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Slow magnetooscilations of the conductivity are observed in a 75 nm wide quantum well at heating
of the two-dimensional electrons by a high-intensity surface acoustic wave. These magnetooscilla-
tions are caused by intersubband elastic scattering between the symmetric and asymmetric subbands
formed due to an electrostatic barrier in the center of the quantum well. The tunneling splitting
between these subbands as well as the intersubband scattering rate are determined.

PACS numbers: 73.63.Hs, 73.50.Rb

I. INTRODUCTION

Quantum structures with more than one occupied lev-
els of size quantization represent an intermediate case
between ultra-quantum and bulk systems. A presence of
a few two-dimensional subbands allows studying inter-
actions between electronic states of different types. An
interesting example is intersubband scattering by a dis-
order potential. The typical systems with a few levels
are quantum wells with two or more subbands under the
Fermi level and double quantum wells. There is also
another type of structures, doped wide quantum wells
(WQWs). They represent a bilayer system because the
Coulomb repulsion results in a potential barrier in the
middle of the WQW pushing the carriers towards the in-
terfaces [1]. If these two layers are independent, they act
in transport as two parallel conducting channels. These
two channels are identical with equal Fermi energies and
relaxation times provided the WQW is perfectly symmet-
ric. In contrast, when tunneling through the potential
barrier is not negligible, these two channels interact to
each other, and the system’s eigenstates are the symmet-
ric (S) and anti-symmetric (AS) states with the tunneling
energy gap ∆SAS. This gap has been studied in a vari-
ety of WQWs, for a review see Ref. [2]. Usually ∆SAS is
determined from the Fourier analysis of the magnetore-
sistance in the region of weak magnetic fields B < 0.5 T.

The presence of two channels results in a rich pic-
ture of conductivity oscillations in quantizing magnetic
fields. In addition to the usual Shubnikov-de Haas ef-
fect, the other type of magnetooscillations periodic in
1/B takes place. These oscillations are caused by elas-
tic scattering between the S and AS subbands, the so-
called magneto-intersubband oscillations (MISO). They
appear at ∆SAS/~ωc = K, where ωc is the cyclotron fre-
quency and K is an integer number. Since this condi-
tion does not contain the Fermi energy, MISO are not
damped by the Fermi distribution smearing. Therefore,
in contrast to the Shubnikov-de Haas oscillations, MISO
amplitude is almost insensitive to the temperature in-
crease. MISO are well studied in various systems with
two or three occupied subbands, for a review see Ref. [3]

and references therein. Recently, a temperature depen-
dence of MISO amplitude in a quantum well with three
populated subbands has been explained by temperature
variation of quantum electron lifetime [4], an energy spec-
trum reconstruction by a parallel magnetic field has been
shown to affect MISO strongly [5, 6], and the thermoelec-
tric power magnetophonon resonance has been studied in
two-subband quantum wells [7].

MISO are possible to observe only if they are not
superimposed on the Shubnikov-de Haas oscillations.
However both types of oscillations are present in the
same magnetic field range in high-mobility WQWs. The
Shubnikov-de Haas oscillations can be damped by in-
crease of temperature. However, heating of the sample
in dc regime also results in an increase of the lattice tem-
perature. This leads to an enhancement of electron scat-
tering by phonons which damps MISO as well. Therefore
MISO in high-mobility WQWs have not been observed
so far.

We used acoustic methods with a surface acoustic wave
(SAW) of high intensity applied in the pulsed regime with
the duty factor equal to 100. This allowed heating of
the electron system up to T > 500 mK while the lattice
temperature was kept 20 mK. As a result, the Shubnikov-
de Haas oscillations were damped, and clear MISO were
observed. We analyzed MISO in WQWs and determined
the energy gap ∆SAS and the intersubband scattering
rate. We show that the theory of magnetooscillations
describes well the experimental data.

II. EXPERIMENT

The high quality samples were multilayer n-
GaAlAs/GaAs/GaAlAs structures with a 75 nm wide
quantum well. The quantum GaAs well was δ-doped on
both sides and located at the depth ≈ 197 nm below the
surface of the sample. The structure of this type is known
to be very symmetric, see e.g. Ref. [8]. While cooling
the sample down to 15 K and illuminating it with infrared
light of emitting diode, we achieved the electron density
of 1.4×1011 cm−2 and the mobility of 2.4×107 cm2/(Vs)
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(at T=0.3 K).

FIG. 1. (Color online) Sketch of the experimental setup.

In the present paper we employ a SAW technique [9,
10] illustrated in Fig. 1. A sample is pressed by means of
springs to the surface of a piezoelectric crystal of lithium
niobate (LiNbO3), on which the interdigitated transduc-
ers (IDT) are formed. A radio frequency electrical pulse
signal is applied to one of the IDTs. Due to the piezoelec-
tric effect, a SAW is generated and propagates along the
surface of LiNbO3. Simultaneously, an ac electric field,
accompanying the SAW and having the same frequency,
penetrates the sample and interacts with the charge car-
riers. This interaction results in a change of the SAW
amplitude and in its velocity. The measurements were
carried out in a dilution refrigerator in a magnetic field
perpendicular to the sample plane.

A. Experimental results

The dependences of the attenuation Γ(B) and the rel-
ative velocity change ∆v(B)/v0 of the surface acous-
tic wave were measured in a magnetic field of up to
1 T in the temperature range 20÷500 mK and the fre-
quency range 28.5÷300 MHz at different SAW inten-
sities. Figure 2 shows the experimental dependencies
of the SAW attenuation Γ and velocity shift ∆v/v0 at
the frequency 30 MHz, measured at the temperature
T ≈ 20 mK with the SAW power introduced into the
sample of 1.2 × 10−6 W/cm. During the measurements,
the magnetic field was swept from −1 to 1 T (red curve),
and then went back to −1 T (blue curve) ramping as
0.05 T/min. The curves of these forward and reverse
field sweeps are almost identical. A Hall probe was used
to measure the magnetic field strength.

The SAW attenuation and the velocity change
are governed by the complex ac conductance
σ(ω) ≡ σ1(ω)− iσ2(ω). Both the real σ1 and imaginary
σ2 components of σ(ω) could be extracted from our
acoustic measurements. The procedure of the determi-
nation of the ac conductance is described in Ref. [10]
and is based on using that work Eqs. (1)÷(7).

The dependences of the real part σ1 of the high-
frequency conductance, calculated from the SAW at-

FIG. 2. (Color online) Dependences of the SAW attenua-
tion coefficient Γ (top panel) and the SAW velocity change
∆v(B)/v0 (bottom panel) on the transverse magnetic field B
at f=30 MHz, T = 20 mK; SAW power introduced into the
sample is 1.2 × 10−6 W/cm. Red and blue curves (almost
identical) show forward and reverse field sweeps.

tenuation and velocity change, on the reversed mag-
netic field 1/B measured at various temperatures from
20 mK to 510 mK are presented in Fig. 3(a). The de-
pendences σ1(1/B) recorded at several SAW intensities
are plotted in Fig. 3(b), where effective SAW power in-
troduced into the sample ranged from 3.7×10−10 W/cm
to 3.7× 10−5 W/cm.

As seen in Fig. 3, the Shubnikov–de Haas oscillations
are observed at low SAW intensities. These fast oscilla-
tions have the period determined by the Fermi energies
in the subbands. Since the Fermi energies have slightly
different values EF ± ∆/2, the independent oscillating
contributions to the conductivity from the subbands un-
dergo a beating. At high temperatures their amplitudes
decrease. Moderate increasing of the SAW power affects
the real part of ac conductance σ1 in the same way as
the temperature rising does, see Fig. 3(b). However, with
further growth of the SAW power, these fast oscillations
virtually vanish, and the slow oscillations emerge. The
latter dominates at the highest SAW intensities. The po-
sitions of the slow oscillations minima are independent
of the SAW frequency. We assume that the slow oscilla-
tions are not distinguishable in Fig. 3(a) due to the small
signal-to-noise ratio in the low-power regime used when
we acquired the curves presented in this figure.

The structure of the fast and slow oscillations is pre-
sented in more detail in Fig. 4. Here the dependence of
σ1(B) is shown for f = 30 MHz at 20 mK, the SAW
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FIG. 3. (Color online) (a) Dependences of σ1 on the inverse magnetic field as varied with temperature at the SAW power
introduced into the sample of 3.7 × 10−10 W/cm, and (b) as varied with the SAW powers at T=20 mK: 1 - 3.7×10−10 W/cm,
2 - 1.2×10−8 W/cm, 3 - 1.3×10−7 W/cm, 4 - 3.6×10−7 W/cm, 5 - 1.2×10−6 W/cm, 6 - 2.3×10−6 W/cm, 7 - 5.9×10−6 W/cm,
8 - 1.2×10−5 W/cm, 9 - 3.7×10−5 W/cm; f = 30 MHz. Traces are offset vertically for clarity.

power pushed into the sample was 1.2 × 10−6 W/cm.
This picture demonstrates the SdH oscillations marked
with filling factors ν. In lower fields B < 0.4 T, one can
observe a new series of oscillations denoted by letter K.

FIG. 4. Magnetic field dependence of σ1 at f = 30 MHz and
T ≈ 20 mK. The SAW power introduced into the sample is
1.2 × 10−6 W/cm. Inset (a): dependence of the slow oscilla-
tions number K on 1/B. Inset (b): dependence of the filling
factors ν on 1/B.

III. DISCUSSION

From the analysis of the slope of the dependence
ν(1/B) shown in the inset (b) of Fig. 4 we determined
the Fermi energy in the studied WQW as EF ≈2.5 meV.
The slow oscillations demonstrate a presence of an energy
gap ∆ � EF in the electronic spectrum. We extracted
this splitting from the dependence K(1/B) drawn in the
inset (a) of Fig. 4: ∆ =0.42±0.02 meV.

In order to explain an origin of this energy splitting,
we performed self-consistent calculations of the electro-
static potential and electron wavefunctions. First, the
wave functions are calculated in the tight-binding ap-
proach [11]. Then, the electron wave functions are used
to calculate the electron density distribution in the quan-
tum well

n(z) =
∑
i,s

∫
dk‖ f0

(
Ei,s(k‖)− EF

)
|ψi,s(z;k‖)|2, (1)

where ψi,↑(↓)(z;k‖) and Ei,↑(↓)(k‖) are the wavefunction
and energy of a spin up(down) electron at i-th quantum
confined level with lateral wave vector k‖, and the Fermi-

Dirac distribution function f0(ε) = [1 + exp(ε/kBT )]−1

gives the population of the levels. Neglecting the non-
parabolicity of the electron dispersion which is small in
AlGaAs-based systems, we obtain the wavefunctions in-
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dependent of the wave vector, and Eq. (1) simplifies to

n(z) =
∑
i,s

ni,s |ψi,s(z)|2 , (2)

where ni,s =
∫
k‖
f0
(
Ei,s(k‖)− EF

)
.

In the studied structure, the Fermi level lies between
the 2nd and 3rd levels provided the temperature is small
compared with the Fermi energy kBT � EF. Moreover,
as the energy splittings of the levels, ∆, are also small
compared to EF, the total electron density is equally dis-
tributed between those levels, and we have

n(z) =
ntotal

4

∑
i=1,2; s

|ψi,s(z)|2 . (3)

We have numerically checked that taking into account a
nonequality n1 6= n2, the values of the splittings are not
changed within the calculation accuracy. The value of
the total electron density extracted from our experiment
is ntotal = 1.4×1011cm−2. To compensate the charge in-
side the WQW and make the structure uncharged, we as-
sumed that the charge −ntotal/2 is uniformly distributed
in the barriers starting from the position where the distri-
bution of electron density n(z)/ntotal drops below 10−4.
The electrostatic potential corresponding to the charged
QW is found from the numerical solution of Poisson equa-
tion

φ′′(z) = −4πe

ε
n(z) , (4)

with the dielectric constant ε = 12.9. Then, we add
φ(z) to the structure potential and compute the next ap-
proximation for the electron wave functions of the levels
in the WQW. The procedure is repeated until the self-
consistency of the electron wave functions and electro-
static potential is reached.

The results for the converged potential and the elec-
tron density distribution are presented in Fig. 5. The
position of the first two levels is close to the local maxi-
mum of the heteropotential, Fig. 5(a). This fact makes a
convergence of the calculation scheme slow for our quan-
tum well width and concentration. The electron den-
sity profiles shown in Fig. 5(b) for the two first levels,
|ψ1,s(z)|2 ≈ |ψ2,s(z)|2, almost coincide for all s =↑, ↓.
The distance 53 nm between the density profile maxima
agrees with the value for WQWs of the same width [2, 12].
The calculated S-AS splitting ∆SAS = 0.57 meV.

In the triangular quantum wells formed near the struc-
ture edges, Fig. 5(a), the spin-orbit splitting is present
which can give rise to the beating pattern in magne-
tooscillations [13, 14]. Our tight-binding method allows
also to estimate the spin splittings of the two first sub-
bands caused by the quantum confinement and electric
field in the structure [15]. The calculations show that the
spin-orbit splitting of the electronic states at the Fermi
wavevector is ∆so ≈ 0.01 meV in the WQW under study.
Since ∆so � ∆SAS, we conclude that the spin-orbit split-
ting is negligible at so low carrier density.

FIG. 5. (Color online) Self-consistently calculated energy lev-
els and the heteropotential (a) and the electron density profile
(b).

The calculated S-AS energy splitting
∆SAS = 0.57 meV is close to the value ∆ ≈ 0.42 meV
determined from the experiment. Therefore we conclude
that it is the intersubband scattering that results in slow
magnetooscillations of the heated electron gas in the
WQW under study.

The conductivity magnetooscillations with account for
both S-AS splitting and scattering between S and AS
subbands are described by the following expression [3,
16]:

σxx =
σ0

(ωcτ)2

×

[
1− 4 cos

(
2π

EF

~ωc

)
cos

(
π

∆SAS

~ωc

)
e−π/ωcτq

X

sinhX

+ 2
τ

τSAS
cos

(
2π

∆SAS

~ωc

)
e−2π/ωcτq

]
. (5)

Here σ0 is the conductivity at zero magnetic field, τ is
the transport scattering time which determines the mo-
bility, τq is the quantum scattering time, ωc is the cy-
clotron frequency, and X = 2π2kBT/~ωc. The time τSAS

is the time of elastic scattering between the S and AS
subbands. This expression is valid in moderate mag-
netic fields where e−π/ωcτq � 1 but ωcτ � 1, and at
weak intersubband scattering, τ/τSAS � 1. The first
oscillating term in Eq. (5) describes the beating pat-
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tern in the Shubnikov-de Haas oscillations in the two-
subband system with close Fermi energies EF ±∆SAS/2.
These beatings are damped by heating of the electron
gas due to smearing of the Fermi distribution as de-
scribed by the factor X/ sinhX. In contrast, the sec-
ond oscillating term caused by MISO, being inferior at
low temperatures, dominates at high temperatures when
X/ sinhX � e−π/ωcτq [17, 18]. Eq. (5) indicates that
the beating frequency to be two times smaller than that
for the slow oscillations. Indeed, this is observed in our
experiment, Fig. 3.

We estimated an intensity of intersubband scattering
from the amplitude of MISO. Analysis of the data at the
SAW powers 1.2 × 10−6 W/cm and 1.3 × 10−7 W/cm
with help of Eq. (5) yields τ/τSAS = 0.35 ± 0.05 and
τq = 4×10−11 s. The value of τq agrees with the quantum
scattering time determined for similar WQWs [4]. The
transport scattering time is known from mobility: τ =
0.9×10−9 s at 0.3 K. This yields τSAS = 2.6×10−9 s. The
intersubband scattering time three times longer than the
transport scattering time means that the intersubband
scattering in the studied WQW is weaker than the intra-
subband scattering but it is strong enough for observation
of MISO.

IV. CONCLUSION

To conclude, we observed the magneto-intersubband
oscillations of the conductivity in a WQW. The oscil-
lations are shown to arise due to elastic intersubband
scattering between the S and AS subbands formed due
to Coulomb repulsion between the electrons. A tight-
binding calculation of the electron states yields the split-
ting ∆SAS close to the experimentally measured value.
Our theoretical description of the magnetooscillations al-
lowed to determine the quantum and the intersubband
scattering times.
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