling limit (the
Kondo lattice model) helps to explain different ground
states in heavy-fermion materials.8,18–22 Manganites23

and iron-pnictide superconductors24 are also materials
for which appropriate multi-orbital models have been

useful for developing an understanding of magnetism,
pairing, charge order, and transport.

Geometries which can be regarded as arising from
regular ‘depletions’ of the square lattice HM have also
been explored, both to answer fundamental questions
about types of magnetic order and for the understanding
of specific materials. An example of the former is
Lieb’s theorem25, which rigorously demonstrates that
a 1/4-depleted square lattice possesses ground state
ferrimagnetic behavior. Instances of the latter are the
1/5-depleted square lattice which can explain spin liquid
behavior in CaV4O9

26,27, and the 1/3-depleted square
lattice which shed light into the properties of layered
nickelates such as La4Ni3O8

28–30. In these situations,
the depletion converts the initial single band nature to a
model with multiple bands. In the case of the Lieb lattice,
one of these bands is dispersionless, a feature which
is intimately tied to the appearance of ferromagnetism.
(Random) site depletion of tight-binding Hamiltonians
has also been used to understand the effects of the
substitution of nonmagnetic atoms for magnetic ones,
for example the replacement of Cu by Zn in cuprate
materials.31–34 In cases where the underlying geometry
contains triangular lattice coordination, depletion can
aid AF behavior by reducing frustration,35 e.g. in CeAl3.
More complex cases, such as depletion in the PAM seems
relevant to understand the formation of magnetism in
heavy fermion materials. In this case, mean-field and
perturbation theory36–40 have provided evidence of a
ferromagnetic ground state.

In view of this, we investigate the combination of these
two avenues, a PAM which begins already with two bands,
but is then subject to site depletion. Our main conclusion
is that depletion can drive the PAM into a magnetically
ordered state, even for parameter choices which are deep
in the singlet phase for the undepleted lattice. In addition
to obtaining its magnetic phase diagram quantitatively,
we will show that an unusual property develops in which
the ordered regime is also compressible.



2

The organization of this paper is as follows: In
Sec. II we define the tight-binding Hamiltonian precisely,
review the Determinant Quantum Monte Carlo (DQMC)
methodology41 briefly, and define the observables used to
characterize the model’s properties. Section III presents
data on the effect of the removal of a single site; the
resulting enhanced spin response provides an initial
clue to the robustness of magnetism in the regularly
depleted geometry, described in Sec. IV. Section V
analyzes data for the compressibility, effective hopping,
and conductivity, and Sec. VI contains our conclusions.

II. MODEL

The depleted PAM we consider here is described by
the Hamiltonian

Ĥ =− t
∑
〈i,j〉,σ

(
d†iσdjσ + h.c.

)
− V

∑′

iσ

(
d†iσfiσ + h.c.

)
+ Uf

∑′

i

(
nfi↑ −

1

2

)(
nfi↓ −

1

2

)
+
∑
iσ

εdi d
†
iσdiσ +

∑′

iσ

εfi f
†
iσfiσ

− µ
∑
iσ

d†iσdiσ − µ
∑′

iσ

f†iσfiσ, (1)

where the unprimed sums over i run over a two
dimensional square lattice, with 〈i, j〉 denoting nearest-
neighbors, while the primed sums are restricted to the
set of sites having f -orbitals. The specific depletion
patterns will be described in the coming sections. The
first term on the right-hand side of Eq. (1) represents the
hopping of d-electrons, while the second term contains
the hybridization, V , between d and f -orbitals. The
Coulomb repulsion on localized f -orbitals is included in

the third term, with nfiσ = f†iσfiσ being the number
operator of f -electrons. The last two terms correspond to

onsite energies εdi and εfi of d and f -orbitals, respectively.
The hopping integral t ≡ 1 defines the scale of energy.

We analyze Eq. (1) using the DQMC method, a
numerically exact technique in which all sources of error,
statistical (from finite sampling times) and systematic
(from the discretization of the inverse temperature β)
can be removed to the desired degree of accuracy. The
basic idea of the method is the use of the Trotter-Suzuki
decomposition to separate the exponentials of the one-
body and two-body pieces, K̂ and P̂ respectively, in the

partition function, Z = Tr e−βĤ = Tr
[(
e−∆τ(K̂+P̂)

)l] ≈
Tr
[
e−∆τK̂e−∆τP̂e−∆τK̂e−∆τP̂ · · ·

]
. Here l = β/∆τ is the

number of incremental time evolution operators. This
decomposition has an error proportional to (∆τ)2 and is
exact in the limit ∆τ → 0. The resulting isolation of

e−∆τP̂ allows for the performance of a discrete Hubbard-
Stratonovich (HS) transformation so that it can be
rewritten in quadratic (single body) form, but with

the cost of introducing a discrete auxiliary field with
components on each of the space and imaginary time
lattice coordinates. The fermions are then integrated
out, and the HS field is sampled by the Monte Carlo
technique. In the work we report here we choose
t∆τ = 0.125 so that the error from the Trotter-Suzuki
decomposition is less than, or comparable to, that from
the Monte Carlo sampling. We therefore report error
bars from the latter. More details about the method are
discussed in Ref. 42 and references therein.

Although DQMC is exact, its low temperature
application is restricted to systems with particle-
hole or other symmetries43, owing to the minus-sign
problem44,45. For this reason, our focus is on half-
filling, µ = εf = εd = 0, where the sign problem
is absent. Fortunately, this density is of considerable
interest, both because of the strong magnetic order
favored by commensurate filling, and by the materials for
which half-filling is appropriate (e.g. the undoped parent
compounds of the cuprate superconductors). Depleting
f -orbitals, i.e. removing them from the lattice, preserves
particle-hole symmetry (PHS). This is true regardless of
the number or pattern of the removed sites, in much the
same way that PHS is present for arbitrary (including
position-dependent) choices of the energy scales t, V , and
Uf , as long as the hopping only connects sites on opposite
sublattices of a bipartite lattice.

We concentrate on the following observables:
The magnetic features of the Hamiltonian will be
characterized by the real space spin-spin correlation
function,

Cαγ(j) = 〈Sα,−j0+jS
γ,+
j0
〉 = 〈cα †j0+j ↓c

α
j0+j ↑c

γ †
j0 ↑c

γ
j0 ↓〉 , (2)

where the orbital indices are α, γ = d, f . (Later in
the paper, we will use an alternate notation which
further distinguishes the two types of conduction electron
orbitals, those with a partner f orbital and those for
which the partner has been removed.) As the notation
suggests, Cαγ(j) is independent of j0 for translationally
invariant geometries. The Fourier transform of Cαγ(j) is
the magnetic structure factor,

Sαγ(q) =
∑
j

Cαγ(j) eiq·j. (3)

In addition to these equal time correlation functions,
we also measure appropriate unequal-time quantities
including the magnetic susceptibility,

χαγ(q) =
∑
j

∫ β

0

dτ〈Sα,−j0+j(τ)Sγ,+j0
(0)〉 eiq·j . (4)

For χ we will mostly examine the uniform case, q =
0. Although we have defined both the equal time
correlations, Eq. (2), and susceptibility, Eq. (4), in terms
of the xy (+−) spin components, these are, by symmetry,
equivalent to those in the z direction.
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FIG. 1: (Color online) Local susceptibility of f -orbitals as
a function of distance |i| from the ion defect. The dashed
black line is the value of the magnetic susceptibility in the
undepleted PAM at βt = 20. Here, and in all subsequent
figures, when not shown, the error bars are smaller than the
symbol size.

Metal-insulator transitions are characterized via the
electronic compressibility (κ) and the dc conductivity
(σdc). The former is defined as

κ = − 1

ρ2

∂ρ

∂µ
, (5)

where ρ is the electronic density. The conductivity, σdc,
is evaluated as

σdc =
β2

π
Λxx(q = 0, τ = β/2), (6)

with

Λxx(q, τ) = 〈jx(q, τ)jx(−q, 0)〉 , (7)

where jx(q, τ) is the q-τ dependent current in x direction,

the Fourier transform of jx(l) = −i
∑
l tl+x̂,l(c

†
l+x̂,σcl,σ −

c†l,σcl+x̂,σ). The assumptions involved in the use

of Eq. (6) to evaluate the conductivity are discussed
in Refs.[46,47] and are tested there for a variety of
situations. At this point it is instructive to mention that
κ measures the accommodation of additional electrons
(or holes) into the system, while σdc probes the effective
charge transport throughout the lattice. In view of this,
σdc provides a more stringent criteria for metallicity.

III. SINGLE DEPLETION

An interesting step towards understanding f -orbital
depleted systems is to consider an isolated impurity.
In fact, there have been a number of recent studies
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FIG. 2: (Color online) Contour plot of the f -orbital local
susceptibilities for βt = 20. The central black square marks
the geometrical position of the site where the f -orbital was
depleted.

on the alteration of the magnetic structure around
impurities in heavy fermion materials and their possible
description within the PAM48–54. Hence, we first discuss
how depletion of a single f -orbital affects magnetic and
spectral properties, and compare with the uniform case
of the undepleted PAM. Inclusion of a magnetic defect
breaks translational symmetry. We therefore generalize
Eq. (4) to the local magnetic susceptibility at site i by

χαγi =
∑
j∈γ

∫ β

0

dτ〈Sα,−i (τ)Sγ ,+j (0)〉, (8)

where the sum runs over all sites j with orbital γ. The
total susceptibility, Eq.(4), is the sum of these local
susceptibilities. χαγi would be probed experimentally via
nuclear magnetic resonance and, indeed, such site- and
orbital-specific NMR has been used to explore spin and
charge patterns in doped heavy fermion49,53 and iron-
pnictide superconductors52.

We analysed a 10×10 lattice, using periodic boundary
conditions, with the depleted site defining the origin of
the lattice. Because one of the most interesting aspects of
site removal is the possibility of enhancing magnetism54,
we fix the hybridization at V/t = 1.2 and the repulsive
potential as Uf/t = 4, so that we are in the spin-singlet
phase of the undepleted PAM7,10.

Figure 1 presents the behavior of the local
susceptibility, Eq. (8), of the f -orbitals as a function
of the distance from the depletion site. At a high
temperature, T/t = 0.2 (βt = 5, black diamonds),
the magnetic response is large and positive, and
almost homogeneous throughout the lattice. When the
temperature is decreased, T/t = 0.10 − 0.05, the local
susceptibility increases on nearest neighbor (NN) sites.
This is the opposite of what happens in the conventional
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FIG. 3: (Color online) Contour plot of the local f electron

density of states, Nf
i (0), for βt = 20. The black square

corresponds to the impurity location, as in Fig. 2.

PAM, where, in the singlet phase at V/t = 1.2, the
magnetic susceptibility goes to zero as a consequence of
the spin gap in the ground state. Indeed, at βt = 20
(red squares), the NN magnetic susceptibility is an order
of magnitude larger than the undepleted PAM (dashed
black line).

On the other hand, as T is lowered, the next-
nearest neighbors (NNN) of the defect exhibit a lower,
but negative, magnetic response, providing evidence
of antiferromagnetic correlations around the depleted

site. As the distance from the depleted site grows, χffi
decays with distance, eventually approaching the value
for the regular PAM. An alternate visualization of the
enhancement of antiferromagnetic correlations, is given

in Fig. 2, a color contour plot of χffi . The formation of
a small antiferromagnetic ‘cloud’ around the magnetic
defect is evident. When the hybridization is increased
(not shown) the magnetic response for the NN sites
remains high, but is strongly suppressed on sites farther
from the impurity. The characteristic size of the ‘cloud’
decreases as one moves deeper into the singlet phase.
The results of Figs. 1 and 2 are consistent with DMRG
calculations for a single depletion in the one-dimensional
Kondo Lattice Model (KLM)55 and with the behavior of
a corresponding model of localized spins; see Ref. 54.

As noted earlier, the presence of magnetic clouds
around impurities is a characteristic feature of real
materials. In the heavy fermion CeCo(In1−xCdx)5, for
example, an antiferromagnetic region appears around
Cd impurities, with a size that can be tuned with
pressure48–51. The Cd substitution contributes with
a delocalized p-orbital,79 thereby locally changing the
hybridization and breaking up the local singlet; the net
effect is the appearance of an effective local moment at
the impurity site, which interacts with its neighbors.50,51
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FIG. 4: (Color online) Contour plot of the conduction electron
density of states, Nc

i (0), for βt = 20.

In this particular situation, a model more appropriate
than that of Eq. (1) is one in which the moment on
an impurity site has an altered hybridization V to the
conduction electrons53. However, magnetic domains
around sites in which the moment is removed have also
been studied56–58.80

The preceding result is suggestive of the breaking of
the local singlet state, an effect we will see in even more
dramatic form when a collection of f sites is removed.
It is also worth examining the spectral properties of the
system. We compute the local density of states (DOS) by
analytic continuation of the imaginary-time dependent
Green’s function, inverting the integral equation

Gi(j = 0, τ) =

∫
dωNi(ω)

e−ωτ

eβω + 1
, (9)

where i denotes the site position, while j is the
displacement between sites where the creation and
annihilation operators of the Green’s function are
applied. As discussed in Ref. 59, for low temperatures
the DOS at ω = 0 can be written as

Ni(ω = 0) ≈ −βGi(j = 0, τ = β/2)/π. (10)

In Fig. 3 we present a contour plot for Nf
i (0) at βt =

20. At sites far from the magnetic defect, the local DOS
vanishes, as expected in the spin-singlet phase. Near the
impurity, there is a large DOS, supporting the picture
of broken singlets around the defect, in accordance with
the local magnetic susceptibility results, discussed above.
As displayed in the contour plot of Fig. 4, precisely at
the impurity site the conduction electron DOS, N c

i (0), is
large, owing to the absence of a partner f electron.

To provide an independent check on the validity of
Eq. (10), we performed a direct inversion of Eq. (9), using
the Maximum Entropy Method60. The local DOS is
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FIG. 5: DOS of sites at distance (a) |i| = 1, (b)
√

2 and
(c) 4

√
2 from the depleted site, as well as (d) the regular

(undepleted) PAM, both for βt = 20 and V/t = 1.20. At short
distances, the singlet gap present in the undepleted PAM is
partially filled in, so that there is nonvanishing f spectral
weight at ω = 0.

displayed in Fig. 5 for sites at (a) |i| = 1 (nearest

neighbors), (b)
√

2 (next-nearest neighbors) and (c) 4
√

2
far from the magnetic defect. As in Figs. 3 and 4,
we fixed βt = 20. We also present in Fig. 5 (d) the
DOS of the undepleted PAM, at the same temperature
and hybridization. Notice that for V/t = 1.20, the
undepleted PAM is in the spin-singlet phase and has
a gap in the DOS. Although the charge gap of the
homogeneous system is recovered at large |i|, the results
suggest that a single depletion in the spin singlet phase
of the PAM creates non-vanishing spectral weight in the
f -sites around the defect (and a localized state in the
unpaired d orbital). Similar analyses within a mean-field
approach were performed in Refs. 61 and 62, where a
gain is also observed in spectral weight owing to f -orbital
depletion.

To summarize: our results provide evidence of
enhancement of short range magnetic correlations
and local density of states, which we interpret as
arising from the breaking of spin singlets near the
impurity54,55,63,64. We now turn to the main theme of
this manuscript, namely what happens with a regular
collection of depleted sites, and specifically, whether
the local magnetic regions coalesce into long range
order. Such problems were first addressed in Refs. 65
and 66 for the PAM and KLM, respectively, within
a mean-field approach. Recent mean-field results for
the PAM, presented in Ref. 36, also provide evidence
of a ferromagnetic ground state. Similarly, unbiased
methods for an analogous spin model, namely the bilayer
Heisenberg model (Ref. 54), shows that, indeed, the
depletion of spins induces an AFM ground state. As

f
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π
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0

FIG. 6: (Color online) (a) The lattice geometry for the
regularly half depleted PAM. The unit cell is composed by the
sites d0, d1 and f . Here we depict a lattice withNcells = 2×22.
(b) The band structure in the noninteracting case for V 6= 0.

we shall see in the next Section, magnetic long range
order indeed occurs, even deep in what was previously
the singlet phase of the undepleted model (large d-f
hybridization). However, as presented below, the system
still has a “memory” of the old critical point.

IV. HALF DEPLETION

Our previous results suggest that if the number of
nonmagnetic defects increases, the magnetic correlations
can be enhanced, and thus the ground state may exhibit
magnetic long range order even if the undepleted model
is in the singlet phase. Here we explore the case of
depletion of half of the f -orbitals, in the checkerboard
pattern of Fig. 6. The possibility of a magnetic ground
state in such a geometry is supported by exact results,
such as Tsunetsugu’s theorem67 for the KLM, and Lieb’s
theorem for the Hubbard model25,68,69. The former
is particularly relevant in the present case, owing to
the close relationship between the PAM and the KLM.
Tsunetsugu showed that the ground state of the KLM
on a bipartite lattice and at half filling has total spin
S = |NA − NB|/2, where NA and NB are the number
of sites in sublattices A and B, respectively. In this
theorem, the localized spins are also included when
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FIG. 7: (Color online) Local moments on the three types of
sites as functions of hybridization at a low temperature.

counting the number of sites on each sublattice, with
their labels (i.e. belonging to A or B) depending on the
sign of the Kondo interaction. There is no assumption of
translational symmetry in this result: missing sites can
be randomly located. Although this theorem was proved
for the KLM, one might expect a similar behavior in the
closely-related PAM. If so, the total spin of the PAM in
the half depleted lattice of Fig. 6 should be finite, i.e. a
ferromagnetic ground state. Our goal here is to confirm
this conjecture within unbiased methods, and, more
importantly, to quantify the details of the individual
orbital contributions to magnetism as a function of
the hybridization between the conduction and localized
electrons, which is beyond the scope of the theorem.

Let us first introduce a notation which simplifies
the identification of different sites/orbitals. Since we
depleted all f -orbitals from one sublattice, we have two
different types of d-orbitals, d0 and d1: the former (latter)
corresponds to d-orbitals without (with) hybridization
with f -orbitals, as displayed in Fig. 6. In addition, the
unit cell for this geometry is composed of three sites,
one of each type, with unit vectors a1 = a(1, 1) and
a2 = a(1,−1). Here a is the distance between nearest
d0 and d1 sites. We choose a = 0.5 so that the distance
between neighboring d0 (or d1) sites is 1. Finally, for
technical reasons we performed our simulations on an
L × L square geometry, with the primitive cell having
twice the size of the unit cell, i.e. containing six sites;
thus the number of unit cells is Ncells = 2× L2.

We start by summarizing the noninteracting band
structure: the three-site unit cell gives rise to
three energy bands, with the middle one being flat
(dispersionless), as is also the case for the Lieb lattice.
However, unlike the Lieb lattice for which the flat band
touches the dispersing bands above and below it, here the
middle band is disconnected from the lower and upper
bands for any positive value of the d-f hybridization
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FIG. 8: (Color online) Spin-spin correlation functions for
nearest pair of sites in the x-(or y-) direction: (a) cd1d1(1),
cd0d0(1), cff (1), (b) cd0d1(0.5), cd1f (1) and cd0f (0.5). Only
correlations between pairs of sites on different sublattices,
that is d0d1 and d1f , are negative (AF).

V , as displayed in Fig. 6 (b); an analogous instance
for the case of a honeycomb lattice is illustrated in
Ref. 39. As V increases, the gap between the middle and
upper/lower bands widens, though without changing the
dispersionless character of the middle band. Then,the
system is a band insulator at one-third and two-thirds
filling. Nevertheless, at half-filling, which is our focus
here, it is similar to the Lieb case, with a partially
filled flat band which, as we shall see, gives rise to bulk
ferromagnetism when interactions are turned on70.

We fix Uf/t = 4 and vary the strength of the f -d
hybridization V/t. Figure 7 shows the local moments,
〈(m̂z

i )2〉 = 〈(n̂i↑− n̂i↓)2〉 on different types of sites. When
V/t ∼ 0.8, within the AF phase of the undepleted PAM,
〈m2

f 〉 (i.e. the local moment of the undeleted f -sites) is
large, due to the suppression of the double occupancy
〈n↑n↓〉 by Uf 6= 0. By contrast, the conduction electron
moments 〈m2

d0
〉 and 〈m2

d1
〉 are close to the half-filled

non-interacting value 〈m2〉 = 〈n↑ + n↓〉 − 2〈n↑n↓〉 =
〈n↑ + n↓〉 − 2〈n↑〉 〈n↓〉 = 1/2. As V increases, the
hybridization between d1 and f -sites leads to a reduction
in 〈m2

f 〉. The local moment of the d0-sites increases

with V/t much more than that of the d1-sites, which
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FIG. 9: (Color online) Homogeneous spin structure factor
S(q = 0) versus temperature for V/t = 1.6 and Uf/t = 4.0.

remains roughly constant. This is somewhat surprising
since V connects d1-sites directly to f -sites, but does
not hybridize the d0 sites at all, and, more importantly,
d-sites have U = 0. A similar behavior was recently
observed71 in the Hubbard model on a 2D superlattice
with alternating rows of correlated and uncorrelated sites
of different widths.

Further insight into the magnetic properties of
the system can be gained by investigating non-local
properties of the real space spin-spin correlation function,
Eq. (2). We present, in Fig. 8, Cαγ(r) for nearest pairs
of sites along the x (or y) direction, as a function of the
hybridization V/t. The sign of the correlations Cαγ(r)
is always positive for {αγ}={d0d0}, {d1d1}, {ff} and
{d0f}, and negative for {d0d1} and {d1f} even at larger
r (not shown). This is consistent with Shen’s theorem72

for the KLM, which asserts that, on bipartite lattices,
Cαγ(r) is always positive for sites on the same sublattice,
and always negative for sites on different sublattices.

In the undepleted case, short range spin correlations
decline in magnitude upon crossing the AF-singlet
quantum critical point at Vc ∼ t; e.g., see Ref. 10.
Figure 8, which resolves the spin correlations by orbital
type, is useful in isolating the origin of the long range
order which we will show to exist later in this Section.
In particular, as seen in the figure, some of the short
range correlations grow as V/t increases, contrary to the
behavior in the regular PAM. For small hybridization,
Cff (1) dominates the other correlations; it is almost two
orders of magnitude larger than Cd0d0(1), for example.
However, Cd0d0(1) is strongly enhanced as V/t increases,
while Cff (1) decreases. By the time V/t ∼ 2.4 they
are roughly equal. Meanwhile, Cd1d1(1) remains small
for all V . These results suggest that d0-sites play
an important role in the magnetic correlations in the
ground state. Fig. 8 also indicates that antiferromagnetic
correlations are present between neighboring d0 and d1-
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FIG. 10: (Color online) Finite-size scaling of the total
ferromagnetic structure factor. A nonzero extrpolation to

N
−1/2
cell → 0 indicates the presence of long range order for all

the V/t values shown. Finite size corrections are largest for
small V/t and for large V/t; the effective exchange coupling
Jeff becomes small in both limits. See text.

sites [Cd0d1(0.5)], and d1 and f -sites [Cd1f (1)]: these
decrease slowly with V . Finally, Cd0f (0.5) exhibits
a large and almost constant value, indicating it too
contributes substantially to ground state magnetism.

According to Eq. (3), the total ferromagnetic spin
structure factor normalized by the number of sites is
defined as S(0) = 1

3

∑
αγ Sαγ , with

Sαγ =
1

Ncells

∑
ij

〈Sz(α)
i S

z(γ)
j 〉 . (11)

As before, α and γ label the sites d0, d1 and f , and
the sums over i and j are restricted to their positions.
Fig. 9 displays the behavior of S(0) at fixed V/t =
1.6 for different lattice sizes. At high temperatures,
where spin correlations are short ranged, this quantity
is independent of the size, N , of the system. However,
when the ground state exhibits long range order, the sum
over all sites in Eq. (3) becomes dependent on N . More
specifically, in Fig. 9, curves with different sizes separate
at T/t ≈ 0.05, the temperature at which the correlation
length ξ becomes comparable to the linear lattice size.
The temperature, which is set by the effective exchange
coupling Jeff , where ξ(T ) ∼ L decreases for larger V/t
(not shown). As a consequence, simulations for this
parameter regime has become a challenging issue for
DQMC. The dependence of Jeff on V has been estimated
within perturbation theory37.

The order parameter is obtained by carrying out a
finite-size scaling analysis of the spin structure factor.
The saturated (large β) values of S(0), for different lattice
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sizes are fit to a linear spin-wave scaling73,

S(0)

Ncell
= m2

tot +
a√
Ncell

, (12)

with m2
tot being the extrapolated global ferromagnetic

order parameter; see Fig. 10. This result confirms the
existence of long range ferromagnetism in the ground
state, even for V/t more than twice Vc/t ∼ 1 where
the system becomes a spin liquid in the undepleted
case. Fig. 11 (a) presents the behavior of mtot (squares;
black solid line) as a function of V/t. Interestingly, the
ferromagnetic order parameter is almost independent of
the hybridization over the range shown.

The analysis of the short range spin correlations
for different orbitals in Figs. 7 and 8 already provided
some insight into where magnetism “lives”. Then, we
proceed by investigating the individual contributions to
magnetism, by means of Eq. (11). However, as discussed
above, the correlation functions of d0-d1 and d1-f sites
are always negative, thus we define SAFαγ = −Sαγ for
these pairs of sites; this corresponds to taking their
antiferromagnetic contribution. By the same token, we
define SFαγ = Sαγ for those pairs of sites in which their

correlation funtions are always ferromagnetic. As with
the global structure factor, we perform a linear scaling for

each channel81, i.e. S
F (AF )
αγ /Ncells →

(
m
F (AF )
αγ

)2
, when

1/
√
Ncells → 0. These extrapolated values are displayed

in Fig. 11. We omit mF
d1d1

, which is small for the entire
range of V/t examined.

As shown in Fig. 11 (a), at small hybridization the
largest contribution to the total magnetism comes
from the f -sites, while mF

d0d0
is negligible. However,

as V/t increases, a crossover between f and d0-site
contributions takes place, with the suppression of the
former and the enhancement of the latter, while the
total magnetism is kept constant. The contributions
from different channels are exhibited in Figure 11 (b),
with mAF

d0f
being the largest over the entire range of V/t

we analyzed. This should not be surprising for small
hybridization (i.e. V/t < 1), since RKKY leads to
long-range spin correlations between d and f orbitals.
However, these strong spin correlations even for large
V/t (> 1) are the key for supporting the formation
of a magnetic ground state. In this region, attempts
to screen the f -electrons reduce their contribution to
magnetism, but, owing to the large antiferromagnetic
correlation between d0 and f -sites, the localized d0-
electrons can indirectly interact with each other, leading
to long range order in their sublattice. The same
assumption can be inferred from mAF

d0d1
. A similar

crossover (from f to d0 magnetism) is observed in a
single spin depleted KLM in a one-dimensional chain55,
as well as in higher dimensions within dynamical mean-
field theory (DMFT)36,38. Unlike DMFT, the DQMC
approach includes nonlocal correlations thus providing
additional insight into the crossover.

Interestingly, the order parameter on conduction
electron sites without an f partner, mF

d0d0
, becomes

non-negligible at Vc/t ≈ 1, the value of the QCP
for the undepleted PAM, for Uf/t = 4.7,10 In this
situation Vc/t is the characteristic energy scale to form
singlets, whose formation is prevented on the depleted
lattice by the presence of unpaired d-electrons. One
should notice that, not coincidentally, the AF mAF

d0d1
contribution to magnetism starts being relevant at Vc/t
as well. As discussed above, since d0-d0 spin correlations
are also mediated by d1 sites, one thus expects long
range spin correlations in the d0-d1 channel in order for
mF
d0d0

be non-negligible. On the other hand, for large

hybridization, namely V/t & 1, mAF
d1f

is suppressed, i.e.
d1-f spin correlations start becoming short ranged, as a
symptom of the attempts to form singlets. These results
strongly suggest that, despite the fact that magnetism
remains present, there is a “memory” of the undepleted
PAM QCP. In other words, the d0 electrons start being
localized and, therefore, interacting with each other when
hybridization is larger than the energy scale for the
formation of singlets in the undepleted PAM. Thus,
this crossover will change its position according to the
Vc(Uf ).82 Finally, we should mention that the results for
the dynamical quantities in the single depletion case (see
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FIG. 12: The orbital resolved compressibilities as functions of
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Uf is non-zero, and the conduction sites d1 to which they
are hybridized by V , the compressibility vanishes as T → 0.
However on the d0-sites where only the conduction orbital
remains following depletion, κ remains large at low T .

the previous section) give further insights into the nature
of this long-ranged ferrimagnetic state: as the number
of d0-sites (or impurities) increases, the broken singlets
around them may form larger clusters, hence leading to
long ranged spin correlations; the localized electrons on
d0-sites behave similarly to spins with a small magnetic
moment (due to Ud = 0), but also contributing to
magnetism.

V. TRANSPORT PROPERTIES

We conclude with a discussion of transport properties.
We first examine the electronic compressibilities for
each individual orbital κα, which exhibit an interesting
behavior (Fig. 12). κd1 and κf , the compressibilities on
the two sites connected by V , fall as the temperature
is lowered for both V/t = 1.2 and V/t = 2.0. On
the other hand, the d0-site compressibility κd0 is much
larger, and grows as T/t decreases. Such feature of d0-
sites is deeply connected with the formation of localized
electronic states on them, as discussed in Sec. III. Thus,
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 d
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FIG. 13: Conductivity σdc as a function of temperature T at
V/t = 0.8, 1.2 and 2.0. σdc turns sharply downward at the
same temperature T ∼ 0.05t where the compressibility on the
d1 and d0 sites also decreases more rapidly (Fig. 12) and the
ferromagnetic structure factor signals the beginning of large
spin correlation lengths (Fig. 9).

one should expect a large density of states at the Fermi
level due to the absence of local repulsion on d0-sites, but
with these available states belonging to them.

Although the system is compressible, as evidenced by
the data in Fig. 12, it is an insulator. The metallicity
of a system should be determined not only by the
available states at Fermi level, but also by its current-
current correlation functions and, ultimately, by its
conductivity, Eq. (6). As displayed in Fig. 13, the
temperature dependence of the conductivity σdc indicates
an insulating behavior. This is similar to what happens
for the single band Hubbard model on a square lattice,
where σdc also vanishes for the entire range of U/t,
as the system crosses over from a Slater to a Mott
insulator; the same also occurs for the entire range of
V/t for the undepleted PAM, whose QCP separates an
AF insulator from a singlet phase with a hybridization
gap. However, here the emergence of this insulating
state is related to the lack of available states on nearest-
neighbor d0-sites, due to the tendency of d1-f singlet
formation. That is, although one can accommodate new
electrons on d0-sites, their hopping throughout the lattice
is hindered. We believe this behavior is generic to the
depleted PAM as well: despite being compressible, the
entire phase diagram at half filled corresponds to an
insulating system.

It is worth mentioning that a compressible insulator (or
a gapless insulator) has already been predicted to occur
in other systems, such as in one-dimensional Hubbard
superlattices.74 In this case, a periodic arrangement of
L1 noninteracting sites and L2 interacting sites leads to
a compressible insulator ground state, since one can add
charge in the noninteracting sites without energy cost.
By the same token, Ud = 0 in the depleted PAM, which
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in addition to the large local density of states on the
d0-sites, allows one to accomodate a second electron on
them, creating a compressible (insulator) state.

VI. CONCLUSIONS

In this paper we have studied the properties of a two-
dimensional periodic Anderson model with (i) a single
localized f -site depletion and (ii) one half of the f -sites
regularly removed. In the former case, by examining
the behavior of the local magnetic susceptibility, we
noticed an enhancement of spin-spin correlations, with
the creation of an antiferromagnetic ‘cloud’ around the
defect. This enhancement occurs due to the break-up
of singlets around the impurity, owing to the exchange
interaction between the localized f -electrons and the
unpaired d-electron. We have also investigated spectral
properties, such as the local density of states. We
observed that a single depletion creates a large sprectral
weight at the Fermi level on the unpaired d-site,
corresponding to a localized state on it.

The latter case, i.e. the one half f -sites depletion,
leads to some unique properties. First, it has long-
range ferrimagnetic order, consistent with Tsunetsugu’s
theorem67 for the KLM (and ultimately to Lieb’s
theorem25 for the Hubbard Hamiltonian) concerning the
total spin in the ground state of a bipartite lattice with
unequal numbers of sublattice sites. Analyses of the spin
correlations in different channels indicate that at small
f -d hybridization, V , the magnetic order is dominated
by the remaining f -sites, but at large V there is a
crossover: the magnetic order becomes strongly driven
by those conduction sites which have lost their local
orbital partners. It is a remarkable instance of magnetism
from noninteracting orbitals (Ud=0). Overall, although
the total ferromagnetic order parameter is surprisingly
constant, its individual channel contributions provide
evidence that the crossover between f and d magnetism
occurs at the AF-singlet QCP of the undepleted PAM.

The emergence of this ferromagnetic state can be

understood via a strong coupling (i.e. U, V � t)
analysis, as discussed in Ref. 37. With the aid of
fourth-order perturbation theory, the system can be
mapped onto a Heisenberg-like Hamiltonian, in which
the localized electrons on d0-sites interact with each
other mediated by intervening d1-f singlets, leading to
a ferromagnetic effective exchange coupling [of typical
magnitude Jeff ∼ t4(U3 + 48UV 2)/24V 6)].

Two additional features stand out in the transport
properties. First, the system is compressible at half-
filling. This cannot be attributed simply to the presence
of conduction sites at which Ud = 0, since these are
present in the undepleted PAM, for which κ = 0. Thus
κ 6= 0 must be attributed to the depletion and, in
particular, to the mismatch of conduction and local spin
orbitals which prevents all sites from participating in
singlet formation. Related issues have been raised in
the reversed situation where the number of local orbitals
exceeds the number of conduction electrons available
for screening75,76. Second, despite this non-vanishing
compressibility, the system is insulating; the conductivity
σdc goes to zero as the temperature is lowered.

Phases where insulating behavior and nonzero
compressibility are partnered together constitute a
prominent feature of the physics of the boson Hubbard
model77. There, the introduction of disorder results in a
new ‘Bose-glass’ phase, which has zero superfluid density,
like the Mott insulator (MI) of the clean model, but which
is compressible, unlike the MI78. In the depleted PAM
studied here we have demonstrated a fermionic analog, a
phase which is insulating like the original AF and singlet
regimes of the undepleted PAM, but has nonzero κ. This
compressible ferrimagnet originates from depletion rather
than from disorder.
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70 D. Vollhardt, N. Blümer, K. Held, and M. Kollar,

Band-Ferromagnetism: Ground-State and Finite-
Temperature Phenomena (Springer Berlin Heidelberg,
Berlin, Heidelberg, 2001), chap. Metallic Ferromagnetism
— An Electronic Correlation Phenomenon, pp. 191–207,
URL http://dx.doi.org/10.1007/3-540-44610-9_13.

71 R. Mondaini and T. Paiva, Phys. Rev. B 95, 075142 (2017),
URL http://link.aps.org/doi/10.1103/PhysRevB.95.

075142.
72 S.-Q. Shen, Phys. Rev. B 53, 14252 (1996), URL http:

//link.aps.org/doi/10.1103/PhysRevB.53.14252.
73 D. A. Huse, Phys. Rev. B 37, 2380 (1988), URL http:

//link.aps.org/doi/10.1103/PhysRevB.37.2380.
74 J. Silva-Valencia, E. Miranda, and R. R. dos Santos, Phys.

Rev. B 65, 115115 (2002), URL https://link.aps.org/

doi/10.1103/PhysRevB.65.115115.
75 N. S. Vidhyadhiraja, A. N. Tahvildar-Zadeh, M. Jarrell,

and H. R. Krishnamurthy, Europhys. Lett. 49, 459 (2000),
URL http://stacks.iop.org/0295-5075/49/i=4/a=459.

76 D. Meyer and W. Nolting, Phys. Rev. B 61,
13465 (2000), URL https://link.aps.org/doi/10.1103/

PhysRevB.61.13465.
77 M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S.

Fisher, Phys. Rev. B 40, 546 (1989), URL https://link.

aps.org/doi/10.1103/PhysRevB.40.546.
78 R. T. Scalettar, G. G. Batrouni, and G. T. Zimanyi, Phys.

Rev. Lett. 66, 3144 (1991), URL https://link.aps.org/

doi/10.1103/PhysRevLett.66.3144.
79 The In electronic configuration is [Kr] 5s2 4d10, while that

of Cd is [Kr] 5s2 4d10 5p1.
80 This kind of depletion may be connected with La-doped

heavy fermion materials, such as Ce1−xLaxCoIn5. Since
the electronic configuration of Ce is [Xe] 6s2 4f1 5d1, while
the La configuration is [Xe] 6s2 5d1, the main effect of
La doping is to remove a localized f -electron. Nonetheless,
there is no experimental evidence of magnetic enhancement
for La substitution in CeCoIn5.

81 The individual contributions Sαγ of channels
{αγ}={d0d1}, {d0f} and {d1f} are divided by two
before we perform the scaling. It assures a site normalized
order parameter for all individual contributions.

82 Ref. 10 presents an accurate determination of the
undepleted PAM QCPs, Vc(Uf ).


