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There has been a recent surge of interest in dualities relating theories of Chern-Simons gauge
fields coupled to either bosons or fermions within the condensed matter community, particularly in
the context of topological insulators and the half-filled Landau level. Here, we study the application
of one such duality to the long-standing problem of quantum Hall inter-plateaux transitions. The
key motivating experimental observations are the anomalously large value of the correlation length
exponent ν ≈ 2.3 and that ν is observed to be super-universal, i.e., the same in the vicinity of
distinct critical points [S.L. Sondhi et al., Rev. Mod. Phys. 69, 315 (1997)]. Duality motivates
effective descriptions for a fractional quantum Hall plateau transition involving a Chern-Simons
field with U(Nc) gauge group coupled to Nf = 1 fermion. We study one class of theories in a
controlled limit where Nf � Nc and calculate ν to leading non-trivial order in the absence of
disorder. Although these theories do not yield an anomalously large exponent ν within the large
Nf � Nc expansion, they do offer a new parameter space of theories that is apparently different
from prior works involving abelian Chern-Simons gauge fields [X.-G. Wen and Y.-S. Wu, Phys. Rev.
Lett. 70, 1501 (1993); W. Chen. et al., Phys. Rev. B. 48, 13749 (1993)].

I. INTRODUCTION

Phase transitions between different quantum Hall
states have long been viewed as poster-child examples
of quantum critical phenomena.1 The longitudinal resis-
tivity ρxx, the width ∆B of the transition region, and
(dρxy/dB)max exhibit scaling collapse in the vicinity of
the transition over almost two decades of temperature,2–7

frequency,8 and current.9 Furthermore, although each
plateau is believed to represent a distinct topologically
ordered phase with (generally) different sets of fraction-
alized excitations, inter-plateaux transitions appear to
possess the same values for the correlation length expo-
nent ν ≈ 2.3 and dynamical critical exponent z ≈ 1:
distinct critical points exhibit “super-universality.”1,10–12

The anomalously large value of ν ≈ 2.3 and the appar-
ent super-universality remain a major mystery from the
theoretical standpoint, as an accurate description clearly
involves strong interactions as well as some form of trans-
lational symmetry breaking, such as disorder. This prob-
lem has been studied from a field-theoretic perspective
using a theory of flux-attached bosons.10 However it has
been difficult to make progress due to the fact that
the the quantum field theory of interest (matter cou-
pled to an abelian Chern-Simons gauge field) is strongly
coupled.10,13–18 Controlled approximations to this theory
yield correlation length exponents that strongly depend
on the particular quantum Hall transition.19,20

Duality provides a powerful perspective for studying
strongly coupled quantum field theories that has been
used in the past with great success.21–27 There are two
senses in which different theories are said to be dual. The

first is as an exact equivalence of theories. A familiar
example is bosonization in 1 + 1 dimensions where a self-
interacting Dirac fermion can be equivalently described
by the theory of a free boson.21–23 The second type of
duality is as an IR equivalence: two theories are IR dual
if they belong to the same universality class. In this
paper, we use duality in this second sense. A famous ex-
ample is particle-vortex duality in 2 + 1 dimensions.28–30

This duality identifies the IR content of the XY model to
that of a lattice superconductor coupled to a U(1) gauge
field, i.e., the Abelian-Higgs model. Historically, particle-
vortex duality was used as a means to understand the
Abelian-Higgs model, as applied to superconductivity;
the XY model was relatively well understood, so dual-
ity allowed one to predict the existence of a continuous
phase transition as well as its critical behavior. Similarly,
level-rank dualities were discovered, and in fact proven,
for pure Chern-Simons theories.31,32 As its name implies,
these dualities swap the Chern-Simons level and the rank
of the gauge group (in Yang-Mills regularization) up to
U(1) factors.33

Recently, generalizations of level-rank duality have
been proposed.33–37 The conjectured duals relate theories
of Chern-Simons gauge fields coupled to either fermionic
or bosonic matter fields and may, in some cases, be
thought of as bosonization in 2+1 dimensions. These du-
alities have been of particular interest to the condensed
matter community38–41 in explaining42–44 the T-Pfaffian
surface state of a topological insulator as well as provid-
ing a new effective description45 for the half-filled Lan-
dau level that is manifestly particle-hole symmetric,46–50

thereby “symmetrizing” the seminal work by Halperin,
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Lee, and Read.18

We suggest that these new dualities could also be use-
ful in understanding phase transitions between fractional
quantum Hall states, as they involve theories that gen-
eralize prior effective descriptions consisting of abelian
Chern-Simons gauge fields coupled to matter.10,19,20

To this end, we expand in this paper upon previous ef-
forts to understand fractional quantum Hall transitions
in field theoretic models without disorder. In contrast to
prior works,19,20 the class of theories we study consists
of a Chern-Simons gauge field with non-abelian U(Nc)
gauge group for Nc > 1 coupled to Nf Dirac fermions.
When Nf = 1, this model is dual to the theory of a frac-
tional quantum Hall transition first studied by Wen and
Wu19 and may be viewed as a generalization of the the-
ory studied by Chen, Fisher, and Wu.20 Although our
model is strongly coupled, it can be reliably studied in
various controlled limits. In this paper, we consider the
limit where Nf � Nc � 1. In this large Nf � Nc
limit, we compute the correlation length exponent ν to
leading non-trivial order. Although we do not find an
anomalously large ν within this expansion, effective the-
ories with non-abelian gauge symmetry provide a larger
parameter space for exploration that could yield new in-
sights.

The remainder of this paper is organized as follows. In
section II, we write down our starting theory and discuss
its fermonic dual. In section III, we discuss the calcula-
tion of the correlation length exponent ν in the fermionic
theory in the large Nf � Nc expansion. In section IV,
we discuss our results. An appendix contains details on
the calculation of ν.

II. DUALITIES

Our starting point is the field theory studied by Wen
and Wu19 that describes a fractional quantum Hall to
insulator transition on a lattice (without disorder) as a
superfluid-Mott transition of composite bosons, tuned
by the (repulsive) onsite lattice potential;51 the phases
are identified via their Hall conductivities. When these
bosons are at unit filling (appropriate to a fractional
quantum Hall transition of electrons), the latter tran-
sition has an emergent relativistic symmetry. As shown
in 19, such a model can be generalized to arbitrary frac-
tional quantum Hall to fractional quantum Hall transi-
tions by adding additional abelian gauge fields; in this
paper, we choose to focus on the simplest case. The
2 + 1-dimensional Lagrangian in Euclidean signature is

L = |(∂µ − ie∗Aµ − iaµ)φ|2 +m2|φ|2

+ g|φ|4 − i

4πkB
εµνλaµ∂νaλ. (1)

In this theory, the fluctuating U(1) Chern-Simons gauge
field aµ with µ ∈ {1, 2, 3} attaches kB flux quanta to the
complex bosonic field φ. These flux-attached bosons are
probed by the external electromagnetic gauge field Aµ

FIG. 1. A schematic plot of parameter space for Chern-
Simons theories with bosonic and fermionic matter. Note that
the orientation of the y-axis is inverted between the bosonic
and fermionic cubes. The double arrows indicate a duality
between the connected points. The pink points refer to free
theories and the yellow points to “infinitely coupled” theories.
Previous works have studied the large color and large flavor
theories both in the fermionic and bosonic cases, labeled in
orange and blue.19,20,34,55,56 The red dot corresponds to our
physical theory, while our calculation in the Nf � Nc expan-
sion is done in the green region. All calculations give ν = 1
at leading order,19,20,34,55,56 while experiments give ν ≈ 2.3.1

and carry charge e∗. The coupling g is understood to
take its IR fixed point value. In Eq. (1), the transition is
tuned by the renormalized mass m2: in the m2 > 0 phase
(where φ is gapped), the Hall conductivity σxy = 0; in the

m2 < 0 phase (where φ condenses), σxy = − 1
kB

(e∗)2

h ; in
both phases, σxx = 0 (σij refers to the zero-temperature
dc conductivity). For the fractional quantum Hall - Mott
insulator transition, we must choose kB ∈ Z. For in-
stance, to describe the 0 → 1/3, transition, one sets
e∗ = 1 and kB = 3. We are interested in the critical
properties of Eq. (1), so we set m2 = 0 for the remainder
of this paper.

We would like to study a dual description of this frac-
tional quantum Hall to Mott insulator transition using a
Chern-Simons theory with U(Nc) gauge symmetry cou-
pled to a fermion. For this, we need to remedy the fact
that the Chern-Simons level (equal to −1/kB) for aµ in
Eq. (1) is not quantized when kB ∈ Z is greater than one
(see footnote52). Further using a generalized particle-
vortex duality,53 we arrive at

L = |(∂µ − iâµ)φ̂|2 + g|φ̂|4

+
i

4π
εµνλ

(
kB âµ∂ν âλ +Aµ∂ν âλ

)
. (2)

Note that φ̂ and the U(1) gauge field âµ in Eq. (2) are
different from the corresponding fields in Eq. 1. A non-
relativistic version of the duality between Eqs. (1) and
(2) was also proposed by Lee.54 From this point forth,
we will drop the non-dynamical background gauge field
Aµ.

In the hopes of understanding the effects of the strong
interactions in Eq. (2), we can generalize the theory
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in several ways: we enlarge the gauge symmetry from
U(1) → U(NB

c ), where the integer NB
c > 1 is the

rank of the gauge group, and introduce Nf flavors of
bosons transforming in the fundamental representation
of U(NB

c ), i.e., each of the Nf bosons is a vector with
NB
c components. The corresponding three-dimensional

parameter space of theories is shown in the left cube in
Fig. 1. The labels for the axes are chosen to hold NB

c /k
B

finite in the large NB
c limit (within the dimensional regu-

larization scheme discussed later). The horizontal axis is
on a tan−1 scale to make it finite in length, while the ver-
tical axis corresponds to the ’t Hooft coupling NB

c /k
B ,

whose norm is bounded by 1. The physical theory of
interest with Nf = NB

c = 1 and kB ∈ Z is denoted
by a red dot and is located behind the front face where
kB → ∞. Since a generic theory in Fig. 1 is strongly
interacting, reliable predictions are limited to small re-
gions of the parameter space. The best understood part
is the yellow point in the top-left corner, which corre-
sponds to the Wilson-Fisher O(NB

c ) vector model, since
kB → ∞ faster than NB

c and, consequently, completely
suppresses the gauge fluctuations. In addition, large Nf
expansions19 (blue axis) and large NB

c expansions55 (or-
ange axis) have been carried out to the subleading order
and leading order. The pink point in the bottom-left cor-
ner corresponds to “infinite coupling,” NB

c /k
B = 1 and

kB , NB
c →∞.

Remarkably, the recent Chern-Simons plus matter du-
alities sometimes relate a strongly correlated theory to a
free one, and thereby constitute a non-perturbative solu-
tion to an interacting problem. Unfortunately, this does
not appear to occur for the theory described by Eq. (2).
Instead, duality relates the IR limit of Eq. (2) to the IR
limit of the theory of a Chern-Simons gauge field coupled
to a Dirac fermion:

L = |(∂µ − iâµ)φ̂|2 + g|φ̂|4 +
ikB

4π
εµνλâµ∂ν âλ

l (3)

L = ψ̄γµ(∂µ − iãµ)ψ +
ikF

4π
εµνλTr

(
ãµ∂ν ãλ +

2

3
ãµãν ãλ

)
.

In the bottom half of (3), ψ is a 2-component fermionic
field transforming in the fundamental representation of
U(kB − 1), ãµ is a U(kB − 1) gauge field, kF = −kB +
1/2, and the γ-matrices satisfy {γµ, γν} = 2δµν . The
trace in the non-abelian Chern-Simons term is taken with
respect to the fundamental representation. Note that we
are working within dimensional regularization.57 See the
appendix for further details.

Applying dualities33,37 to the generalized bosonic the-
ories with non-abelian gauge group U(NB

c ) and multiple
flavors Nf , we may schematically write:

U(NB
c )kB ,kB with Nf bosons

l (4)

U(kB −NB
c )−kB+Nf/2,−kB+Nf/2 with Nf fermions.

The duality in (3) is recovered by setting NB
c = Nf = 1.

For the dualities in (4), the subscripts on U(N) signify
the levels of the SU(N) ⊂ U(N) and U(1) ⊂ U(N)
Chern-Simons gauge fields; we will denote the rank of
the gauge group in the fermionic theory of Eq. (4) with
the integer NF

c = kB − NB
c . Armed with the duali-

ties between generalized theories, we can now consider
the three-dimensional parameter space associated with
the fermionic theories (see Fig. 1). Duality presents the
choice of which representation of the same physics to
study.

Fig. 1 depicts the duality mappings in (4). We denote
dualities between specific points in Fig. 1 with double-
headed arrows that relate bosonic theories to fermionic
theories. We intentionally chose the vertical axis of the
two cubes to point in opposite directions in order to vi-
sually indicate how a strongly coupled theory on one
side can map to a weakly coupled theory. For exam-
ple, the yellow point in the bottom left corner repre-
sents the theory of a free fermion maps to an “infinitely
coupled” bosonic theory. Similarly, the pink point on
the top-right corner representing the “infinitely coupled”
fermionic theory maps to the O(NB

c →∞) Wilson-Fisher
boson. Unfortunately, the physical bosonic theory of
interest (the red point), which is far from any known
solvable point in the bosonic parameter space, maps to
another strongly coupled theory on the fermionic side.
Short of being able to directly access the physical the-
ory, large Nf expansions20 (blue axis) and large NF

c

expansions34,55 (orange axis) have been studied on the
purely fermionic side.

In the remainder of this paper, we study the fermionic
dual our physical bosonic theory (red point) using the du-
alities stated in (3). We attempt to access this strongly
coupled fermionic theory by employing a Nf � NF

c ex-
pansion, valid within the green region of Fig 1. The duali-
ties in (4) are only conjectured to hold when Nf ≤ NB

c
37:

by employing the Nf � NF
c expansion, we are explor-

ing a class of fermionic theories that is different from the
previously studied class of bosonic theories.

III. Nf � Nc EXPANSION

We generalize the fermionic side of Eq. (3) to an ar-
bitrary number of flavors Nf so that the Lagrangian be-
comes

L =

Nf∑
i=j

ψ̄jγ
µ(∂µ − iaµ)ψj

+
ikF

4π
εµνλTr

(
aµ∂νaλ +

2

3
aµaνaλ

)
. (5)

(We have dropped the tildes on a in Eq. (5).) The
fermionic dual of the physical boson theory has Nf = 1,
NB
c = 1, NF

c = kB −NB
c and kF = −kB +Nf/2.

We calculate the correlation length exponent ν via the
definition ν−1 = 3− [ψ̄ψ(x)], which comes from the fact
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that the correlation length ξ ∼ m−1 as the mass m is the
critical tuning parameter.19 To obtain ν, we will compute
the scaling dimension of the (momentum space) mass op-
erator J0(p) = (ψ̄ψ)(p). Recall that in position space,
the scaling dimension δ is defined by the algebraic de-
cay of 〈J0(x)J0(0)〉 ∼ x−2δ. Upon Fourier transform-
ing, we have 〈J0(p)J0(−p)〉 ∼ p2δ−d, where d = 3 is the
spacetime dimension. We control the calculation in the
Nf � NF

c limit taking kF , NF
c , Nf → ∞ while keeping

the ratios λ = Nf/k
F and α = NF

c /Nf finite, along with
α � 1. Therefore, we calculate perturbatively in α to
first subleading order and exactly in λ. Note that λ can
(effectively) take any value in R – it is not the ’t Hooft
coupling NF

c /k
F .

This calculation was first investigated in a beautiful pa-
per by Gurucharan and Prakash, where the primary mo-
tivation was to find tractable non-supersymmetric con-
formal field theories with gravitational duals.58 Here, we
use Eq. (5) to model inter-plateaux transitions and, in the
course of our study, we correct a minor error in Ref. [58].

The leading order piece δ(0) of the scaling dimension of
the mass operator J0 in d Euclidean dimensions is related
to the leading order decay of the correlator by

〈J0(p)J0(−p)〉leading ∼ p2δ(0)−d, (6)

where p is the momentum inserted at the J0 vertex. Only
the tree-level diagram contributes, which results in δ(0) =
2. To calculate the anomalous dimension δ(1) of the mass
operator J0, we extract the logarithmic divergences of the
2-point correlator as in, e.g., Ref. [59]:

〈J0J0〉 = (1− 2δ(1) ln Λ + . . .)〈J0J0〉leading. (7)

Keeping terms to O(α), we arrive at the result:

[ψ̄ψ] = 2− α 64λ2

64 + π2λ2

(
1

3
+ 2 · 1

2

64− λ2π2

64 + λ2π2

)
(8)

= 2− α128λ2

3

128− π2λ2

(64 + π2λ2)2
. (9)

The factor of “2” appearing before the second term in the
parentheses above is the quantitative difference between
our result and that in Ref. [58], and results from an ad-
ditional Feynman diagram. For calculational details, see
the appendix. Therefore, we arrive at the result:

ν = 1− α128λ2

3

128− π2λ2

(64 + π2λ2)2
. (10)

We plot the anomalous dimension correction to ν at
O(α) in Fig. 2 as a function of the original bosonic pa-
rameters using the relation λ−1 = −kB/Nf + 1/2, with
the y-axis measured in units of α. Note that the correc-
tion is positive only when 1.29 < Nf/k

B < 4.50. In the
fermionic variables, this corresponds to λ > 3.6.

If we want to consider the 0 → 1/3 transition, then
we should set Nf = 1, NB

c = 1, e∗ = 1, and kB = 3.
Substituting these values into Eq. (9), we find ν = 1 −

FIG. 2. A plot of the anomalous dimension correction to ν to
O(α) in the original bosonic parameters. The y axis is in units
of α. It is positive for 1.29 < Nf/k

B < 4.50. The parameter λ
used in Eq. (10) is related to Nf/k

B by λ−1 = −kB/Nf +1/2.

.4014. In this case, the correction to ν is negative. The
dynamical critical exponent z = 1 automatically, since
our theory is Lorentz-invariant.

Chen, Fisher, and Wu studied the abelian version of
Eq. (5) given by

L =

Nf∑
i=1

ψ̄iγ
µ(∂µ − iaµ)ψi +

ikF

4π
εµνλaµ∂νaλ, (11)

where aµ is a U(1) gauge field. We have rescaled aµ to
make the comparison between their theory and ours more
transparent. They extract ν from the scaling dimension
[ψ̄ψ] in a large Nf expansion and arrive at the result,

νCFW = 1− 1

Nf

128λ2
CFW

3

128− π2λ2
CFW

(64 + π2λ2
CFW )2

, (12)

where λCFW = Nf/k
F . Comparing Eq. (10) and

Eq. (12), we see that the two expressions formally match.
To O(α), our non-abelian extension to U(NF

c ) only con-
tributes an additional color factor. It turns out that the
diagrams contributing to ν in a Nf � Nc expansion are
the same as those of a large Nf expansion to subleading
order, up to color factors. At higher orders, this equiv-
alence is no longer expected to be true: the subleading
in Nf diagrams are planar because gauge lines are 1/Nf -
suppressed. (This formal equivalence of expansions to
subleading order is likely to be true on the bosonic side
as well, though we have not explicitly verified this.) Note,
however, that the two models give different results when
considering a particular fractional quantum Hall transi-
tion. For example, in the 0→ 1/3 transition, our model
has NF

c = α = 2 and kF = −5/2, so ν = 1 − .4014.
In the model studied by Chen, Fisher, and Wu, they set
Nf = 1, NF

c = 1, e∗ = 1/3 and kF = 3/2,17,20 cor-
responding to “αCFW = 1′′ and λCFW = 2/3, so that
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νCFW = 1 − .5012. Although the expressions for ν for-
mally agree, the physical values of the parameters are
different, so they should be thought of as describing dif-
ferent physics.60

IV. DISCUSSION

The observations of super-universality and the anoma-
lously large correlation exponent ν associated with
quantum Hall inter-plateaux transitions remain a long-
standing conundrum. Duality motivates an exploration
of a large space of theories that may provide new in-
sight. We focused on an effective description of a frac-
tional quantum Hall transition involving a non-abelian
Chern-Simons gauge field with U(Nc) gauge group and
Nf fermions. This theory is dual to the critical theory of
an abelian Chern-Simons gauge field coupled to a boson.
We calculated the correlation length exponent ν to first
subleading order in the large Nf � Nc expansion, filling
in the green region in Fig. 1. We found the Nf � NF

c

expansion to be formally equivalent to a fermionic large
Nf expansion (blue axis) to first subleading order,20 al-
though the precise values of the ν inferred differ. Ac-
cordingly the exponent ν continues to depend on the
pair of plateaux in question, rather than showing any
super-universality. Moreover, the calculated exponent ν
continues to be far below the experimental value.

Clearly there are many aspects of the physical problem
that were left out in our model. It may be that transla-
tional symmetry breaking needs to be incorporated so as

to include the effect of disorder. Also, the thus-far un-
explored subleading correction in the large Nc limit may
prove enlightening. However, it appears plausible that
calculating the exponent order by order with respect to
some perturbative control parameter may not be the best
strategy. Rather, it would be interesting to address the
apparent super-universality in a more wholesome manner
from the outset.61
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Appendix: Calculational Details

The Lagrangian we study is

L =

Nf∑
i=1

ψ̄iγ
µ(∂µ − iaµ)ψi +

ikF

4π
εµνλTr

(
aµ∂νaλ +

2

3
aµaνaλ

)
(A.1)

Define light-cone coordinates via analytic continuation to be x± = (x1 ± ix2)/
√

2, and let x2
s = x2

1 + x2
2 = 2x+x−.

We will work in light-cone gauge a− = 0, which decouples the ghosts and removes the cubic gauge interaction term.58

We will also take γi = σi, the Pauli matrices. We normalize our gauge group generators by TrT aT b = δab/2.
We will regularize our theory by using a momentum-cutoff Λ in the 1-2 plane and dimensional-regularization in the

x3 direction, as has been done by others.36,58

The Feynman rules for the bare propagators and interactions are
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Under duality, we expect φ†φ ↔ ψ̄ψ. Hence, ν−1 = 3− [ψ̄ψ].19 In what follows, we will be calculating the scaling
dimension [ψ̄ψ].

Denote the mass operator in momentum space as J0(p) = (ψ̄ψ)(p), where p is the momentum inserted into the
vertex. The leading order in α term of 〈J0(p)J0(−p)〉 ∼ p, and we know that the leading order scaling dimension ∆(0)

of the mass operator J0 is given by 〈J0(p)J0(−p)〉leading ∼ p2∆(0)−d, where d is the number of spacetime dimensions.

Hence, the scaling dimension of J0 at leading order in (2+1)D is 2. We will calculate the anomalous dimension δ(1)

of J0, which amounts to extracting the logarithmic divergences of the 2-point function as59

〈J0J0〉 = (1− 2δ(1) ln Λ + . . .)〈J0J0〉leading (A.2)

First, let us calculate the exact gauge propagator Gµν to leading order in α, which we denote by a squiggle. The only
diagrams that contribute are strings of bubble diagrams, and hence satisfies the following Schwinger-Dyson equation

(A.3)

The 1PI self-energy diagram Σµν at leading order is given by

Σµν(p) = (−1) Tr(T aT b)δab Tr

∫
d3q

(2π)3

−i/q
q2

(iγµ)
−i(/p+ /q)

(p+ q)2
(iγν)

= −Nfp
32

(
δµν − pµpν

p2

)
(A.4)

Summing the bubbles via G(p) = (1−DΣ)−1D(p), we getG33 G3+

G+3 G++

 (p) =
1

Nf

2π2p2
+

pp4
s

64

64 + π2λ2

 λ2p2
−

8iλ
π p−p− λ

2p−p3

− 8iλ
π p−p− λ

2p−p3 −p2
sλ

2

 (A.5)

There are four diagrams at subleading order in α that contribute to 〈J0J0〉. We denote a J0 insertion by a crossed
circle.

First, the fermion self-energy contribution.
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We focus on the fermion self-energy subdiagram first.

Σψ(p) =
N

2

∫
d3q

(2π)3
(iγµ)

−i(/p+ /q)

(p+ q)2
(iγν)Gµν(q) (A.6)

Using the relations γ+γ− = 1 + γ3, γ−γ+ = 1− γ3, and (γ3)2 = 1, we get that

γµ/pγ
νGµν = G33(p3γ

3 − p−γ− − p+γ
+) + (G+3 +G3+)(p3γ

+ + p−γ
3) + (G+3 −G3+)p− + 2G++p−γ

+ (A.7)

Substituting /p→ /p+ /q in the above equation, we get

Σψ(p) = iα
64π2

64 + π2λ2

∫
d3q

(2π)3

1

(p+ q)2
(Kµγ

µ +KI) (A.8)

where

K− = −p− + q−
4q

λ2 (A.9)

K+ = −p+ + q+

4q
λ2 − (p3 + q3)

q+q3

qq2
s

λ2 − 2p−
q2
+

qq2
s

λ2 − q+

q
λ2 (A.10)

K3 =
p3 + q3

4q
λ2 − p−

q3q+

qq2
s

λ2 − q3

2q
λ2 (A.11)

KI = −p−
8i

π

q+

q2
s

λ− 4i

π
λ (A.12)

We use Feynman parameters to evaluate these integrals, and we will only keep the logarithmic divergences. The
relevant formulas are∫

d3q

(2π)3

f(q)

q(p+ q)2
=

1

2

∫ 1

0

dx

∫
d3q

(2π)3
(1− x)−1/2 f(q − xp)

(q2 + x(1− x)p2)3/2
(A.13)∫

d3q

(2π)3

f(q)

q2(p+ q)2
=

∫ 1

0

dx

∫
d3q

(2π)3

f(q − xp)
(q2 + x(1− x)p2

(A.14)∫
d3q

(2π)3

f(q3, ~qs)

q2
sq(p+ q)2

=
3

4

∫ 1

0

dy

∫ 1−y

0

dz

∫
d3q

(2π)3
y−1/2

f(q3 − z
y+zp3, ~qs − z~ps)(

q2
s + z(1− z)p2

s + (y + z)q2
3 + yz

y+zp
2
3

)5/2
(A.15)

The result for the fermionic self-energy is

Σψ(p) = iα
64

64 + π2λ2

λ2

24
(−pµγµ + 6p3γ

3 + 12p+γ
+) ln Λ + . . . (A.16)

Putting this into the two point function at zero external momenta, we can extract the logarithmic contribution via

1

2
Tr

/p

ip2
Σψ(p) =

1

2
Tr

/p

ip2
iα

64

64 + π2λ2

λ2

24
(−pµγµ + 6p3γ

3 + 12p+γ
+) ln Λ (A.17)

= α
64λ2

64 + π2λ2

λ2

24
(−p2 + 6p2

3 + 6p2
s)

1

p2
ln Λ (A.18)

= α
64λ2

64 + π2λ2

5

24
ln Λ (A.19)

Since this diagram contributes with a weight of 2, it contributes δ1 = −α 64λ2

64+π2λ2
5
24

Next, the 1-loop vertex correction.
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Note that to extract logarithmic divergences it is easier to calculate the vertex correction with external momenta 0
than to calculate the full two-loop integral. Also, since we will combine the two free ends to a single vertex, we only
care about the identity component, which can be extracted by applying 1/2 Tr over the gamma matrices. Hence, the
divergence is given by

N

2

1

2
Tr

∫
d3q

(2π)3
(iγµ)

1

−q2
(iγν)Gµν(q) = α

λ2

64 + π2λ2

1

8
ln Λ (A.20)

Each vertex contributes once to the divergence, so there is an overall factor of 2. In total, this diagram contributes

δ2 = −α 64λ2

64+π2λ2
1
8 .

Finally, the last diagrams

These are two-loop vertex corrections, so again it’s simpler to focus only on the vertex. Note that since we will
combine the two free ends to a single vertex, we only care about the identity component, which can be extracted by
applying 1/2 Tr over the gamma matrices. We focus first on the left one.

(−1)Nf
N

4

∫
d3p

(2π)3

∫
d3k

(2π)3

1

2
Tr

(
1

i/p

1

i/p
γσ

1

i(/p+ /k)
γν
)

Tr

(
γµ

1

i/k
γη
)
Gµν(k)Gση(k) = α

1

2

64

64 + π2λ2

64− π2λ2

64 + π2λ2
ln Λ

(A.21)

This diagram contributes with a factor of 2 because there are two vertices. The right diagram also gives the
same result because of the relation Tr γαγβγδ = −Tr γγγβγα. Hence, the two diagrams together contribute δ3 =

−α 64
64+π2λ2

64−π2λ2

64+π2λ2 .

Therefore, the scaling dimension of ψ̄ψ is

[ψ̄ψ] = 2− (δ1 + δ2 + δ3) = 2− α128λ2

3

128− π2λ2

(64 + π2λ2)2
(A.22)

Note that our answer differs with Gurucharan and Prakash, as they did not include the last diagram which contributes
an extra factor of 2 in δ3.


