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We show that quasi-one-dimensional (1D) quantum wires can be written onto the surface of
magnetic topological insulator (MTI) thin films by gate arrays. When the MTI is in a quantum
anomalous Hall (QAH) state, MTI/superconductor (SC) quantum wires have especially broad sta-
bility regions for both topological and non-topological states, facilitating creation and manipulation
of Majorana particles on the MTI surface.

PACS numbers: 71.70.Ej, 71.10.Pm, 74.45.+c,

Introduction: Non-Abelian anyons that can be localized
at controllable positions provide an attractive platform
for fault-tolerant quantum computation [1–7]. Candi-
date non-Abelian particles that have already been real-
ized in solid state systems include fractionally charged
excitations of the ν = 5/2 fractional quantum Hall liquid
[8], Abrikosov vortices in two-dimensional topological su-
perconductors [9], and Majorana zero mode (MZM) end
states of p-wave superconducting quantum wires [10–13].
In this article we propose a new strategy for creation of
MZMs and manipulations of MZM positions on a two-
dimensional surface.

MZMs appear at boundaries between normal and topo-
logical quasi-1D superconductors [10, 12–14]. The sim-
plest 1D topological superconductor (TSC) consists of
spinless electrons with near-neighbor attractive interac-
tions [10]. Topological superconducting states can occur,
however, in any quasi-1D system with superconductivity
and broken time-reversal symmetry [11]. Much progress
has been achieved both theoretically [12, 13, 15] and
experimentally [16–21] by studying strongly spin-orbit-
coupled proximitized quantum wires with large g-factors
that are perturbed by an external magnetic field, and
also by placing magnetic-atom arrays on superconduct-
ing substrates [22, 23]. Here we suggest an alternate ap-
proach, based on the QAH state [24–26] of MTIs, that has
potentially valuable advantages. We show that ribbons
formed from MTIs are often topological when proximity-
coupled to a superconductor [27]. MZMs also appear
when quasi-1D topological regions are written onto a por-
tion of the surface of an MTI by external gates, as illus-
trated schematically in Fig. 1. Furthermore, the MTI/SC
phase diagram has particularly broad regions of stability
for both normal and topological phases when the iso-
lated MTI is close to a phase boundary between normal
insulator and QAH states [24, 25]. This property pro-
vides a practical route towards electrical control of Ma-
jorana positions, and braiding operations via Majorana
T-junctions [28], and recently proposed Majorana box
qubit [7, 29].

Theoretical model of a proximized MTI: We focus on Cr-

s-wave superconductor

MTI (QAHI)

Gates

Dielectric layer

𝛾𝐵 𝛾𝐵 𝛾𝐵𝛾𝐵 𝛾𝐵 𝛾𝐵

𝑉𝐺1 𝑉𝐺2 𝑉𝐺3 𝑉𝐺4

𝜸𝑨 𝜸𝑨 𝜸𝑨 𝜸𝑨 𝜸𝑨 𝜸𝑨

𝑉𝐺5

(a)

s-‐wave	  superconductor
MTI	  (QAHI)

Dielectric	  layer

	  𝛾#

	  𝜸𝑨

Gates

Gates

Gates

Keyboard	  gates

(b)

FIG. 1: (a) Majorana zero modes can be created locally
by separating the surface of a magnetic topological
insulator in a Quantum Anomalous Hall state into
alternating normal and topological regions using remote
gates; (b) A T-junction can be defined and controlled
by local gates to achieve manipulation and braiding of
Majoranas.

doped Bi2Se3 thin films in which proximitized supercon-
ductivity has already been demonstrated [25, 26] exper-
imentally, and which are close to the MTI’s QAH insu-
lator/normal insulator phase boundary when 4-6 quin-
tile layers thick. In the φk = (ctk↑, c

t
k↓, c

b
k↑, c

b
k↓)

T basis,
where cskσ annihilates an electron with momentum k, spin
σ =↑, ↓ and surface s = t/b (top/bottom), the single par-
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ticle Hamiltonian of a MTI thin film at energies below the
bulk gap is

H0(k) = hD(k)τz +mkτx + λσz + λ′τz (1)

where τi acts on surface and σi on spin. In Eq. 1 hD(k) =
v(kyσx − kxσy) is the 2D Dirac isolated surface Hamil-
tonian with Fermi velocity v; mk = m0 + m1(k2x + k2y)
accounts for hybridization between top and bottom sur-
faces, λ is the exchange field produced by the ferromag-
netically ordered magnetic dopants; and λ′ accounts for
the energetic displacement between Dirac cones on top
and bottom surfaces produced by vertical electric fields in
the bulk of the TI. When placed in proximity to an s-wave
SC, the system is described by the Bogoliubov-de Gennes
(BdG) Hamiltonian H(k) =

∑
k ψ
†
kHBdG(k)ψk/2, where

HBdG(k) =

(
H0(k)− µ ∆sc

∆†sc −H∗0 (−k) + µ

)
(2)

with
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(
i∆tσy 0

0 i∆bσy

)
. (3)

and
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A regularized square-lattice version of Eq. 2 with nearest
neighbor hopping [30] accurately and conveniently cap-
tures the physics of topological phase transitions (TPT)
at the surface of MTI. In the lattice model kx/y is re-
placed by sin kx/y and k2 by 2(2 − cos kx − cos ky). We
absorb the lattice constant into the wavevectors in Eq. 1
to make them dimensionless, so that m0,m1 and v all
have dimensions of energy. The inter-surface hybridiza-
tion parameter m1 plays an essential role by preventing
the appearance of unphysical states at low energies away
from k = 0. For m0 � m1 only the Γ-point avoided
crossing is relevant at low energies.We can obtain real-
istic values of v, m0 and m1 by comparing the model
spectrum with DFT band structures of Bi2Se3, like the
one illustrated Fig. S1 of the Supplemental Material [31].
For a five-layer film we find that the gap at Γ is about
12 meV, giving m0 = 6 meV. Rough estimates for m1

and v can be obtained by fitting to the DFT Dirac ve-
locity v (∼ 4 × 105m/s) and the DFT gaps at M and
K. We find that m1 ∼ 0.2 eV and v ∼ 0.7 eV (notice
that the lower band of DFT result gives a different value
of v. As shown in the Supplemental Material [31], our
main findings on topological robustness are independent
of upper or lower band Fermi velocity as long as v and
m1 remains on larger energy scale compared to m0) for
a lattice model with lattice constant a ≈ 4Å.
Topological classification of 2D bulk and 1D ribbon states:
The 2D classification of MTI/SC states presented in
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FIG. 2: Z2 ribbon phase diagram in (λ, µ) space for
λ′ = 0, m0 = 6 meV, m1 = 200 meV, ∆b = 1 meV,
∆t = 0, ribbon width W = 300, and velocity v = 700
meV. The orange regions are topologically non-trivial
and support MZMs.

Ref. 32 demonstrates the possibility of BdG bands with
odd Chern numbers. We first address the special case
∆t = −∆b = ∆ and set λ′ = µ = 0 to obtain simple ana-
lytical expressions for phase boundaries. When the basis
transformation used in Ref. 32 is employed the 8×8 BdG
Hamiltonian block diagonalizes into four 2× 2 matrices,
each of which has the form of a spinless p± ip supercon-
ductor. Gaps close at Γ for ±λ±∆ = m0. For |λ| > m0,
i.e. when the QAH effect occurs, weak pairing gives rise
to superconducting states with Chern numbers ±2, cor-
responding to Nambu-doubled quantum Hall edge states.
As explained below, we propose using these states as a
resource for MZM formation. (The Chern number phase
diagram of our proximitized MTI model is described in
detail in the Supplemental Material [31].)

Our main interest is in the possibility of gate-defined
quasi-1D topological regions embedded within the 2D
film surface. To set the stage, however, we first address
the closely related case of narrow ribbons [10, 33, 34].
For width W = 1, where W is the number of lattice
model rows, the ∆t = −∆b BdG Hamiltonian reduces
to four effective Kitaev chains. The Supplemental Mate-
rial [31] contains a detailed summary of how the Z2 (1D)
topological phase diagram of the ∆t = −∆b model de-
pends on W . In Fig. 2 we plot the Z2 phase diagram in
(λ, µ) space for a ribbon with proximity coupling only to
the bottom MTI surface. The Z2 invariant is evaluated
using ν = sgn[PfH̃(0)]sgn[PfH̃(π)], where H̃ is the skew-
symmetrized Hamiltonian obtained by switching HBdG

to the Majorana basis, Pf denotes the Pfaffian number
and sgn[x] is the sign of x. More information about the
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calculation of Z2 invariant is shown in the Supplemental
Material [31]. For weak pairing ν = ±1 depending on
whether the number of normal state bands that cross the
Fermi level is even or odd.

The broad region of topologically nontrivial behavior
at large λ and small µ in Fig. 2, i.e. when the unproxim-
itized MTI is in a QAH state, reflects the property that
only a single ribbon band is present in this energy range
at any value of W . The Z2 invariant is qualitatively more
sensitive to λ, µ, W and other ribbon model parameters
at larger values of µ that lie within the gapped surface
state bands. For a lattice model of a normal 2D p-wave
superconductor, for example, there are 4W phase bound-
aries in the quasi-1D Z2 classification of ribbon states at
width W . This sensitivity is not favorable for reliable
realization of either trivial or non-trivial states. In the
QAH state there is at most a single band, but the MZMs
present for finite ribbon length are protected only by
exponentially small superconducting gaps (∼ ∆e−W/ξ),
where ξ ∼ v/(λ −m0) is the 2D edge state localization
length in lattice constant units, making the Z2 classifi-
cation academic. (For typical parameters ξ ∼ 10nm) In
order to obtain MZMs that are reasonably localized near
ribbon edges it is necessary to have ribbon widths that
are not too large compared to ξ, and also to be able to
conveniently tune between topologically trivial and non-
trivial states. Since the exchange coupling parameter λ
in Fig. 2 is fixed for a given MTI sample and a given op-
erating temperature, a different tuning parameter must
be identified.

Quantum Anomalous Hall Ribbon Majoranas: We pro-
pose controlling MZMs in ribbons by placing a MTI film
that supports a QAH state on a superconducting sub-
strate and fabricating a top gate. Varying the gate field
will alter the carrier density (and hence the chemical po-
tential µ) of the MTI, and also shift the energy of the top
surface Dirac cone relative to the bottom surface. The
latter effect is due to the unscreened portion of the gate
electric field that survives in the interior of the TI and
is represented in our model by the parameter λ′. Ap-
plying a gate voltage moves the system along a line in
(µ, λ′) space that depends on the effective bulk dielectric
constant of the TI. As we now show a gate voltage can
therefore tune the proximitized MTI between Z2 = 0 and
Z2 = 1 ribbon states.

Fig. 3 illustrates 2D Chern number phase diagrams
in (λ′,µ) space for MTIs on superconducting substrates
with ∆b = 0.2m0 and ∆t = 0, at three different val-
ues of exchange field λ. For λ < m0 (left panel), the
unproximitzed MTI is in a normal insulator state, but
superconductivity that is sufficiently strong can still in-
duce odd Chern number BdG states. Our main interest
is in the case in the right panel where λ > m0 so that the
unproximitized MTI is in a QAH state at λ′ = 0. Proxim-
itized superconductivity of QAH states is now routinely
achieved experimentally [25, 26]. The QAH state occurs

at small |µ| only when
√
λ′2 +m2

0 < |λ|; the gate field
λ′ efficiently converts a QAH insulator with edge states
into a normal insulator with no edge states in the gap,
and no opportunity for Z2 states in ribbons.

For weak pairing, ribbons have Z2 = 1 states when
an odd number of subbands cross the Fermi level. In a
ribbon formed from a semiconductor quantum well with
strong Zeeman and spin-orbit coupling, or from an MTI
with λ � m0, a series of closely spaced non-degenerate
1D sub-bands appear close to the extrema of the bulk 2D
bands, as illustrated schematically in Fig. 4a. When the
ribbon width increases, the spacing between subbands
becomes smaller and the Z2 phase diagrams will have
more closely spaced boundaries between Z2 = 0 and Z2 =
1 phases. In the λ � m0 QAH case on the other hand,
illustrated schematically in Fig. 4b, a single pair of bands
crosses the Fermi level at all energies inside the bulk 2D
gap, except for a narrow gapped region due to the avoided
crossing between QAH edge states localized on opposite
sides of the ribbon. The system is therefore almost always
nontrivial in the broad range µ ∈ (−Eb, Eb), where Eb is
the bulk gap, independent of the ribbon width.

In Fig. 4c we plot the Z2 phase diagram in (µ, λ′) plane
of W = 300,m0 = 6 meV,m1 = 0.2 eV, v = 0.7 eV, λ =
12 meV,∆b = 1 meV,∆t = 0 ribbon, which exhibits large
adjacent trivial and nontrivial regions near µ = 0. For
these realistic parameters |λ| is larger than m0, but not
much larger. (Larger QAH regions can be achieved by
going to thicker films with smaller m0 but only at the
expense of reducing all relevant energy scales.) QAH
edge states overlap strongly even at W = 300, so strongly
in fact that the normal state gap produced by avoided
crossing of edge states is comparable to m0, creating a
substantial Z2 = 0 region near µ = 0. This region is
however still bordered at λ′ = 0 by a large Z2 = 1 region
that can be identified with pairing of QAH edge states.
The gate field λ′ sweeps this state into a large adjacent
Z2 = 0 region, which can be identified with a proximity
coupled ordinary insulator.

Fig. 4d plots the ribbon width dependence of the gap
at kx = 0, λ′ = 0, and µ = 5 meV out to W ∼ 1000
in lattice constant units. Here we notice that there is
only one gap closing as a function of W which signals a
phase transition between a small W Z2 = 0 state asso-
ciated with a large avoided crossing gap between QAH
edge states, and a large W Z2 = 1 state associated with
pairing of QAH edge states. The gaps remain large out
to ∼ 1000 lattice constants, corresponding to a physical
length ∼ 400 nm, partly because the edge state localiza-
tion length is enhanced by the relatively high velocity
of quantum Hall edge states compared to the velocity of
states present near the bottom of a bulk 2D band. As
the system becomes wider, the QAH edge states have less
overlap and the gap is eventually reduced to very small
values.

Because of the bulk-edge correspondence of topologi-
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FIG. 3: Phase diagram of a MTI on a superconducting substrate in λ′-µ space. Here ∆b = 0.2m0, ∆t = 0, and from
left to right λ = 0.5m0, m0, and 2m0.
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FIG. 4: (a) Bandstructure of a nanoribbon. When the
Fermi level (the red dotted line) coincides with the
bottom of a subband, a TPT occurs; (b) Bandstructure
in the QAH regime. Grey regions are conduction and
valence bands, blue curves are edge states with a small
hybridization gap, and the red dotted line shows the
Fermi level. When the chemical potential is inside the
bulk gap and outside the hybridization gap, with SC
the system should always be nontrivial. (c) Phase
diagram in λ′-µ space for a quasi-1D chain with
W = 300,m0 = 6 meV,m1 = 0.2 eV, v = 0.7 eV, λ =
12 meV,∆b = 1 meV,∆t = 0; (d) Relation between gap
and width, with µ = 5 meV, λ′ = 0 and other
parameters the same as in (c).

cal states we expect Majorana zero modes to appear not
only in ribbons, but also in wide films in which quasi-
one-dimensional regions are formed that have local model
parameters in the topologically non-trivial range. In or-
der to define a quasi-1D region, we can form a gate array
above a proximitized MTI thin film whose chemical po-

tential is in the QAH gap, as illustrated schematically in
Fig. 1. Just as in the ribbon case, the gate electric field
λ′ will form local regions that have Z2 = 0 and Chern
number N = 0, isolating the Z2 = 1 and N = 1 or 2
regions along the less strongly disturbed portions of the
MTI thin film. As discussed in the Supplemental Mate-
rial [31], we have explicitly verified that MZMs appear
near the ends of quasi-1D topological superconductors
that are written onto the MTI surface in this way.

Conclusion: Topological quantum computation requires
flexible Majorana braiding that relies on branched struc-
tures like T-junctions [28]. Although conceptually sim-
ple, T-junctions based on semiconductor quantum wires
are difficult to build because of challenges in depositing
aligned semiconductor quantum wires. We have demon-
strated the possibility of using gate arrays to write MZMs
onto the surface of a 2D MTI placed on a supercon-
ducting substrate. It has some similarities with systems
[35, 36] in which a gate array writes quantum wires onto
a quantum well by periodically depleting all carriers, or
varying the number of locally occupied subbands between
even and odd values, but has advantages in this case
as well because i : it is not necessary to apply a mag-
netic field to break degeneracies at time-reversal invariant
points in one-dimensional momentum space and because
ii : there can be a large energy separation between the
quasi-1D bands formed by quantum Hall edge states and
higher energy subbands, providing a large target for ef-
forts to tune to Z2 = 1 superconductors. Additionally,
our proposal also provides an ideal platform for building
the Majorna box qubits recently proposed in Refs. 7 and
29 because i : it is easy to define arbitrary number of
parallel gate-controlled quasi-1D TSC wires as shown in
Fig. 1a, and ii : because large topological stability ranges
allows geometrical capacitance[7] to be changed without
changing topological states.
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