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We introduce the concept of Plasmonic Parametric Resonance (PPR) as a novel way to amplify high 
angular momentum plasmonic modes of nanoparticles by means of a simple uniform optical pump. In 
analogy with parametric resonance in dynamical systems, PPR originates from the temporal modulation of 
one of the parameters governing the evolution of the state of the system. As opposed to conventional 
localized surface plasmon resonances, we show that in principle any plasmonic mode of arbitrarily high 
order is accessible by PPR with a spatially uniform optical pump. Moreover, in contradistinction with other 
mechanisms of plasmonic amplification, the coherent nature of PPR lends itself to a more straightforward 
experimental detection approach. The threshold conditions for PPR are analytically derived. Schemes of 
experimental realization and detection are also discussed. 
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Localized Surface Plasmons (LSP) are non-propagating 

coherent oscillations of free-carriers confined in plasmonic 
particles [1]. These modes can be externally excited by 
photonic or electronic scattering [2], leading to strongly 
localized electric fields in proximity of the particle’s 
surfaces. An enhanced optical response is obtained when 
LSPs are resonantly excited by an incident field at the 
characteristic frequency of the dipolar eigenmode. In 
addition to their dipolar response plasmonic particles, in 
general, support an infinite discrete set of plasmonic 
resonances [3, 4] associated with high electromagnetic 
angular momentum states. In the simple case of a 
plasmonic nanosphere with frequency dispersive 
permittivity 1( )ε ω  embedded in a background medium 
with constant permittivity 2ε , for a resonance of order 

1n ≥    there are 2 1n + degenerate angular-momentum 
states with complex frequency nω  satisfying the condition

1 2( ) (1 ) /n n nε ω ε= − + . For 1n >>  the eigenmodes tend to 
occur for ( )1 1 2~nε ω ε>> − . The increased modal density for 

1 2~ε ε− is not exclusive to spherical particles, but is rather 
a general feature of all plasmonic structures [5]. Accessing 
such spectrally dense set of tightly bound resonant modes 
would lead to enhanced nonlinear light-matter interactions 
at the nanoscale, with applications ranging from sensing [6, 
7] and Raman spectroscopy [8, 9] to near-field nonlinear 
optics[10, 11], imaging [12] and nano-manipulation [13, 
14], as well as for the realization of optical metamaterials 
[15].  

The efficiency with which such resonances can be 
excited by an external incident field depends upon the 
spatial and spectral overlap between the excitation field and 
the specific plasmonic mode, or in other words on how 
closely the conditions of energy and angular momentum 
conservation are met. For deeply subwavelength plasmonic 
particles only the lowest order mode of electric dipolar 
nature is efficiently coupled to, and excited by, radiation 
states. The higher order eigenmodes tend to be subradiant, 
and by reciprocity they are nearly decoupled from free-
space propagating fields. Therefore, exciting such higher 
order modes requires either sophisticated near-field 
scattering techniques [16], or the use of active media to 
promote surface plasmon amplification by stimulated 
emission of radiation (SPASER) [17]. Just as challenging is 
the optical detection of such modes, due to their nearly non-
radiating nature.  

The aforementioned limitations of LSP are largely 
dependent upon the optical excitation mechanism. To 
overcome these limitations we present an alternative 
approach to deliver energy to the free-carriers of a 
plasmonic nanoparticle by introducing a different form of 
LSP resonance: the plasmonic parametric resonance (PPR). 
PPR originates from the temporal modulation of one of the 
parameters governing the evolution of the state of the 
system. In this Letter we outline the theory of PPR in 
comparison with conventional LSP resonance. In particular, 
we show that in principle any plasmonic mode is accessible 
by PPR using a pump field that is spatially uniform, thereby 
overcoming the difficulty of matching the spatial profile of 
high-angular momentum modes. An example of a possible 



  

experimental realization is discussed and analyzed both 
theoretically and numerically, showing that PPR can be 
achieved and observed in a realistic system. 

For the purpose of illustration of PPR we consider a 
system which is amenable to a closed-form solution: a 
subwavelength plasmonic sphere in a homogeneous 
dielectric background medium. More complex 
configurations would display qualitatively similar 
phenomenology. We consider a sphere of radius R  and 
relative permittivity 1ε (medium 1), embedded in a uniform 
dielectric medium 2ε (medium 2). The radius R  is 
assumed to be much smaller than the free-space wavelength 
associated with any of the plasmonic eigenmodes of 
interest, such that a quasi-static approach is applicable for 
determining the spatial distribution of the electromagnetic 
field. The dispersion of  2ε  is neglected. Medium 1 is 
assumed to follow a Drude-like frequency-domain 
dispersion 2 2

1( ) / ( )pl iε ω ε ω ω ωγ∞= − + , with plasma 
frequency plω , collision frequency γ , and a non-dispersive 

term accounting for high-frequency spectral features, ε∞ . 
The dispersive term in the 1( )ε ω  expression is associated 
with the equation of motion for the free-carrier polarization 
density 1( , )tP r  within medium 1: 

 2 2
1 1 0 1t tot t plγ ω ε∂ + ∂ =P P E   (1) 

In equation (1) the damping rate totγ  is corrected to include 
radiation effects in addition to the collision frequency γ  , 
i.e. tot radγ γ γ= + . 1E is the electric field in the region 
occupied by medium 1.   

In the quasi-static limit the potential of an electric 
multipole eigenmode of order ( , )n m  can be expressed in 
terms of even and odd spherical harmonics ( / )

,
e o

n mY φ θ( , ) . 
Under these assumptions the polarization density profile

1( , )tP r  can be expressed as superposition of spherical 
harmonics with time-varying coefficients ( / )

, ( )e o
n mP t  : 
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Exploiting the orthogonality of spherical harmonics, the 

application of the electromagnetic boundary conditions at 
r R=  yields separate equations of motion for the 
polarization density amplitudes ( / )

, ( )e o
n mP t  of each angular 

momentum state:  
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where ( )2 2
2 2{ / [ ]}n pl n nω ε ε ε∞Ω = + +  is the modal 

frequency of the plasmonic eigenmode of order ( , )m n in 
the absence of damping, and , ,

rad
n m n mγ γ γ= +  is the damping 

rate including material absorption effects  γ  and modal 
radiation effects ,

rad
n mγ  . For 1n >>  the radiation damping 

becomes negligible and 1,n mγ γ>> → . 
The energy in the system at any point in time is 

partitioned and exchanged between potential energy 
, ( )n mU t  and kinetic energy , ( )n mK t  which can be simply 

expressed in terms of the initial phase-space coordinates

, , 0(0), (0) ( )n m n m t n tP P P =⎡ ⎤= ∂⎣ ⎦
& . Of particular interest are the 

following two complementary initial conditions , (0) 0n mP =&  
or , (0) 0n mP =  : 
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In the situation described by equation (4) the total energy 

is potential energy and it depends explicitly on the modal 
frequency nΩ , which can be expressed in terms of the 
background permittivity 2ε . In particular the potential 
energy in expression (4) coincides with the energy of 
surface polarization charge of the ( , )n m  component of the 
polarization density (2), sitting in the corresponding 
eigenmode electric potential ( / )

, ( , )e o
n mV tr : 
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 As evident from equation (6) a decrease (increase) in the 

background permittivity 2ε would lead to an increase 
(decrease) in the potential energy in the system.  Assuming 
for the moment that 2ε  could be instantaneously reduced to

2 2dε ε− (more realistic modulation conditions will be 
considered later), the characteristic modal frequency would 
change from nΩ to n ndΩ + Ω . Corresponding to such 
increase in the modal frequency, the energy of the system 
increases by an amount: 
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Equation (7) indicates that the energy increment produced 
by the parametric modulation is proportional to the 
potential energy ,n mU  stored in the plasmonic mode. In the 
situation described in equation (5) on the other hand the 
system’s energy is purely kinetic, and it does not depend 
explicitly on the modal frequency, nΩ  (or on 2ε ). Under 
such conditions, an instantaneous modification of the 
system parameters having the sole effect of modifying the 
characteristic modal frequency would not affect the 
system’s energy. From these observations, a periodic 
modulation scheme of the system’s parameters can be 
identified which efficiently delivers energy to the 
plasmonic mode, without resorting to direct application of 
external electric fields on the charge carriers. 
    In what follows we analyze one full modulation period 
and determine the parametric resonance threshold for the 
plasmonic eigenmode of order ( , )n m , corresponding to the 
regime of parametric regeneration. Let us consider a system 
that starts at time 0t =  with total energy, , (0)n mW , in the 
form of potential energy of a plasmonic eigenmode of order
( , )n m . This initial state is identified by the phase-space 
coordinates: 
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After a time ( )1

1 tan 2 / /n nT π ω γ ω−⎡ ⎤= −⎣ ⎦  with
2 2 2 / 4n nω γ= Ω −  the freely oscillating system evolves to a 

state of pure kinetic energy ( ) ( ) 1
, 1 , 0 T

n m n mK T W e γ−=  with 
phase space coordinates , 1( ) 0n mP T =  and

1 / 2
, 1 ,( ) (0) T

n m n m nP T P e γ−= − Ω& . If at this point the system’s 
parameters are instantaneously modulated so as to modify 
the eigenfrequency from nΩ to n n ndΘ = Ω − Ω , by virtue 
of equation (7), no energy is delivered to or taken from the 
system as the potential energy ,n mU  is zero at the moment. 
From this point on the plasmonic eigenmode oscillates at 
the modified eigenfrequency nΘ . The system reverts to a 
state of pure potential energy after a time

( )1
2 (1 / ) tan 2 /n nT θ θ γ−=  with 2 2 2 / 4n nθ γ= Θ − , so that at 

time 1 2t T T T= + =  the energy of the plasmonic mode is 
again purely potential, with ( ) ( ), , 0 T

n m n mU T W e γ−= . At 
time T T dt+ = +  (for 0dt → ), if the system’s parameters 

are instantaneously modulated to restore the eigenfrequency 
to the initial value nΩ , the energy of the plasmonic mode 
increases to a value of: 

 
 ( ) ( )( )2 2

, , 0 / T
n m n m n nW T W e γ+ −= Ω Θ   (8) 

 

By equating ( ) ( ), , 0n m n mW T W+ = , equation (8) yields the 
threshold condition for parametric resonance. In the small 
loss nγ << Ω  case the threshold value of the modulation 
depth nd Ω can be expressed in terms of the quality factor 

nQ  of the plasmonic mode:  

a) 

b) 

Figure 1. a) Phase-space trajectories in terms of polarization 
amplitude and polarization current and b) temporal evolution of 
the energy content of a plasmonic mode under different 
parametric modulation conditions. When the PPR threshold 
represented by the green curve is exceeded the plasmonic mode 
experiences a net gain resulting in increasing polarization 
oscillations.   
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The phase-space trajectory of the state of the 

parametrically driven plasmonic system in terms of 
polarization amplitude nP  and current nP&  for plasmonic 
sphere is illustrated in Figure 1a for various modulation 
conditions. At the parametric regeneration threshold the 
phase-space trajectory is the closed orbit (i.e. the 
“separatrix”) shown in green in Figure 1a, separating the 
inward and outward spiraling trajectories that occur below 
and above threshold respectively. The total energy of the 
plasmonic mode corresponding to the phase-space 
trajectories of Figure 1a is shown in Figure 1b. The 
discontinuous sections correspond to the parametric energy 
transfer described by equation (7) occurring when the 
polarization density amplitude ,n mP is at a maximum and 
the polarization current density is zero. Consistent with 
equation (7) each parametric energy transfer is proportional 
to the potential energy of the polarization charges, leading 
to an increase in the mode energy with an exponential 
envelope.  

The step-wise parametric modulation discussed so far is 
an idealization devised to determine a lower-bound for the 
plasmonic parametric regeneration threshold. In order to 
give a realistic description of an actual physical system one 
must consider the specific temporal profile of the 
modulated modal frequency ( )n tΩ , which in turn depends 
on the physical mechanism exploited to alter the 
background permittivity 2ε . For plasmonic resonances at 
infrared or optical frequency, realistically, only optical 
nonlinearities of electronic origin would be fast enough to 
enable efficient PPR. As an example we analyze the 
practically relevant example of the harmonic modulation of 
the permittivity 2ε  mediated by its second order nonlinear 
optical susceptibility (2)χ in the presence of a spatially 
uniform pump field. The inherently anisotropic character of 
second order nonlinear interactions [18] must be taken into 
account, as it introduces specific selection rules on the 
modes that can interact with a given pump field. 

In the following we consider a plasmonic sphere 
(medium 1) immersed in a medium 2 belonging to the m 
point symmetry group [19], with a dominant second order 
susceptibility term zzzχ . Such model well describes, among 
others, the characteristics of 2-methyl-4-nitroanline (MNA) 
[20], an organic material displaying an extremely large 
second order susceptibility. A uniform linearly polarized 
pump field of the form ˆ( ) ( )P Pt E t=E z  is incident on the 
sphere. The interaction of the pump field with nonlinear 
susceptibility zzzχ of medium 2 produces a nonlinear 
polarization density 2 0 2 2ˆ ˆ ˆ( )( )NL

zzzε χ= ⋅ ⋅P z E z E z . Due to the 
continuity of the radial component of the electric 

displacement, the dynamics of the polarization density in 
medium 1 are modified by the interaction with the radial 
component ( )2 ˆNL

r R=
⋅P r of the nonlinear polarization in 

medium 2, which can be expressed as a superposition of 
spherical harmonics, with amplitude coefficients ( )( / )

,
e o

n mS t  :  
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S t Y θ φ
∞

= = =

⋅ =∑∑ ∑P r   (10) 

The resulting equations of motion for the ,n m component 
of the polarization density amplitude within the sphere are 
given by: 
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The amplitude coefficients ( )( / )

,
e o

n mS t represent the 
spherical harmonic component ,n m  of the nonlinear 
polarization density, originating from the mixing of various 
pairs of angular momentum states of the field in region 2, 
with selection rules dictated by the specific symmetry class 
of the nonlinear susceptibility under consideration. 
Assuming that the pump field PE  is much stronger than 
any of the plasmonic modes fields oscillating in the system 
– a condition valid at the onset of PPR – we shall consider 
only the three-wave mixing processes involving the pump. 
Saturation effects will occur when the electric field of the 
PPR mode becomes comparable in magnitude to the pump 
field. For the case at hand, in which the dominant 
component of the nonlinear susceptibility is the zzzχ term, 
the radial component of the nonlinear polarization couples 
different angular momentum states, so that a number of 
three-wave mixing processes are allowed. In particular for a 
uniform ẑ -polarized pump field, corresponding to a 
multipole of order 1 , 0pump pumpn m= = , it is tedious but 
straightforward to show [21] that the interaction with a 
mode of order ,n m leads to nonlinear polarization 
components of order ,n m  and 2,n m± . Considering only 
the angular-momentum-matched process (which is the 
dominant one), the leading term of the nonlinear 
polarization component of order ,n m can be expressed as:  
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The expression (12) allows for recasting equation (11) in 
the following more physically transparent form, in which 
the external permittivity modulation is represented as a 
parametric shift of the resonant frequency of the 
polarization density amplitude: 
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 In the practically relevant case of a time-harmonic pump 
of the form ( )( ) cosP P PE t A t= Ω , defining

3 2
, , / (2 )n m n n m zzz P pld u Aχ ωΩ = Ω , equation (13) reduces to the 

well-known and extensively studied Mathieu equation [22, 
23] with general solutions expressed in terms of Mathieu’s 
Sine and Cosine functions as follow: 
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where the constants ,n ma  and ,n mb  are determined from the 
initial conditions. By expressing the Mathieu functions 

( ), ,F a q x  in equation (14) in the Floquet form as the 
product of a periodic function ( ), ,P a q x  and a complex 
exponential, i.e. ( ) ( ), , , , exp(i )F a q x P a q x xμ= , where 
μ  is the characteristic Floquet exponent [24], the PPR 
threshold condition is obtained: 
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The PPR threshold conditions for different collision 
frequencies γ   are shown in Figure 2 as a function of the 
normalized frequency modulation depth /n ndΩ Ω , and of 
the pump frequency PΩ  . The lowest modulation threshold 
is obtained for 2P nΩ = Ω , when the pump field’s 
frequency is twice the plasmonic mode frequency. For 
small losses, i.e. nγ ω<< , and 2P nΩ = Ω  the threshold 
condition (15) can be expressed in terms of the nQ   factor: 

 2 2n

n n n

d
Q

γΩ
= =

Ω Ω
  (16) 

  
From Figure 2 it is apparent that the PPR conditions can 

also be met, albeit with a higher threshold, when the pump 
frequency is detuned from the optimum value, which can be 
intuitively understood in terms of intervals of efficient 
energy transfer to the plasmonic mode spaced apart by 
longer intervals of attenuation. 

As an example we apply the previous analysis to the 
specific case of a silver particle embedded in a 2-methyl-4-
nitroanline (MNA) host [20]. MNA belongs to the m point 
group, with maximum nonlinear coefficient

~ 500 /zzz pm Vχ . Considering the refractive index 
dispersion of MNA [25] and of silver[26], plasmonic 
resonances of high order occur around a wavelength of 
450nm. For such system the calculated threshold pump 
intensity is 2~ 1.4[G / ]pI W cm . This intensity value, which 
is  below the damage threshold of MNA [27], could be 
reached for instance with focused pulsed excimer lasers 

such as KrCl laser operating at the nearly optimum pump 
wavelength of 222nm. With a pulse duration of 100ps it is 
possible to achieve 4~ 10  or more PPR amplification 
cycles. For particles of size comparable with the electron 
mean free path higher pump powers may be required, as a 
consequence of increased dissipation due to electronic 
scattering at the particle’s surface [28].   Qualitatively 
similar results are expected for other variations of the 
configuration described so far, such as for instance a 
plasmonic shell surrounding a nonlinear core, or even 
larger particles at the onset of the Mie regime.  

We would like to summarize here the salient features of 
PPR in comparison with conventional LSP resonance, as 
well as in comparison with other schemes of plasmonic 
amplification such as SPASER [17]. A fundamental 
characteristic of plasmonic parametric gain that emerges 
from the analysis above and in particular from equations (4)
, (7) and (9) is that a plasmonic mode of any order ( , )n m  
can undergo PPR and be amplified by  a spatially uniform 
modulation of the background permittivity, provided that 
the temporal modulation profile is correct, and the 
appropriate threshold is exceeded. This is in stark contrast 
with conventional LSP resonance, which for a mode of 
order ( , )n m requires a driving field with a matching spatial 

Figure 2. PPR threshold conditions for various damping rates
as a function of pump frequency and modulation amplitude.  



  

profile – a condition nearly impossible to achieve in 
practice for high-order plasmonic modes of nanoparticles. 
For these reasons PPR is uniquely suitable to access 
plasmonic resonances of arbitrarily high order in deeply 
sub-wavelength structures.  

A further distinction of PPR compared to LSPR must be 
noted: in order for a mode of order ( , )n m to undergo PPR 
it is necessary for such mode to be already oscillating in the 
system - however small its initial amplitude might be. In 
the linear regime, treating each mode as an independent and 
distinguishable harmonic oscillator in thermodynamic 
equilibrium with the background, such initial conditions 
can be easily determined according to a Planck distribution 
[29], implying that, at the very least, zero-point oscillations 
must exist, and therefore can be amplified by PPR. It is also 
worth pointing out that the correct initial phase relation 
between the pump and the plasmonic mode of interest is not 
a critical parameter, provided that the pump exceeds the 
PPR threshold. That is because PPR displays the important 
property of “phase-locking” that is common to all 
parametrically resonant systems [30], and that leads to a 
synchronization between the pump and the mode 
experiencing parametric gain [30].  

Finally, when compared with other schemes of plasmonic 
amplification, such as SPASER[17] in which there is no 
coherence between plasmon and pump field, the coherent 
nature of the energy exchange leading PPR offers 
interesting advantages from the point of view of the 
detection of the occurrence of PPR. While the amplified 
modes are essentially non-radiative and difficult to detect 
directly, the instantaneous energy content of the PPR mode 
affects the pump field absorption and therefore the PPR 
amplification dynamics are expected to leave an imprint on 
the pump pulse temporal profile whereby its trailing edge 
would experience a larger attenuation – an easily 
measurable characteristic. For the same reason we may 
envision using collections of particles undergoing PPR for 
optical limiting applications.       

In conclusion, we have introduced the concept and 
presented the theory of Plasmonic Parametric Resonance. 
Unlike conventional LSPR, all the plasmonic modes of a 
nanostructure, including the strongly subradiant ones, can 
be resonantly excited by spatially uniform optical pumping, 
provided that the corresponding threshold is exceeded. 
Accessing such high density of strongly localized states 
holds promise for enhancing nonlinear light-matter 
interaction at the nanoscale, and for the development of 
nonlinear optical metamaterials. Moreover, the coherent 
nature of the PPR process lends itself to simpler detection 
experiments compared with other plasmon amplification 
schemes. 
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