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We report discovery of a topological Mott insulator in strongly-correlated Dirac semimetals. Such
an interaction-driven topological state has been theoretically proposed but not yet observed with
unbiased large scale numerical simulations. In our model, interactions between electrons are me-
diated by Ising spins in a transverse field. The results indicate that the topological mass term is
dynamically generated and the resulting quantum phase transition belongs to the (2+1)D N = 8
chiral Ising universality class. These conclusions stem from large scale sign free quantum Monte
Carlo simulations.
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Introduction. Combination of the richness of quan-
tum many-body effects and the elegance of topological
physics1–5 has revealed remarkable phenomena and new
principles of physics, such as the fractional quantum Hall
effect6,7 and topological order8. Among these discoveries,
one intriguing example is interaction-driven topological
states, where strong correlations among particles convert
a conventional state of matter into a topological one. One
pathway towards such states is to utilize the phenomenon
of spontaneous symmetry breaking9–13, i.e. in a system
where nontrivial topological structures are prohibited by
symmetry, strong interactions can spontaneously break
symmetry and thus stabilize a topologically nontrivial
ground state. As proposed in Ref.9, such a phenomenon
can arise in a 2D Dirac semimetal (DSM) through a quan-
tum phase transition that breaks spontaneously the time-
reversal or the spin rotational symmetry, resulting in an
interaction-driven, quantum-Hall or quantum-spin-Hall
(QSH), topological insulator, dubbed topological Mott
insulators (TMI)14.

Although the general principle about TMI has been
well understood, finding such a state via unbiased the-
oretical/numerical methods turns out to be challenging
due to the strong coupling nature of the problem and
the presence of competing orders. Extensive numeri-
cal efforts on interacting DSMs15–21 report negative re-
sults, suggesting that in all explored parameter regimes,
topologically-trivial competing states always have lower
energy and thus the proposed TMI states cannot be sta-
bilized. The successful alternative came lately, by sub-
stituting the DSM by a semimetal with a quadratic band
crossing10,11,22, an interaction-driven quantum Hall state
is observed numerically23. Furthermore, experimental
realization of such scenario has very recently been pro-
posed in functionalized α-Fe2O3 nanosheet24. However,
whether a TMI can emerge from a DSM without the as-
sistance of a quadratic band crossing point, as in the

original proposal9, still remains an open question. It is
also worthwhile to highlight that between the two pos-
sible types of TMIs, quantum Hall and quantum spin
Hall9, only the former has been observed in numerical
studies23. Hence, to find a time-reversal invariant TMI
is one key objective of this study.

On the other hand, in a seemingly unrelated research
area, recent developments in sign-problem-free quantum
Monte Carlo (QMC) approaches for itinerant fermions
coupled to fluctuating bosonic fields open the door to
investigate many intriguing strongly-correlated systems,
such as antiferromagnetic fluctuations mediated super-
conductivity in metals25,26, nematic quantum critical
points in itinerant systems27,28, as well as non-fermi
liquid in itinerant quantum critical regions29–31. The
strong-coupling nature of these systems makes analyt-
ical approach challenging32–36, and hence sign-problem-
free QMC solutions pave a new avenue towards quantita-
tive understanding about these systems. These QMC ap-
proaches also offer a new platform for studying strongly-
correlated topological states, and have recently been uti-
lized to study topological phase transitions in DSM37 and
exotic states with topological order38–40.

In this Letter, we study interaction-driven topologi-
cal Mott insulators in Dirac semimetals with the afore-
mentioned QMC approach. Instead of bare interactions,
our model utilizes fluctuating bosonic fields to mediate
interactions between fermions. At the level of the ef-
fective field theory, the model is equivalent to the orig-
inally proposed TMI model in Ref.9, except for a mi-
nor difference in symmetry irrelevant to topology. For
the study of TMI, our modified model shows two ad-
vantages: (1) other competing orders are strongly sup-
pressed, allowing a clear TMI phase; (2) the sign-problem
is avoided and thus the model can be solved via QMC
techniques. Comparing to previous exact diagonalization
studies16–18,20,23, the QMC approach can access much
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FIG. 1. The checkerboard lattice and the ground-state phase diagram. (a) The checkerboard lattice (disks) and the dual
lattice (squares). Fermionic fields (Ising spins) are introduced to the lattice (dual lattice) sites. A unit cell of the lattice,
indicated by a1 = (1, 0),a2 = (0, 1), contains two fermion sites (A and B sublattices represented by red and green disks) and
two Ising spins (black squares). (b) The Brillouin zone. For HFermion, the band structure contains two Dirac points at X1

and X2. (c) The phase diagram. Paramagnetic (PM) and ferromagnetic (FM) phases of the Ising spins are separated by a
continuous phase transition, which belongs to N = 8 chiral Ising universality class with critical exponents ν = 0.85(2) and
η = 0.61(7) for finite ξ. At ξ = 0, the phase transition belongs to 3D Ising universality class. In the PM (FM) phase, fermions
form a Dirac semimetal (quantum spin Hall insulator)

.

larger system size and reveals detailed information about
the critical properties associated with the interaction-
driven topological transition. Our QMC results show a
continuous quantum phase transition from a DSM state
to a QSH-type TMI phase, with the critical scaling at the
quantum critical point agreeing nicely with the N = 8
chiral Ising universality41,42.

Model and Method. Our model describes Dirac
fermions coupled to a transverse field Ising model. As
illustrated in Fig. 1(a), fermions in this model reside on
the lattice sites (disks), while Ising spins are placed on
each dual lattice site (squares) at the plaquette centers.
The Hamiltonian consists of three parts,

H = HFermion +HIsing +HCoupling, (1)

HFermion = −t
∑
〈ij〉σ

(e+iσφc†iσcjσ + e−iσφc†jσciσ),

HIsing = −J
∑
〈pq〉

szps
z
q − h

∑
p

sxp ,

HCoupling =
∑
〈〈ij〉〉σ

ξijs
z
p(c
†
iσcjσ + c†jσciσ).

where indices i, j represent fermion sites and p, q label
the dual lattice sites for Ising spins sz. Fermion spins are
labeled by subindex σ. HFermion describes the nearest-
neighbor (NN) hopping for fermions, which contains a
staggered flux ±4φ for each plaquette. Here, we request
spin-up and spin-down fermions to carrier opposite flux
patterns to preserve the time-reversal symmetry. The
Ising spins are governed by HIsing, which describes a
ferromagnetic (J > 0) transverse-field Ising model43–45.
The last term HCoupling couples the Ising spins with the
next-nearest-neighbor (NNN) fermion hoppings, where
the coupling constant ξij = ±ξt has a staggered sign
structure alternating between neighboring plaquette, i.e.,

+ (−) for solid (dashed) NNN bonds as illustrated in
Fig. 1(a). Up to a basis change, the low-energy physics
in this model can be described by the following effective
field theory S =

∑
σ

∫
drdtΨ̄σ(iγµ∂µ+gσϕγ3γ5)Ψσ+Sϕ,

where γµ are gamma matrices and ϕ is a bosonic field
governed by the ϕ4-theory Sϕ. Here, σ = ±1 (up or
down) is the fermion spin index, and g is the coupling
constant for the boson-fermion interactions. This ef-
fective field theory is in strong analogy to the model
proposed early on in Ref.9, provided that we decou-
ple the fermion-fermion interactions with a Hubbard-
Stratonovich auxiliary field, as appropriate in the limit
h/J → ∞38. It is also worthwhile to emphasize that in
our model, the fermion spins only preserve U(1) symme-
try, while the model in Ref.9 has a SU(2) spin symmetry.
This difference has little effect on topological properties,
but as discussed below it changes the critical scaling as
well as the finite temperature phase diagram.

As in the original model of TMI, our Hamiltonian also
contains a symmetry which prohibits nontrivial topology.
It is easy to verify that our Hamiltonian is invariant un-
der the following Z2 transformation, P̂ = R̂x(π)× T̂A→B ,

where R̂x(π) stands for π-rotation along x-axis for both

Ising and fermion spins, and T̂A→B represents space
translation from sublattice A to B inside a unit cell. Be-
cause the topological index (the spin Chern number) flips
sign under this transformation, this symmetry requires
the index to vanish and thus any (quantum spin Hall)
topological insulator is prohibited, unless this Z2 sym-
metry is broken spontaneously.

To explore the ground-state phase diagram of this
model, we employ the projector quantum Monte Carlo
(PQMC) method46, with details presented in Sec.I.A of
the supplemental material (SM)47. In addition to the
usual local updates of Ising spins, both Wolff48 and geo-
metric cluster updates49 are applied in our simulations,
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as shown in Sec.I.B of SM47. Our QMC simulations are
free of the sign problem at and away from half filling50. In
this Letter, we focus on the coupling strength 0 ≤ ξ ≤ 1
with J = t = 1 and the system sizes simulated in this
work are L = 4, 6, 8, 10, 12, 14 with N = L2 unit cells and
Ns = 2L2 lattice sites.

Ground state phase diagram. The ground state phase
diagram in the ξ − h plane is shown in Fig. 1(c). Sev-
eral regimes in the phase diagram can be solved exactly.
At ξ = 0, the fermions and Ising spins decouple: the
fermions form a non-interacting Dirac semimetal, and
the Ising spins undergo a paramagnetic to ferromagnetic
(PM-FM) quantum phase transition at hc = 3.046(3) in
the 3D Ising universality class37,51,52. At h = 0, quantum
fluctuations of Ising spins vanish and Ising spins form
a fully-polarized FM state. As a result, the fermions
turn into a non-interacting quantum-spin-Hall topologi-
cal insulator, whose Hamiltonian is HFermion +HCoupling

with fully polarized Ising spins sz = +1(−1) 10,23,53 (See
Sec. V.A in the SM47 for details). At h → ∞, the Ising
spins are aligned along the x-axis. Second order pertur-
bation theory around this point, gives rise to an interac-
tion of order ξ2/h between the fermions. Since the Dirac
semimetal is a stable state of matter, we expect that it
will be realized in the limit h→∞.

At ξ > 0 and intermediate h, we find a direct second-
order quantum transition between the PM and FM
phases. This transition is also the topological phase tran-
sition for the fermions, in which the Dirac semimetal ac-
quires a topological mass gap corresponding to the quan-
tum spin Hall topological insulator. This conclusion is
consistent with the symmetry analysis above, where the
PM (FM) phase preserve (spontaneously breaks) the Z2

symmetry and thus a quantum spin Hall insulator is pro-
hibited (allowed). At ξ > 0, the scaling exponents at the
transition deviates from the 3D Ising universality class.
Due to the coupling between fermions and bosons, the
ξ > 0 phase transition flows to a different universality
class, namely the N = 8 component chiral Ising univer-
sality class41,42.

FM-PM phase transition for Ising spins. We deter-
mine the location of QCP via the Binder cumulant54:

U2 = 1
2 (3 − 〈m4〉

〈m2〉2 ) and correlation ratio55,56: RCorr =

1 − SIsing(Q+q)
SIsing(Q) , where m = 1

Ns

∑
p s

z
p and SIsing(k) is

the trace of the structure factor matrix (2 × 2) of Ising
magnetic order at k point. Here, Q = Γ = (0, 0) is the
ordering vector for Ising spin, and q is the smallest mo-
mentum on the lattice, i.e., (0, 2πL ) or ( 2π

L , 0). Both U2

and RCorr converge to 0 (1) in the PM (FM) phase at the
thermodynamic limit. The crossing points for finite-size
results of U2 and RCorr, respectively, provide the loca-
tion of QCP. In this way, we first determine the position
of QCP and then perform finite-size scaling analysis of
〈m2〉 close to it to extract the critical exponents.

The results of U2 and RCorr, as well as the data col-
lapse of 〈m2〉 for ξ = 0.5 and φ = π/4 (π-flux in each
plaquette) are presented in Fig. 2. Up to system size
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FIG. 2. (a) Binder cumulant U2 and (b) correlation ratio
RCorr for ξ = 0.50 and φ = π/4. (c) The data collapses of
〈m2〉 for L = 6, 8, 10, 12, 14 and L = 10, 12, 14, respectively.
The critical exponents are also shown in (c).

L = 12, we can obtain the finite size crossing points
h = 4.06 for U2 and h = 4.10 for RCorr as the approxi-
mate location of QCP. In Fig. 2(c), we collapse the data
as 〈m2〉Lz+η = f(L1/ν(h−hc)/hc) for L = 6, 8, 10, 12, 14
and L = 10, 12, 14, respectively. The critical exponents
extracted from these two collapses are slightly different
especially in η, indicating some finite-size effect. As will
be discussed below, this shifting of exponents is due to
a crossover phenomenon. Combining both collapses, we
take the exponents as ν = 0.85(2), η = 0.61(7) (taking
z = 1) with hc = 4.11(1), which are well consistent with
the results presented in Ref.41 as ν = 0.83(1), η = 0.62(1)
for N = 8 components chiral Ising universality class.

We employed two additional measurements to further
corroborate the critical exponents. First, we performed
finite-size scaling analysis for SIsing(k) at ξ = 0.50 and
φ = π/4, which is shown in Sec. II.B of the SM47, with
the extracted critical exponents ν = 0.84(4), η = 0.62(6).
Second, we also simulated the model with ξ = 0.50 and
φ = π/8 (half-π flux) and obtained the critical expo-
nents from the finite-size scaling of 〈m2〉, and the re-
sults are presented in Sec. III.A of SM47. The ob-
tained critical exponents are ν = 0.85(3), η = 0.63(7)
with hc = 4.242(3). These exponents are well consistent
with those in Fig. 2(c), rendering the N = 8 components
chiral Ising universality class.

The properties of QCPs for the PM-FM phase transi-
tions of Ising spins for ξ = 0.25, 0.75, 1.00 as presented in
the phase diagram of Fig. 1(c), are also determined with
U2 and RCorr, as well as the finite-size scaling of 〈m2〉
and excitation gaps of fermions.
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FIG. 3. (a) The single-particle gap ∆sp(X) and (b) the
spin gap ∆s(M) close to the QCP hc = 4.11(1) for ξ = 0.50
and φ = π/4. The insets are the excitation gaps at ther-
modynamic from the extrapolation with second-order poly-
nomials in 1/L. Both single-particle and spin gaps open at
h/J = 4.10 ∼ 4.15, consistent with QCP of PM-FM phase
transition of Ising spins.

Topological phase transition for fermions. Our numer-
ical results further show a single phase transition from
Dirac semimetal to topological Mott insulator with de-
creasing transverse-field h, which comes hand in hand
with the PM-FM phase transition of Ising spins. As
shown in Fig. 3, we find that the fermions remains gap-
less in the PM phase with vanishing gap at the Dirac
point. Here, both ∆sp(X), the average single particle
gap at two Dirac points X1 and X2, and ∆s(M), the
two-particle spin gap at M , vanish at the thermody-
namic limit, consistent with the Dirac semimetal spec-
trum. In the FM phase, both gaps start to merge at
h/J = 4.10 ∼ 4.15, consistent with the location of PM-
FM phase transition point for Ising spins. It is worth-
while to highlight that the gaps remain finite in the whole
FM phase with h < hc, indicating the absence of topolog-
ical phase transition. Since the fermions form a quantum
spin Hall insulator in the exactly solvable limit at h = 0,
this finite gap implies that the whole FM phase shares
the same nontrivial topology. To further verify this con-
clusion, we compute directly the topological invariant57,
the spin Chern number Cs = (C↑ − C↓)/2. As shown in
Sec. V.B. of SM47, we obtain Cs = +1 for whole h < hc
region, indicating that FM phase is a quantum-spin-Hall
topological insulator.

In Sec. IV of SM47, we present raw data of dynamic

quantities G(k, τ) and Sxy(k, τ), from which ∆sp(X)
and ∆s(M) are extrapolated. The comparisons between
2∆sp(X) and ∆s(M) are also shown to reveal the effect
of electron-electron interactions. Furthermore, the gap
opening of ∆sp(X) and ∆s(M) at ξ = 0.25, 0.75, 1.00
match the QCPs of PM-FM phase transition for Ising
spins, thus supporting the picture of a semimetal-TMI
topological phase transition.

Finite-size scaling crossover. As discussed above at
ξ = 0 and ξ > 0, the PM-FM transition belongs to two
different universality classes, 3D Ising and N = 8 chiral
Ising. As a result, in the thermodynamic limit, the scal-
ing exponents will change discontinuously as we change
the value of ξ away from 0. In numerical studies, be-
cause of the finite size, such a discontinuous change will
not show up. Instead, a crossover behavior is expected,
i.e. at small ξ, a crossover length scale Lc(ξ) shall arise.
For L < Lc (L > Lc), the scaling behavior merges to-
wards the 3D Ising (N = 8 chiral Ising) universality class.
As ξ approaches zero (increases), Lc diverge to infinity
(decreases to microscopic values) and thus the 3D Ising
(N = 8 chiral Ising) universality class is fully recovered.
Such an effect is indeed observed in our data. In Sec.
VI in SM47, we present the finite-size scalings of 〈m2〉
from L = 6, 8, 10, 12 and L = 8, 10, 12, respectively, for
ξ = 0.25, 0.50, 0.75. At ξ = 0.25, the data collapse suf-
fers strongly from the finite-size effect, and chiral Ising
exponents only arise in very large system sizes, especially
for η. However, as ξ increases, the chiral Ising exponents
emerge even if the smallest size L = 6 is included in the
fitting.

Discussions. Because the fermion spin in our model
only preserves a U(1) symmetry, instead of SU(2), our
topological Mott insulator breaks a Z2 symmetry in con-
trast to the SU(2) symmetry breaking in Ref.9. This dif-
ference in symmetry breaking patterns is irrelevant for
topology. However, this leads to different scaling expo-
nents at the transition41. Furthermore, at finite tempera-
ture, the symmetry breaking phase in our model survives,
while the SU(2) symmetry breaking arises only at T = 0.

To the best of our knowledge, our study demonstrates
the first interaction-driven quantum-spin-Hall topologi-
cal Mott insulator from unbiased numerical method, and
for the first time, this novel topological phenomenon be-
comes accessible to large-scale lattice QMC simulations.
Our work points out a new route to realize interaction-
driven topological phases and phase transitions. It has
experimental relevance since the interaction-driven quan-
tum anomalous Hall effect has recently being suggested
in functionalized α-Fe2O3 nanosheet24.
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