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We apply a large-scale computational technique, known as topology optimization, to the inverse design of
photonic Dirac cones. In particular, we report on a variety of photonic crystal geometries, realizable in simple
isotropic dielectric materials, which exhibit dual-polarization Dirac cones. We present photonic crystals of dif-
ferent symmetry types, such as four-fold and six-fold rotational symmetries, with Dirac cones at different points
within the Brillouin zone. The demonstrated and related optimization techniques open new avenues to band-
structure engineering and manipulating the propagation of light in periodic media, with possible applications to
exotic optical phenomena such as effective zero-index media and topological photonics.

Dirac cones (DC), or conical dispersions1,2, have received
broad attention due to their special properties affecting light
transport in photonic systems, such as effective zero-index
behavior1,3–11, exceptional points12,13, photonic Zitterbewe-
gung14, and topologically protected states15,16. So far, DCs
have been primarily studied in simple geometries based on cir-
cular pillars or air holes on a periodic lattice1,3,5,7,9,10. One ex-
ception is our previous work13, which exploited topology op-
timization (TO) techniques to demonstrate higher-order DCs
(precursors to exceptional points 12,13) in complex structures.
TO, which was first proposed more than a decade ago17, em-
ploys gradient-based algorithms to efficiently handle a very
large design space, considering every pixel or voxel as a de-
gree of freedom (DOF) in an extensive 2D or 3D compu-
tational domain18–21. Recently, inverse-designed materials
based on TO have been utilized to improve the performance
of optical devices such as mode splitters, de-multiplexers, and
wavelength converters18,22–26.

Here, we apply TO toward the design of unprecedented
dispersion features in photonic crystals (PhC), namely, two
overlapping DCs with dual polarizations (DPDC): one having
transverse magnetic polarization (H · ẑ = 0) and the other
having transverse electric polarization (E · ẑ = 0). We show
that if such overlapping dispersions are designed at the Γ point
of the Brillouin zone of a square-lattice PhC, two Dirac-like
cones form, each from the degeneracy of three linear bands
and with a corresponding Berry phase of zero 2. As a conse-
quence of the DPDC at the Γ point, these PhCs exhibit zero-
index behavior regardless of the polarization of the incident
light. Furthermore, we also demonstrate DPDCs formed by
the overlap of two true Dirac cones, each consisting of two lin-
ear bands and with a non-trivial Berry phase2, at the K point
of a hexagonal PhC. This type of DPDC has implications for
all-dielectric topological photonics16,27.

Recent years have witnessed an exciting quest for exotic
composite materials along with unusual states of matter in-
volving enhanced optical, mechanical, and quantum proper-
ties28–31. However, there has been comparatively less effort
devoted to discovering unconventional structures that can en-
hance the functionality of ordinary materials, such as ubiqui-
tous low-loss isotropic dielectrics. Our work represents an
effort to leverage the capabilities of established but under-
utilized inverse design tools to uncover increased functionali-

ties for simple dielectrics.
Dual-polarization Dirac Cones.— Power emitted by a time-

harmonic current source J ∼ eiωt, proportional to the lo-
cal density of states (LDOS), offers a convenient optimiza-
tion framework for designing eigenmodes at a given frequency
ω. This follows the well-known principle that emitted power,
f(E,J, ω; ε) = −Re

[ ∫
J∗ · E dr

]
, is maximized when the

source couples to a long-lived resonance32. Here, the elec-
tric field E is simply the solution of the steady-state Maxwell
equation, ∇ × 1

µ∇ × E − ω2ε(r)E = iωJ. The goal of TO
is to discover the dielectric profile ε(r) that maximizes f for
any given J and ω. In what follows, we judiciously choose
J(r) and the symmetries of the unit cell to construct PhCs
with a variety of intriguing spectral features (see Supplemen-
tal Material for details)33. In particular, we apply TO to design
six accidentally degenerate modes of monopolar (M), dipolar
(D) and quadrupolar (Q) profiles (inset of Fig. 1) that trans-
form according to the A and E irreducible representations of
the C4v point group, and which, in turn, give rise to coni-
cal dispersions in the vicinity of their degeneracy2,34,35. We
emphasize that designing such a six-fold degeneracy poses a
significant challenge for conventional design and even for so-
phisticated, heuristic optimization algorithms such as particle
swarms, simulated annealing, or genetic algorithms36–38, but
can be susceptible to efficient gradient-based TO techniques,
in combination with a proper problem formulation.

Figure 1 shows a topology-optimized PhC unit cell and
its associated band structure, which exhibits two overlapping
DCs at the Γ point, one with transverse electric (TE) and the
other with transverse magnetic (TM) polarization. Note that
the DC in our design is the so-called generalized DC typically
characterized by the presence of an extra flat band2,39. Within
the DPDC, TM Dirac bands are formed by the degeneracy of
one monopolar (M) and two dipolar (D) modes, whereas TE
Dirac bands are formed by the degeneracy of two dipolar (D)
and one quadrupolar (Q) modes. The optimized structure con-
sists of high dielectric regions (εr = 5.5), typical of common
materials such as silicon nitride or titania, in a background of
air (εr = 1). Intermediate permittivities, εr ∈ (1, 5.5), are also
seen as a result of fine-tuning the necessary modal frequen-
cies to ensure a perfect overlap. The resulting gray-scale PhC
has altogether six DPDC modes whose frequencies are degen-
erate to within 0.1%, an accuracy limited only by numerical
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FIG. 1. (a) Topology-optimized unit cell. Black (white) regions have relative permittivity εr ≈ 5.5 (εr = 1). Gray regions with intermediate
permittivities are also seen. Note that the structure obeys C4v symmetry. (b) The band structure reveals two overlapping Dirac cones, one for
TM polarization (solid lines) and the other for TE polarization (dashed lines). Transverse magnetic Dirac bands (dark red lines) are formed by
the degeneracy of one monopolar (M) and two dipolar (D) modes manifested by the Ez component whereas transverse electric Dirac bands
(light blue lines) are formed by the degeneracy of two dipolar (D) and one quadrupolar (Q) modes manifested by theHz component (see figure
inset). (c) Configuration of the prism test designed to illustrate effective zero index behavior for designs with dual polarization Dirac cones
(DPDC). (d) FDTD analysis of the DPDC structures and their farfield patterns through the prism test show orthogonally emerging beams at
the prism facet (θ = 0), validating the effective zero-index behavior for both TM- and TE-polarized waves incident on the non-binary design.
Also shown are the retrieved TM and TE effective indices for the non-binary design (e).

FIG. 2. (a) Binary regularized version of DPDC PhC unit cell, with the corresponding band structure (b) showing TM (solid lines) and TE
(dashed lines) Dirac cones. (c) FDTD analysis and the farfield patterns through the prism test show orthogonally emerging beams at the prism
facet (θ = 0), validating the effective zero-index behavior for both TM- and TE-polarized incident waves. (d) Also shown are the TM and TE
effective indices retrieved from scattering coefficients.

resolution40,41. Here, we note that in a few initial rounds of
optimization, we deliberately optimize for a TM quadrupole
at fTMQ ∼ 0.75fD and a TE monopole at fTEM ∼ 1.25fD
in addition to the six degenerate modes forming the DC. We
find that such a procedure for “mode separation” helps ensure
well-isolated conical dispersions.

DCs at the center of the Brillouin zone correspond to zero-
index behavior when the appropriate homogenization criteria
are met1,5,42–44 (see Supplemental Material for details)33. We
perform full-wave FDTD analysis on our DPDC structures
and show that they indeed exhibit various zero-index charac-
teristics. One characteristic of a zero-index medium (ZIM)
is observed in the so-called “prism” test5, where plane waves
normally incident on a facet of a zero-index prism emerge at
right angle from another facet. Alternatively, one can also
simulate the complex transmission and reflection coefficients
of the ZIM, from which effective constitutive parameters can
be extracted1,5. As shown in Figure 1(c), we perform a prism
test by illuminating one side of a 45◦-45◦-90◦ triangular re-

gion made up of DPDC unit cells and then measuring the far-
field patterns emerging out of the diagonal (hypotenuse) facet.
Note that θ is the refraction angle between the direction of
the emerging beam and the facet normal. Figure 1(d) shows
smooth Gaussian beam profiles in the far field with the refrac-
tion angles crossing zero around the Dirac-cone wavelengths
for both TE and TM polarizations. Index retrievals (Fig. 1e)
also confirm the zero-index behavior with the effective index
crossing n = 0 around 1.675λ/a. It must be noted that in
our structures, zero-index behavior is only observed for nor-
mal incidence; illumination at oblique incident angles excite
modes which do not exhibit zero-index behavior, as is the case
for most Dirac-cone ZIM45.

While Figure 1 demonstrates a perfect DPDC, the gray-
scale dielectric profile poses a significant fabrication chal-
lenge (though it may be implemented in the radio frequency
regime). Here, we examine a binary regularized version bet-
ter suited for experimental realization. The modified structure
(Fig. 2a) is obtained via two stages: first, we apply threshold
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FIG. 3. (a) Binary regularized DPDC PhC with fabrication-friendly features. (b) The corresponding band structure shows two overlapping TM
(solid lines) and TE (dashed lines) Dirac cones. (c) FDTD analysis and the farfield patterns through the prism test [Fig. 1(c)] show orthogonally
emerging beams at the prism facet (θ = 0), validating the effective zero index behavior for both TM- and TE-polarized incident waves. (d)
Also shown are the TM and TE retrieved effective indices.

projection filters46 during the optimization process to produce
a binary design; then, we feed the intermediate binary de-
sign into a post-optimization pixel-averaging routine to weed
out the fine features and regularize the structure (see also the
Supplemental Material for details)33. The associated band
structure (Fig. 2b) shows a DPDC albeit with a spoiled over-
lap due to a small frequency gap of ∼ 1% between the TE
and TM DCs. Figure 2(c,d) show the corresponding prism
tests and index retrieval analyses. Arguably, the optimally
fine-tuned gray-scale structure shows better performance than
the completely binary version. This is due to following rea-
sons: for the gray-scale version, the zero-index crossing is
perfectly linear and virtually degenerate for both polariza-
tions; for the binary version, the crossings are separated by
about 1% and real part of the effective index shows a constant
zero value while the imaginary part depicts a bump around the
zero crossing, which corresponds to a small bandgap near the
Dirac-point frequency5. Nevertheless, the modified structures
clearly feature a range of wavelengths where near-zero-index
behavior is observed for both polarizations, which make them
realistic candidates for practical applications. We note that
an approach to realize DPDCs and polarization-independent
zero-index behavior was recently proposed47, which neces-
sitates the use of complex meta-crystals based on patterning
an anisotropic elliptic metamaterial. In contrast, we identify
DPDCs by virtue of unconventional geometries that can be
imprinted on simple ordinary isotropic dielectrics. Another
design of DPDCs is based on a 3D simple cubic array of core-
shell structures48, making it infeasible for fabrication using
standard planar process. In contrast, our design is essentially
2D and can be fabricated by patterning a film on a substrate.

The appearance of complicated features in the DPDC ge-
ometry (Fig. 1) can be attributed to numerous stringent con-
ditions imposed upon the optimization process. As noted
above, one such condition is the mode separation constraint
which pushes certain extraneous modes away from the Dirac
degeneracy. We find that relaxing this constraint leads
to a simple DPDC structure with regular geometric fea-
tures (Fig. 3a) although the proximity of an unintentional TM

quadrupole mode in the band structure engenders an anti-
crossing (aka mode mixing49) off the Γ point near the Dirac
frequency (Fig. 3b). Nevertheless, FDTD analyses of Fig. 3(a)
clearly show that, for both TE and TM polarizations, the
refracted beams cross zero degrees around the Dirac-point
wavelength (Fig. 3c). The corresponding effective indices
show near-zero behavior around the Dirac-point wavelength
(Fig. 3d). Compared with the design in Fig. 2(a), the “four-
hole” structure (Fig. 3a) has a much simpler geometry, making
the practical fabrication significantly easier. Furthermore, the
dielectric medium of the “four-hole” structure has a relative
permittivity ε = 3.3, which can be realized by polymers, such
as polyferrocene50, in the optical regime.

Dirac Cones at the K point.— To demonstrate the versa-
tility of our approach, we proceed to design DPDCs based
on a hexagonal lattice with symmetry properties distinct from
those found on a square lattice. In particular, we focus on the
K point of the Brillouin zone, where two dipolar eigenmodes
that transform according to the E irreducible representations
of C3v point group form a deterministic DC, i.e, a DC that
arises as a consequence of the symmetry of the lattice2,34. We
show that we can overlap two such DCs, one with TM po-
larization and the other with TE polarization, thus restoring
electromagnetic duality16 in the vicinity of the four-fold de-
generate Dirac point. Specifically, we employ the LDOS TO
formulation to design degenerate TM and TE dipolar modes
while imposing C3v symmetry via suitable transformations
which ensure the concurrence of the corresponding degener-
ate partner for each polarization, leading to DPDCs.

Figure 4 shows complex geometries discovered by TO and
the corresponding band structure with overlaid TE and TM
DCs at K point. The gap between the two Dirac points is
as small as < 0.1%, only limited by numerical discretiza-
tion errors. To our knowledge, this structure is the first proof-
of-principle 2D design, based on ordinary isotropic dielectric
materials, that hosts overlaid TE/TM DCs at a non-Γ point
of a PhC. Moreover, this structure stands in contrast to more
sophisticated recent designs using 2D metacrystals16 or 3D
hexagonal PhC27. Since DPDCs at the K point of a hexag-
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FIG. 4. Detailed image of (a) low-index (εr = 3.3) (b) high-index (εr = 9) topology-optimized hexagonal unit cell. (c) Band structure of
the low-index design exhibiting overlaid TE (dashed line) and TM (solid lines) Dirac bands (red and blue). The degenerate modes (insets)
transform according to the E irreducible representation of C3v group.

onal lattice are important precursors to non-trivial topologi-
cal states15,16,27, our method suggests an alternative precursor
from which one may realize a so-called photonic topologi-
cal insulator (PTI). Since our focus here is realizing DPDCs,
we will not pursue making a PTI here. However, it is worth
mentioning that there are well-known techniques to introduce
non-trivial topological bandgaps into DPDCs based on suit-
able bi-anisotropic perturbations, such as by introducing off-
axis propagation (kz 6= 0), by systematic reduction of mir-
ror symmetry, or by modifications that mix TE and TM po-
larizations while preserving the pseudospin distinction16. Al-
though the TO-discovered geometry might be quite challeng-
ing to fabricate due to the existence of pixel-thin hairy fea-
tures, we note that these features do not indicate a fundamen-
tal limitation of our technique but are an artifact of underlying
image-transformation steps which impose undue constraints
on the optimization process. In the supplement, we discuss
such drawbacks as well as possible ways to mitigate them.

Conclusion and remarks.— While some of the optimized
designs we have presented might prove challenging, though
not impossible, to fabricate at visible or near-infrared fre-
quencies, they can be readily realized at mid- to far-IR as
well as microwave frequencies via existing technologies such
as computerized machining, 3D printing, laser cutting, addi-
tive manufacturing, or two-photon lithography, self-assembly
of DNA molecules51–54. Furthermore, thin isolated features
which typically beset topology-optimized designs can be re-
moved by a variety of advanced regularization and averaging
techniques18. The appearance of such features indicates an

optimization process that is severely constrained by the de-
sign requirements of realizing TE and TM modes with the
same modal profile at the same frequency. The fundamental
issue underlying such a design is that in a generic structured
isotropic 2D medium, TM bands tend to be at lower frequen-
cies than TE bands, breaking the so-called electromagnetic
duality. While we have shown that our TO formulation is ca-
pable of restoring this duality and finding DPDCs on a 2D
lattice, this comes at the expense of a highly irregular struc-
ture which needs to be fine-tuned with thin sensitive features.
In contrast, we surmise that three-dimensional platforms will
offer even greater flexibility. For example, it is known that TM
modes tend to experience effectively different index of refrac-
tion relative to TE modes in 3D PhC slabs, e.g. depending on
whether the PhC geometry consists of holes or pillars49.

In future work, we will consider optimization in full 3D
multi-layered geometries, which we expect will open up even
more exciting opportunities for new structural designs in the
fields of metasurfaces, metamaterials and topological photon-
ics.

Acknowledgements.— The authors thank Philip Camayd-
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39 B. Dóra, J. Kailasvuori, and R. Moessner, Phys. Rev. B 84,

195422 (2011).
40 J.-M. Jin, The finite element method in electromagnetics (John Wi-

ley & Sons, 2014).
41 C. Geuzaine and J.-F. Remacle, International Journal for Numeri-

cal Methods in Engineering 79, 1309 (2009).
42 C. R. Simovski and S. A. Tretyakov, Physical Review B 75,

195111 (2007).
43 R. A. Shore and A. D. Yaghjian, Radio Science 42 (2007).
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