
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Topological phases of topological-insulator thin films
Mahmoud M. Asmar, Daniel E. Sheehy, and Ilya Vekhter
Phys. Rev. B 97, 075419 — Published 16 February 2018

DOI: 10.1103/PhysRevB.97.075419

http://dx.doi.org/10.1103/PhysRevB.97.075419


Topological phases of topological insulator thin films

Mahmoud M. Asmar,∗ Daniel E. Sheehy,† and Ilya Vekhter‡

Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001
(Dated: February 6, 2018)

We study the properties of a thin film of topological insulator material. We treat the coupling
between helical states at opposite surfaces of the film in the properly-adapted tunneling approxima-
tion, and show that the tunneling matrix element oscillates as function of both the film thickness
and the momentum in the plane of the film for Bi2Se3 and Bi2Te3. As a result, while the magnitude
of the matrix element at the center of the surface Brillouin Zone gives the gap in the energy spec-
trum, the sign of the matrix element uniquely determines the topological properties of the film, as
demonstrated by explicitly computing the pseudospin textures and the Chern number. We find a
sequence of transitions between topological and non-topological phases, separated by semimetallic
states, as the film thickness varies. In the topological phase the edge states of the film always exist
but only carry a spin current if the edge potentials break particle-hole symmetry. The edge states
decay very slowly away from the boundary in Bi2Se3, making Bi2Te3, where this scale is shorter,
a more promising candidate for the observation of these states. Our results hold for free-standing
films as well as heterostructures with large-gap insulators.

I. INTRODUCTION

The theoretical prediction and experimental discov-
ery of two dimensional (2D) and three dimensional (3D)
topological insulators (TIs)1–12 has led to a strong ef-
fort aimed at understanding and utilizing their unique
electronic properties. While electronically insulating
(gapped) in the bulk, TIs possess gapless states at their
boundaries. In the 3D bulk compounds the presence of
topological surface states described by an effective 2D
massless Dirac-like Hamiltonian is confirmed by angle-
resolved photoemission spectroscopy (ARPES) experi-
ments and other measurements on materials such as
Bi2Se3, Bi2Te3 and Sb2Te3

7–12.

Many modern applications integrate thin films and
small-size components, and TIs are no exception13–15.
An important point is that the TI surface states are char-
acterized by a length scale over which their wave func-
tions decay into the bulk. In materials such as Bi2Se3

this length is on the order of several nanometers. Con-
sequently, when the film is sufficiently thin, the gapless
TI surface states on opposite surfaces hybridize, leading
to a gap in the spectrum14,16–18. Refs. 17 and 18 showed
that for Bi2Se3 this gap has a non-monotonic dependence
on the film thickness, and argued that the thickness also
changes the topological properties of the resulting hy-
bridized states. They found two types of transitions be-
tween trivial and non-trivial gapped topological phases:
one where the gap closed at the transition point, and
another where the gap remained finite. The latter re-
sult seemingly contradicts the established theory of topo-
logical phase transitions in non-interacting systems19,20

that requires a gapless state to appear at the point where
the corresponding topological quantum number changes.
Hence on general grounds we expect a Dirac semimetal
to appear at such phase transitions21. This apparent
contradiction motivated us to revisit the study of the
topological phases in TI thin films.

In this paper we consider a flat free standing thin film

of a topological insulator material within the tunneling
formalism, i.e. assuming weak hybridization. This is jus-
tified because the decay scale of the surface state in the
best studied TIs, such as Bi2Se3 and Bi2Te3, is compara-
ble to the size of the quintuple layer (QL), the basic struc-
tural unit of these materials. We demonstrate that this
method requires careful consideration of the behavior of
the wave function at the film boundaries. Consequently
we first develop a general tunneling approach valid for
heterostructures where the TI film is sandwiched between
other, topologically trivial, semiconductors or insulators,
and then apply it to the problem of a free standing film.
This allows us to elucidate the relevant physics and the
origin of the hybridization. We compute the tunneling
matrix elements between surface states, derive the effec-
tive Hamiltonian for the film, and determine its energy
spectrum and topological properties. The crucial part
of our analysis that was missing in previous work is ac-
counting, non-perturbatively, for the dependence of the
decay length (and, consequently, the tunneling matrix
elements) on the momentum in the plane of the film, k.
This dependence controls the band dispersion away from
the zone center, and is necessary to determine the topo-
logical character of the carriers3.

While the direct spectral gap at k = 0 (the “mass”
term) agrees with the results of Refs. 17 and 18, the
properties at finite k 6= 0, such as the energy spectrum,
and especially topological properties that depend on the
band curvature, differ from those obtained via perturba-
tive inclusion of k2 terms in previous work. In particular,
we show that the perturbative method leads to spurious
topological phase transitions that are absent in our for-
malism.

We show that the topological phases of the thin film
and the associated pseudo-spin windings in momentum
space are uniquely determined by the sign of the tunnel-
ing matrix element at zero momentum, and confirm it
by an explicit numerical calculation of the Chern num-
ber. Low energy massless and linearly-dispersing edge
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states appear at the sample boundaries in the topological
phase. These edge states preserve time reversal symme-
try (TRS), and, while they carry a pseudo-spin current,
the physical spin associated with these currents vanishes
unless the edges of the sample break particle-hole symme-
try. We predict the experimental signatures of the edge
states to be very weak in the Bi2Se3 films, but stronger in
Bi2Te3. Finally, consistent with our expectations, we al-
ways find linearly dispersing gapless states at the bound-
ary between the topological and trivial phases.

The remainder of the paper is organized as follows. In
Sec. II A we develop the tunneling formalism for a gen-
eral junction involving TIs and non-TI materials, and
adapt it to the free-standing TI thin film. Recognizing
the need to include the k dependence beyond the lead-
ing order expansion in small k, we revisit the problem of
a single TI-Insulator junction and give the relevant so-
lution for the interface states in Sec. II B. In Sec. II C
we obtain the low energy effective Hamiltonian and the
general low-energy band structure for a free standing TI
thin film. Since the results depend sensitively on the pa-
rameters of the Hamiltonian describing the bulk, in Sec.
II D we discuss the dependence of the spectrum and the
gap on the choice of specific TI material and the film
thickness. To gain insight into the topological properties
of the film, in Sec. III A, we analyze the pseudo-spin tex-
tures associated with the band structure, and show when
it is non-trivial. We complement this analysis by comput-
ing the Chern number for the thin film in Sec. III B, and
verify the non trivial topological character of the film by
demonstrating the existence of the edge states in Sec. IV.
In Sec. V we provide brief concluding remarks.

II. TUNNELING APPROACH AND THE
EFFECTIVE HAMILTONIAN

Gapless surface states at the boundary between a TI
and vacuum (or a wide gap insulator) are confined within
a length λ−1 of the surface. Consequently, for TI films
with thicknesses comparable to the surface state decay
length λ−1, the states at opposite surfaces hybridize, and
a spectral gap opens. In this section we describe the
tunneling formalism and select the basis wave functions
that we use to find the parameters of the low energy
effective Hamiltonian for these hybridized surface states.

A. General tunneling formalism

In the tunneling approximation the wave function of
the low-energy state in a thin film is written as a lin-
ear combination of the wave functions of the metallic
states that would exist at a single interface at the top
and the bottom of the film respectively. The approach
is essentially equivalent to the well known method of lin-
ear combination of atomic orbitals (LCAO) in quantum
chemistry, and is illustrated in Fig. 1. The key step is the
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FIG. 1. Schematic representation of the heterojunction with
a TI of thickness 2a between semi-infinite top (It) and bottom
(Ib) topologically trivial insulators. (a) Tunneling decompo-
sition of the junction, described by Eq. (1), as the sum of the
two interfaces (It-TI and TI-Ib), and the coupling term, see
text and Eq. (3). (b) Since the perturbing Hamiltonian for
the eigenstate of the top (“+”) interface is only non-zero in
the space below the bottom interface, exponential tails of the
wave function are critical, see Eq. (8).

identification of the perturbing Hamiltonian that couples
the two interface states. As we demonstrate below, this
coupling becomes ill-defined in the limit of a vacuum ter-
mination. We therefore use a regularization procedure
whereby we first solve the more general problem of a
thin film of a TI material sandwiched between two topo-
logically trivial semiconductors or insulators, and sub-
sequently set the energy gap in the latter to infinity to
model a vacuum termination. An important advantage
of this approach is that it can also describe a film on a
substrate as well as a real I-TI-I junction, including in-
terface potentials22, but in this work our focus is on the
free-standing thin film.

To this end we consider the setup shown in Fig. 1 (a),
described by the Hamiltonian

H =HTIΘ(z + a)Θ(a− z)
+ HtΘ(z − a) +HbΘ(−a− z) . (1)

Here Θ(z) is the Heaviside step function, HTI describes
the TI, while Ht and Hb describe the top and bottom
insulators respectively. We take the Hamiltonian for the
TI in the form of the low-energy k ·p approximation near
the Γ point derived by Liu, et al.4 for materials such as
Bi2Se3, Bi2Te3 and Sb2Te3. In the parity (+,−) and spin
(↑, ↓) basis, ψT = (ψ+↑, ψ−↑, ψ+↓, ψ−↓), the Hamiltonian
HTI reads4,

HTI = σ0τz(M−B1k
2
z−B2k

2)+A1σ0τykz+A2(σ×k)ẑτx .
(2)

Here the Pauli matrices τ (σ) act in the parity (spin)
space, with τ0 and σ0 the identity matrices, and M , Bi
and Ai material-dependent parameters. Since the topol-
ogy of HTI is determined by the sign of the ratio M/B1,
for simplicity and without loss of generality we assume
that Ht,b only differ from HTI by the sign and magnitude
of the mass term M . Hence Ht,b are given by the same
Eq. (2) with the replacement M → −mµ, where µ = ±
labels the top (bottom) insulator.

To implement the tunneling method we rewrite the
Hamiltonian, Eq. (1), as a combination of the Hamilto-
nians for the top and the bottom interfaces plus an ad-
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ditional part connecting the two. As shown in Fig. 1(a)
this decomposition is

H = H+ +H− −HTI , (3)

where the interface Hamiltonians are

H+ = HTIΘ(a− z) +HtΘ(z − a) (top) , (4a)

H− = HTIΘ(z + a) +HbΘ(−a− z) (bottom) .(4b)

Since translational invariance in the x − y plane is pre-
served, the in-plane momentum k is a good quantum
number. We solve the single interface problem for each k
in Sec. II B below. Due to the change in topology across
each interface, at a given k there are four low-energy
metallic states described by H±, two for each interface.

As the helicity operator, ĥ = (σ × k) · ẑ/k, commutes
with the Hamiltonian22,23 and has eigenvalues ±1, we
can choose the interface states to have definite helicity,
κ = ±, so that

Hµ|ψµ,κ〉 = Eµ,κ|ψµ,κ〉 . (5)

Here Eµ,κ are the energies of the helical states at the top
and bottom interfaces.

We look for the eigenstates of the thin film as a linear
combination of the top and bottom interface states,

|ψ〉 =
∑
κ,µ=±

αµ,κ|ψµ,κ〉 , (6)

where αµ,κ are the coefficients to be determined. Sub-
stituting Eq. (6) into the Schrödinger equation, H|ψ〉 =
E|ψ〉, using Eq. (3), and acting with 〈ψµ′,κ′ | on the left,
we obtain a set of four linear equations for the coefficients
αµ,κ: ∑

κ,µ=±

{
∆Eµ,κ〈ψµ′,κ′ |ψµ,κ〉

+〈ψµ′,κ′ |∆Hµ|ψµ,κ〉
}
αµ,κ = 0 . (7)

Here, ∆Eµ,κ = Eµ,κ−E, ∆Hµ = Hµ̄−HTI, and µ̄ = −µ.
Non-trivial solutions exist when the determinant of the
resulting matrix vanishes, thus giving the energy eigen-
values E, and the corresponding eigenvectors yield the
wave functions in the basis of the single interface states.
Further simplifications appear because of the piecewise
constant parameter of the Hamiltonian in our problem.
Using Hµ from Eqs. (4), we find

∆H+ = H− −HTI = (Hb −HTI)Θ(−a− z) , (8a)

∆H− = H+ −HTI = (Ht −HTI)Θ(z − a) . (8b)

The tight-binding nature of the method becomes explicit
here since, as shown in Fig. 1(b), for the film thickness
comparable to or greater than the decay length of the in-
terface states, in ∆Hµ|ψµ,κ〉 the operator acts only on the
decaying tails of the wave function, ensuring the small-
ness of the corresponding matrix element. In that sense,

∆Hµ introduces a perturbative correction to each inter-
face.

If we also recall that our model for the insulator Hamil-
tonian differs from the TI only by the sign of the mass,
then Eq. (8) simplifies further, to

∆Hµ = −σ0τz(mµ̄ +M)Θ(µ̄z − a) . (9)

It is now evident that the problem of the free stand-
ing film requires careful consideration of the boundary
conditions. Indeed, vacuum can be modeled24 by set-
ting mµ → ∞. In that case the wave functions vanish
at surfaces, i.e. 〈r|ψµ,κ〉 = 0 for µz − a > 0. Con-
sequently, at first sight, there are no off-diagonal ma-
trix elements, µ′ 6= µ, in the second term of Eq. (7),
〈ψµ′,κ′ |∆Hµ|ψµ,κ〉, simply because either the wave func-
tion or the operator vanishes everywhere in space. This
result is clearly non-physical. However, since in this limit
formally ∆Hµ → −∞, we nominally have an infinitely
large operator acting on the vanishing wave function.
Hence it is obvious that the problem requires regulariza-
tion in the large mµ limit. Therefore below we evaluate
these matrix elements for mµ �M , and show that they
remain finite and independent of the value of mµ as the
vacuum limit is approached.

Using this method, we solve the thin film problem at
each value of the in-plane momentum, k, independently.
The topological properties of the system are determined
by the evolution in the structure of the eigenstates from
k = 0 to large k25. It is therefore essential to accu-
rately take into account the momentum dependence of
both the single interface eigenstates, |ψµ,κ〉, and the hy-
bridization matrix elements in Eq. (7). Solving Eq. (5)
with B2 = 0, and then including this term perturbatively,
as in Refs. 17 and 18, provides an adequate description
of the states near the zone center, and an accurate evalu-
ation of the gap, but leads to some erroneous conclusions
about topological transitions. Therefore below we derive
the interface states keeping the full momentum depen-
dence of the bulk Hamiltonian.

B. Interface States

To solve the single interface problem we follow the gen-
eral approach of Ref. 6 as implemented in Ref. 22. We
first find the exponential (along the z-axis) solutions of
the bulk Hamiltonian, Eq. (2), select the eigenfunctions
that decay away from the interface on each side, and
then match the wave functions and their derivatives at
the boundary. As discussed above, we choose the wave
functions to simultaneously be eigenstates of the helicity
operator23. Using the label ζ = (I,TI) for the I and TI
sides respectively, the states at the top interface are given
by22

ψζ,κ(x, y, z) =


iaζ,κ(k)
ibζ,κ(k)

κaζ,κ(k)eiθk

κbζ,κ(k)eiθk

 eik·reλζ(z−a) . (10)
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Here κ is the helicity eigenvalue, the in-plane azimuthal
angle θk = tan−1(ky/kx), and

aζ,κ(k) = A1λζ − κA2k , (11a)

bζ(k) = Mζ +B1λ
2
ζ −B2k

2 − E . (11b)

The decay lengths λζ satisfy the biquadratic equation

E2 −Mζ+Mζ− −A2
2k

2 = 0 , (12)

withMζ± = Mζ +B1λ
2
ζ −B2k

2 ±A1λζ , and MTI = M ,

MI = −m, see Fig. 1. Since Eq. (12) is biquadratic, there
are two pairs of roots with positive or negative real part.
Therefore requiring the wave function to decay away from
the interface (be normalizable) selects two allowed values
for λζ , labeled by the index ν = ±, on each side of the
interface. This index is then inherited by all the terms in
Eq. (10), i.e. aζ,κ(k) → aζ,κ,ν(k), bζ(k) → bζ,κ,ν(k) for
each eigenstate ψζ,κ,ν . The wave function of the interface
state is given, at each side of the interface, by a linear
combination of four eigenstates with different values of κ
and ν.

In the absence of symmetry-breaking interface poten-
tials22, helicity conservation allows us to solve for each
value of κ independently, i.e. on each side (I, TI) we look
for solutions of the form

Ψζ,κ(x, y, z) =
∑
ν

Cζ,κ,νψζ,κ,ν(x, y, z) . (13)

Here, Cζ,κ,ν are constants that are determined from
the continuity of the wave function and its deriva-
tive at the boundary, ΨTI,κ(x, y, a) = ΨI,κ(x, y, a) and
∂zΨTI,κ(x, y, a) = ∂zΨI,κ(x, y, a). For the top interface
we find E+,κ = κA2k, and

λTI,ν(k) ≡ λν(k) =
A2 + ν

√
A2

1 − 4B1Mk

2B1
, (14a)

λI,ν(k) ≡ −Λν(k) = −νA2 +
√
A2

1 + 4B1mk

2B1
,(14b)

with Mk = M −B2k
2 and mk = m+B2k

2. Substituting
E+,κ and λζ,ν in Eq. (11) gives the spinor structure of
the interface state, and requires CI,κ,+ = 0 to match the
spinors at z = a. The remaining three coefficients satisfy

CI,κ,− = CTI,κ,+
λ−(k)− λ+(k)

λ−(k) + Λ−(k)
, (15a)

CTI,κ,− = −CTI,κ,+
λ+(k) + Λ−(k)

λ−(k) + Λ−(k)
, (15b)

as well as the normalization condition.

Since we are interested here in the surface states of a
TI we take the limit of a large gap insulator, m→∞, so
that Λ− ≈

√
m/B1 � |λ±|, and expand the coefficients

in λ±/Λ− to find

CTI,κ,+ ≈ C0(k)

(
1− λ+(k)

Λ−

)
≡ c+ , (16a)

CTI,κ,+ ≈ −C0(k)

(
1− λ−(k)

Λ−

)
≡ c− , (16b)

CI,κ,− ≈ −C0(k)
λ+(k)− λ−(k)

Λ−
≡ cI , (16c)

C0(k) =

√
A1Mk

2(A2
1 − 4B1Mk)

. (16d)

With this, the wave functions of the top interface in
Fig. 1, that are eigenfunctions of Eq. (4a), are given by

Ψ+,κ = f+,κ(k, z − a)


i
i

κeiθk

κeiθk

 eik·r , (17)

where

f+,κ(k, z) =
([
c+e

λ+(k)z + c−e
λ−(k)z

]
Θ(−z)

+cIe
−Λ−(k)zΘ(z)

)
. (18)

To find the topological eigenfunctions of the bottom in-
terface, Hamiltonian Eq.(4b), we follow an identical pro-
cedure, and find E−,κ = −κA2k, and

Ψ−,κ = f−,κ(k, z + a)


i
−i
κeiθk

−κeiθk

 eik·r , (19)

with

f−,κ(k, z) =
([
c+e
−λ+(k)z + c−e

−λ−(k)z
]
Θ(z)

+cIe
Λ−(k)zΘ(−z)

)
. (20)

Eq. (17) and Eq. (19) give the eigenfunctions for the top
and bottom interface in a I-TI-I junction in the limit of
a large gap insulator. As expected, these states are lin-
early dispersing, until they merge with the continuum
at ks =

√
M/B2. They also are purely helical, with

states of equal energy having opposite helicity at the top
and bottom interfaces. Since the spinors of the oppo-
site helicity states are orthogonal, this restricts the pos-
sible matrix elements in the tunneling Hamiltonian for
the film, Eq. (7). The decay lengths (λ−1

± (k)) of the in-
terface states depend on the in-plane momentum, which
means that the tunneling matrix elements also depend on
k, opening the possibility for a non-trivial band structure
of the electronic states in the film. We now proceed to
determine these bands.
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C. Effective Hamiltonian for Thin Film

We use the solutions for single interfaces, Eqs. (17)
and (19), to determine the matrix elements in Eq. (7).
The spinor structure of the interface states has no coor-
dinate dependence, and therefore the convolution of the
spinors and the integration of the wave functions can be
performed separately. It is easy to check that the states
with different helicities at the same surface, as well as
any states at opposite surfaces, are orthogonal, so that

〈ψµ′,κ′ |ψµ,κ〉 = δµ′µδκ′κ . (21)

The remaining elements of the tunneling Hamiltonian are

tµ′κ′µκ(k, a) ≡ 〈ψµ′,κ′ |∆Hµ|ψµ,κ〉 . (22)

The convolution of the spinors in Eq. (17) and Eq. (19)
with the σ0τz matrix in ∆Hµ from Eq. (9) restricts these
elements to be off-diagonal, connecting the states at op-
posite surfaces, with identical helicities, so that only
tµ,κ,−µ,κ 6= 0. Setting m+ = m− = m � M for the
free standing film as above, we find

tµ,µ′,κ,κ′(k, a) = δµ′,−µδκ′κt(k, a) , (23)

where t(k, a) is the overlap (hopping) integral obtained
by integrating the functions f±,κ(k, z) from Eqs. (17) and
(19) with the Heaviside function in the definition of ∆Hµ

in Eq. (9). The result is

t(k, a) =
4m

Λ2
−
C2

0 (k)
(
e−2aλ− − e−2aλ+

)
(λ− − λ+) . (24)

The necessity of keeping the gap (mass term) of the topo-
logically trivial insulator finite now becomes clear: for a
vacuum termination, m � M , we find m/Λ2

− = B1, in-
dependent of m. Quite generally the same result would
hold for a real interface with a large gap insulator. From
the definition of λ±(k) in Eq. (14a) the explicit functional
form of t(k, a) depends on whether ς(k) = A2

1 − 4B1Mk

is positive or negative, and yields

t(k, a) =
4A1Mke

−aA1
B1√

|ς(k)|
×


sin

(√
|ς(k)|a
B1

)
if ς(k) < 0 ,

sinh

(√
|ς(k)|a
B1

)
if ς(k) > 0 .

(25)
As expected, the hopping element is exponentially depen-
dent on the thickness of the film. However, if ς(k) < 0,
it also exhibits oscillatory behavior as a function of both
thickness and the in-plane momentum.

These oscillations are critical for the determination of
the topological nature of the bands in the subsequent sec-
tion, so we address them briefly here. In the ς(k) < 0
regime, the decay lengths λ± are complex, so that the
wave function of the interface state oscillates as well
as decays away from the boundary. The hopping inte-
gral, t(k, a), inherits this behavior. Recall that Mk =

M −B2k
2, and that for topological insulators MB1 > 0.

In that case the existence of the oscillations depends on
the sign of ς(0) = A2

1 − 4B1M , which is negative for
the well investigated and proposed TI materials Bi2Se3,
Bi2Te3 and Sb2Te3 according to the parameters of the
k · p analysis of Ref. 4. For these compounds the tun-
neling matrix element does depend non-monotonically
on the thickness for the momenta near the Γ-point of
the surface Brillouin Zone. Recall also that the surface
states merge with the bulk bands at ks =

√
M/B2, when

Mk = 0, and therefore ς(k) > 0. It follows that for
these materials there is another characteristic momen-
tum, k0 =

√
(4B1M −A2

1)/(4B1B2) < ks, such that
t(k > k0, a) is always positive and non-oscillatory. This
conclusion could only be reached because we did not
carry out a perturbative expansion in k, but kept B2k

2

term in the solution of the interface problem.
We are now in the position to write the Hamiltonian

for the thin film in the (rearranged) spinor basis of the

surface states, (ψ̂+,+ , ψ̂+,− , ψ̂−,− , ψ̂−,+), where (again

see Eqs. (17) and (19)) ψ̂µ,κ = 1
2 (i, µi, κeiθk , κµeiθk)(T ),

and (T ) means transposed. Introducing the Pauli matri-
ces acting in the helicity (κ) space, Γi, we find

Htn =

(
A2kΓz t(k, a)Γx
t(k, a)Γx A2kΓz

)
. (26)

The eigenvalues give the doubly degenerate (index η be-
low) bands in the TI thin film,

E±,η = ±
√

(A2k)2 + t(k, a)2 . (27)

D. Energy dispersion for films of candidate
materials

The characteristic energy dispersion Eq. (27), obtained
for the parameters of Bi2Se3, is shown in Fig. 2(a). The
spectrum is gapped, with the direct gap at k = 0 given
by

t(0, a) =

4A1Me−a
A1
B1 sin

(√
|A2

1−4B1M |a
B1

)
√
|A2

1 − 4B1M |
. (28)

For the commonly known TIs, Bi2Se3, Bi2Te3 and
Sb2Te3, the ratio A1/B1 ∼ 0.1 − 1Å−1. Hence for re-
alistic thicknesses of a few quintuple layers, aA1/B1 > 1,
and the exponential factor significantly suppresses this
induced gap compared to the bulk gap value, generally
to values on the order of 10meV or less, as shown.

In Fig. 2(a) it is important to note that value of the
in-plane momentum, k, at which the TI thin film bands
merge with the bulk energy bands is different from that
for a single interface. The bulk band energy at kz = 0 is
EB =

√
(A2k)2 +M2

k and therefore the merging points
are given by the solutions to t(k, a) = ±Mk. One of the

roots of this equation is always ks =
√
M/B2 found for
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the surface state. However, using Eq. (25), we find an-
other root, kc, from the solution of the equation sin q = cq
or sinh q = cq, where q =

√
|ς(k)|a/B1, the parameter-

dependent constant c = (B1/4aA1) exp(aA1/B1), and
the choice of the function (sin or sinh) depends on the
sign of ς(k) as discussed above. The equation has the
solution for sin q if c < 1, and for sinh q if c > 1. From
the estimate above, the exponential factor is large, and
we are in the latter regime. It follows that kc > k0, al-
ways in the range where there are no oscillations of the
tunneling matrix element. We also find that generically
kc < ks, providing the natural cutoff wave vector for our
low-energy Hamiltonian.

The oscillations of the energy gap as a function of film
thickness are shown in Fig. 2(b). According to the k · p
parameters, the oscillations are much more pronounced
in Bi2Te3, which would make it a suitable candidate for
the experimental observation of the thickness dependence
of the gap.

There are film thicknesses for which t(0, a) vanishes,
and the states are gapless and remain approximately
semi-metallic near k = 0. However, it would be erro-
neous to interpret the gapless spectrum as an indication
that the states at both surfaces are decoupled. As is clear
from Eq. (25), the hopping integral t(k, a) does not van-
ish at all k simultaneously, so that the surfaces remain
coupled even in this case. This is illustrated in Fig. 3,
where we show that the energy dispersion for the film re-
mains non-linear even when the gap closes, and plot the
band curvature as a measure of the deviation from the
linearly dispersing surface state.

This observation illustrates a crucial point for our sub-
sequent discussion. The gap magnitude, |t(0, a)|, that
we obtain is in quantitative agreement with the findings
of Refs. 16–18. However, the curvature of the bands at
larger k is controlled by the momentum dependence of
the tunneling parameter t(k, a) and thus differs very sub-
stantially from the perturbative, in k, results in Refs. 17
and 18. The band curvature plays a critical role in the
analysis of the possible topological phases in this system,
an issue that we turn to in the next section in which
we investigate the topological properties of the electronic
states in a TI thin film.

III. TOPOLOGICAL PHASES IN A TI THIN
FILM

Both the gap in the energy spectrum of the TI thin
film, and the band curvature of the low-energy states are
controlled by the hybridization function t(k, a). As this
function may exhibit sign changes as a function of its
arguments, it is appropriate to ask whether topological
electronic phases exist in this system. We answer this
question using two different methods.

FIG. 2. Band structure of the topological insulator thin film.
(a) Dispersion relation of a TI thin film of thickness 2a = 2
nm, made of Bi2Se3, with k · p parameters A1 = 2.26 eV Å,
A2 = 3.33 eV Å, B1 = 6.86 eV Å2, B2 = 44.5 eV Å2, and M =
0.28 eV from Ref. 4. The thin film bands merge with the bulk
bands of the TI at kc, while in the absence of hybridization
the surface states merge with the bulk at ks. (b) Thickness
dependence of the gap t(0, a) for Bi2Se3. Inset: Thickness
dependence of the gap t(0, a) for Bi2Te3, with k ·p parameters
A1 = 0.3 eV Å, A2 = 2.87 eV Å, B1 = 2.79 eV Å2, B2 =
57.38 eV Å2, and M = 0.3 eV from Ref. 4.

A. Pseudospin textures

We first analyze the topological phases of the thin film
by exploring their connection to the pseudo-spin winding
in momentum space. Since the bands of the Hamiltonian
are always doubly degenerate, we have the freedom to
choose a convenient basis by combining the wave func-
tions of the degenerate states. We make our choice based
on two requirements.

First, we demand that the basis states should be the
eigenstates of the Hamiltonian at k = 0. From Eq. (26)
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FIG. 3. Gapless states in the thin film of a topological
insulator. (a) Dispersion relation for Bi2Te3 for thickness
2a = 29.14 Å such that t(0, a) = 0. Note the deviations from
the linear dispersion of the decoupled surface states (dashed
line). (b) The band curvature as a measure of the deviation
from the linear dispersion (which would exhibit no curvature)
of the surface state.

these are the symmetric and antisymmetric combinations
of the states with the same helicity at the top and bot-
tom interfaces. Second, we choose the basis so that in
the limit of a thick film (in which the surfaces decouple,
with t→ 0) the Hamiltonian regains the well-known he-
lical Dirac form, (σ × k)z. This amounts to returning
from the helicity to the spin space according to ψµ,↑ =

i
(
ψ̂µ,+ + ψ̂µ,−

)
, and ψµ,↓ = eiθk

(
ψ̂µ,+ − ψ̂µ,−

)
, where

we remind the reader that µ = ± indicates the up-
per and the lower surfaces of the film. This step intro-
duces the even and odd combinations of the states with
the opposite helicities at the same interface. Together,

they suggest using the basis ψ̃ = (ψT,↑ + ψB,↑ ,−ψT,↓ +

ψB,↓ ,−ψT,↑+ψB,↑ , ψT,↓+ψB,↓)
(T ), in which the Hamil-

tonian takes the block-diagonal form

H(k) =

(
H1(k) 0

0 H2(k)

)
, (29)

with

H1(k) =

(
t(k, a) −A2(ky + ikx)

−A2(ky − ikx) −t(k, a)

)
,(30a)

H2(k) =

(
−t(k, a) −A2(ky + ikx)

−A2(ky − ikx) t(k, a)

)
.(30b)

Note that within each block the upper and lower compo-
nents of the basis functions have a definite and opposite
z-component of the spin (↑, ↓), but describe different (odd
vs even) combinations of the two interface states. Con-
sequently, if we introduce the Pauli matrices Σi acting
within each block, they do not correspond to physical
spin operators. Defining αi as the Pauli matrices in the
band (blocks of H) space, spin is given by Sz = ~α0Σz/2,
and Sx,y = ~αxΣx,y/2, confirming the pseudo-spin na-
ture of the vector Σ. Nonetheless, this pseudo-spin can
be used for the topological classification of the states.

Each block H1,2 is identical to the well-studied hamil-
tonian of a Chern insulator3, with the tunneling matrix
element t(k, a) playing the role of a mass, so that the
bulk spectrum consists of two bands separated by an en-
ergy gap 2|t(0, a)|. Additionally, if the sign of the mass
term changes between k = 0 and large values of k, each
block supports a gapless edge mode. The direction of the
propagation of this edge mode is determined by the sign
of the mass, and hence the two blocks yield two coun-
terpropagating states. If the basis functions for the two
blocks were spin eigenstates, the edge would carry a net
spin current, and Eq. (29) would describe a spin Hall in-
sulator. Since they are not, the TI thin film generally
supports a pseudospin-Σ Hall effect, which is reminis-
cent of the valley Hall effect in graphene26. We discuss
in Sec. IV the special circumstances under which this
corresponds to the physical spin-Hall effect.

The number of sign changes of the mass term, t(k, a),
depends on the film thickness and the sign of ς(0) =
A2

1 − 4B1M , see Eq. (25). For ς(0) > 0 the system is al-
ways topologically trivial. In the opposite case, ς(0) < 0
(realized for Bi2Se3, Sb2Te3 and Bi2Te3), the sign of
t(k = 0, a), and the number of sign changes of the mass
term between k = 0 and the oscillation cutoff k = k0

defined in Sec. II C depends on the film thickness. Illus-
trative cases are shown in Figs. 4(a)-(d). If the number
of sign changes of t(k, a) is odd, the system is topological.
Hence the sign of the tunneling matrix element at k = 0
defines the “topological mass index” of the film,

∆t =
[1− sgn(t(0, a)]

2
, (31)

which depends on the parameters of the TI material and
its thickness. If ∆t = 1 (∆t = 0), the TI thin film is in
the topological (non-topological) regime.

To confirm that the index ∆t defines the topological
properties of the thin film we consider the winding of
the pseudo-spin, Σ, in momentum space3,19. Since our
system has time-reversal and inversion symmetry, it is
sufficient to consider the pseudo-spin winding in only one
of the bands, and we choose here the bottom (valence)
band of H1, labeled as “−, 1” hereafter. The pseudo-spin
content of the states in other bands (“+, 1”;“−, 2”, and
“+, 2” in obvious notations) is related to the band we
consider via 〈Σi〉+,1 = −〈Σi〉−,1, and 〈Σi〉±,1 = 〈Σi〉∓,2.

The components of the pseudo-spin of the eigenstates
of the film, 〈Σi〉, as a function of kx, at ky = 0, are
shown in Figs. 4 (e)-(h). Here we use the the same set of
parameters as in Figs. 4 (a)-(d). For that cut in momen-
tum space 〈Σx〉−,1 = 0, so that we only plot 〈Σz〉−,1 and
〈Σy〉−,1. Our system is rotationally invariant, so that
the entire pseudo-spin texture can be inferred from these
panels. We find a non-trivial winding, with a skyrmion-
like texture, whenever t(0, a) < 0, confirming our analy-
sis.

A comparison of Figs. 4 (b) and (d) shows that, even
though t(k, a) goes through a different number of sign
changes in these two examples of topological states, the
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FIG. 4. The top row shows the sign of the mass term, t(k, a), as a function of momentum up to the cutoff kc for the band
parameters of Bi2Se3, listed in the caption to Fig. 2. The four panels show different film thickness, 2a. (a) In a 2 nm thick film
there is no sign change, so that the index defined in Eq. (31) ∆t = 0, and the system is topologically trivial; (b) For a thickness
of 5 nm, the mass term displays a single sign change, hence ∆t = 1, and the structure is topologically non-trivial; (c) An 8 nm
film has two sign changes, so that ∆t = 0. (c) For a = 10 nm, there are three sign changes, so ∆t = 1. (e)-(h) pseudo-spin
textures of the valence band states, E−,1, along the line ky = 0 for the cases (a)-(d). Only panels (f) and (h), corresponding to
∆t = 1 in panels (b) and (d) respectively, have a non trivial winding characteristic of topological states.

net pseudo-spin winding angle is the same for both cases.
This is not a priori obvious, and naively one could expect
an extra 2π phase for each additional “domain wall” of
the mass term in momentum space. This observation is
relevant for the determination of the edge states that are
a signature of the topological phases. The main ques-
tion that arises is whether all such phases of the thin
film have a single edge state per band, or whether it is
possible for the cases with multiple sign changes to gener-
ically have an odd number of edge states (even though
the topological protection may extend only to a single
state that remains gapless after hybridization). To an-
swer this question we directly compute the Chern number
that gives the number of edge modes.

B. Chern Number of TI Thin Film

Our next task is to compute the Chern number of a TI
thin film. As discussed above, each block of the Hamilto-
nian, Eq. (29), describes a two band insulator, with the
two blocks related by time-reversal symmetry, which re-
sults in doubly-degenerate valence and conduction bands.
Therefore the Chern number for each block is the topo-
logical index that characterizes its phases3.

We first rewrite each 2 × 2 Hamiltonian in Eq. (30)
via the pseudo-spins Σ coupled to a pseudo-Zeeman field

h(k):

Hi(k) = hx(k)Σx + hy(k)Σy + (−1)i+1hz(k)Σz , (32)

here i = 1, 2 is the block index, and the vector h(k) =
(−A2ky, A2kx, t(k, a)). The Berry curvature of each
block is25

Ωxy,i(k) = (−1)i+1 1

2
εabc

∂ĥa(k)

∂kx

∂ĥb(k)

∂ky
ĥc(k) , (33)

where the unit vector ĥ(k) = h(k)/|h(k)|, and εabc is the
Levi Civita tensor. Therefore Ωxy,1(k) = −Ωxy,2(k), and
the net Berry curvature of the entire system (Ωxy,1(k) +
Ωxy,2(k)) vanishes identically for all k, as required by TR
and inversion symmetry27.

Although the net Berry curvature vanishes, the Berry
curvature for each block does not always vanish. The
corresponding block Chern number is

Ci =
1

2π

∫ kc

0

d2k Ωxy,i(k) , (34)

where kc is the momentum cutoff. For a non vanish-
ing Chern number, C1 = −C2 = j 6= 0, the system
hosts j pairs of time reversed versions of the quantum
Hall state, associated with counter circulating TRI edge
states. It is therefore sufficient to compute the Chern
number of just one block, and hereafter we focus on the
upper, i = 1, block of Eq. (29). It is also important to
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FIG. 5. Chern number of the filled valence band from the up-
per block of the Hamiltonian, Eq. (29), C1, as a function of
the film thickness. C1 = 0 and |C1| = 1 indicate the trivial
and the topological insulating states respectively. Note the
agreement between the numerical result and the index based
on the sign of the tunneling mass term at zero momentum.
The second order expansion of t(k, a) gives spurious topolog-
ical transitions with no closing of the gap, see text.

note from Eq. (34) that the TI thin film system is not a
spin quantum Hall insulator even in the topological phase
(in contrast to the claims in Refs. 17 and 18), since the
counter circulating edge states carry opposite band in-
dex, i, but not opposite spin. We will discuss this issue
more extensively below.

Due to the non-monotonic dependence of t(k, a) on
momentum it is convenient to calculate the Berry cur-
vature and the Chern number using the numerically-
efficient method described in Ref. 28. In this method mo-
mentum is discretized, kl = (kx,lx , ky,ly ), where kx,lx =
kclx/Nx, ky,ly = kcly/Ny, the indices lx = (0, . . . , Nx),
ly = (0, . . . , Ny), and Nx and Ny define the step of the
grid. For a gapped system the Berry connection is de-
fined via the link variables of the occupied (valence band)
states,

Ui =
〈ψ(kl)|ψ(kl + êi)〉
|〈ψ(kl)|ψ(kl + êi)〉|

, (35)

where êx and êy are the unit vectors along the x and y di-
rections. Within this formalism the discrete distribution
of the Berry curvature takes the form

Ωxy,1(kl) = ln

(
Ux(kl)Uy(kl + êx)

Ux(kl + êy)Uy(kl)

)
, (36)

and the Chern number is given by

C1 =
1

(2iπ)

∑
l

Ωxy,1(kl) . (37)

We plot C1 as a function of Bi2Se3 film thickness in
Fig. 5, and show that its behavior is identical to that of
the topological mass index, ∆t. In agreement with our
analysis of the phase winding of the pseudo-spin vector,
the Chern number in the topological phase is 1, indi-
cating that we have only one edge state per band, i.e.
two counter-circulating edge modes in total, irrespective
of the number of sign changes of the mass parameter
t(k, a). The phase boundaries between topologically dis-
tinct phases, corresponding to t(0, a) = 0, are always
gapless, with linearly dispersing Dirac-like states at low
energies. Note however that the top and bottom sur-
face states remain coupled as is evident from the band
curvature, (see Fig. 3 and Sec. II D).

We now review the approximation used in Refs. 17 and
18, which amounts to expanding t(k, a), to second order
in k,

t(k, a) ≈ t(0, a)−B(a)k2 , (38)

where

B(a) =
4A1B2e

−aA1
B1 F (a)

|ς(0)|3/2
, (39)

F (a) = 2aM
√
|ς(0)| cos (X (a))− ς(0) sin (X (a)) .(40)

Here X (a) =
√
|ς(0)|a/B1 and, as before, ς(0) = A2

1 −
4B1M . Note that B(a) is an oscillating function. Within
this approximation setting the cutoff kc →∞ in Eq. (34)
we find for the Chern number

C1,2 = ∓1

2
[sgn(t(0, a)) + sgn(B(a))] , (41)

with the upper sign corresponding to C1. In this approx-
imation the topological transitions occur at the points
where the sign of t(0, a) changes as in previous discus-
sion as well as at the thicknesses where B(a) changes
sign. This is shown in Fig. 5, is in complete accord with
Ref. 17 and 18, but does not agree with the results of
the calculation presented above. The main point of con-
trast between the two methods is the implication of the
topological transition without a gap closing at B(a) = 0,
which we believe to be an artifact of using the expansion.
In contrast, the topological phase diagram obtained from
the exact form of t(k, a) reflects the non-adiabatic con-
nection between the two distinct topological phases as
they are separated by a linearly dispersing Dirac semi-
metallic phase21.

IV. EDGE STATES IN TI THIN FILM

Having shown that a TI thin film can exhibit topo-
logical phases, we now look for the gapless edge states
as the signatures of the topological nature of the film.
We consider a semi-infinite thin film occupying the y > 0
half-plane, and solve the eigenvalue equation for the state
localized near the edge. Because of the block-diagonal na-
ture of the Hamiltonian in Eq. (29), it is sufficient to solve
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for the wave functions satisfying each of the blocks sepa-
rately. Translational invariance along the surface makes
kx a good quantum number, while we need to replace ky
by the momentum operator −i∂y. Without loss of gen-
erality we focus on the upper block of the Hamiltonian,
and solve the problem in two steps.

A. Zero energy states

For trivial hard-edge boundary conditions, when
ψ(x, y = 0) = 0, the Hamiltonian is particle-hole sym-
metric, and we expect that the edge state exists at E = 0
for kx = 0. In this case the eigenvalue problem becomes(

t(−i∂y, a) iA2∂y
iA2∂y −t(−i∂y, a)

)
φ̃1(y) = 0 , (42)

where φ̃1(y) is a spinor in the pseudospin Σ space. For
the states localized near the edge we take an ansatz

φ̃1(y) = φ1e
λy, which gives

[t(−iλ, a)Σz + iλA2Σx]φ1 = 0 . (43)

Multiplying by −iΣx, we obtain the equation

t(−iλ, a)Σyφ1 = λA2φ1 , (44)

which requires φ1 to be proportional to an eigenstate of
the Σy matrix, Σyφ± = νφ± with ν = ±1. In turn, λ
must satisfy

[t(−iλ, a)]2 − (A2λ)2 = 0 . (45)

Our strategy now is as follows. Assume we have a hard

wall boundary condition, i.e. φ̃1(0) = 0. Then for the
existence of the normalizable edge state we must have
(at least) two roots, λ1,2, of Eq. (45) with Re(λ1,2) < 0
corresponding to the same eigenvalue of Σy, i.e. both
satisfying t(−iλ, a) = νλA2 with a given ν. In that case
the solution has the form

φ1(y) = C1φν(exp(λ1y)− exp(λ2y)) , (46)

where C1 is a constant.
In general, the transcendental equation for λ, Eq. (45),

is not analytically solvable. In the regime where the sec-
ond order expansion in k and the exact results agree,
we make the corresponding expansion in λ, so that
t(−iλ, a) = t(0, a) + B(a)λ2. In this approximation the
solutions equation for λ are

λν,± = ±νA2 ±
√
A2

2 − 4B(a)t(0, a)

2B(a)
. (47)

For B(a)t(0, a) > 0 the two values of λ for the same ν
have the same sign of the real part, and therefore can be
combined to give the non-trivial edge state in Eq. (46).
Therefore the requirement for the existence of the edge
state is for t(0, a) and B(a) to have the same sign, in

agreement with Eq. (41), which only holds in the pertur-
bative regime.

The decay constants for the bottom block of the Hamil-
tonian are obtained from the equation above by replacing
ν → −ν. Consequently, for our geometry, the general
solution for the E = 0 edge eigenstate in the regime
t(0, a) < 0, B(a) < 0, where the expansion gives the
correct topological phase, has the form

φ(y) =

(
C1φ+

C2φ−

)[
eλ+,−y − eλ+,+y

]
. (48)

The result of such an expansion, while qualitatively cor-
rect, is somewhat misleading. This becomes obvious
if we take advantage of the exponential smallness of
t(0, a) and B(a) in the film thickness, t(0, a)B(a) ∝
exp(−2aA1/B1), to expand the square root in Eq. (47)
and find that our values are

λν,± = ν

{
t(0, a)

A2
,
A2

B(a)

}
. (49)

The first of these is a small number, but the second value
is exponentially large, and falls outside regime of validity
of the small k expansion, and, indeed, may fall beyond
the cutoff for the low-energy theory, kc. We also nu-
merically solved Eq. (45) and found two pairs of roots:
one at ±t(0, a)/A2 within numerical accuracy, and the
other, complex, with |λc±| > kc. Only in the topological
regime, t(0, a) < 0, do two roots with the same sign of
the real part correspond to the same eigenvalue ν, and
therefore only in this regime we can have an edge state at
zero energy. However, once again, one of the roots falls
beyond the limit of applicability of the low energy theory
developed here.

We are therefore in the situation where the topological
indices and the approximate calculations unequivocally
point towards the existence of the edge states, but the
exact behavior of the wave functions of such states can
only be determined from the theory that includes the
high-energy physics close to the edges of the Brillouin
zone. Our conclusion here is that the wave function is of
the form given in Eq. (46), with the exponentially small
λ1 ≈ t(0, a)/A2, and λ2 � λ1. In the next section, we
use this observation to develop a linearized theory of the
edge states.

B. Linearized approximation and the dispersion of
the edge states

The wave function of the edge state, Eq. (46), in the
limit of λ2/λ1 � 1 has a peak at y0 ≈ |λ2|−1 ln(λ2/λ1).
That point separates the “boundary layer” that contains
the fraction ∼ 2(λ1/λ2) ln(λ2/λ1)� 1 of the total weight
of the edge state from the long-tail decay ∝ exp(λ1y)
where most of the quasiparticle weight is contained. We
now follow Ref. 23 and develop a linearized theory de-
scribing these tails.
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Since t(k, a) depends on the momentum only quadrat-
ically, to linear order in momentum the Hamiltonian,
Eq. (29), is

H(k) = −A2α0(Σ× k)z − |t(0, a)|αzΣz . (50)

Here αi and Σi are the Pauli matrices operating in the
block and pseudospin space, respectively, as defined in
Sec. III A, and we emphasize that we work in the topo-
logical regime by explicitly writing t(0, a) < 0. The key
formal point is that, since this Hamiltonian is linear in
the momentum, we can no longer impose the continu-
ity of both the wave function and its derivative at the
edge. The underlying physical reason for this, of course,
is that we are only solving the problem on the long length
scale |λ1|−1, beyond the thin boundary layer. Within
this layer the wave function varies rapidly satisfying the
exact boundary conditions of the full Hamiltonian. This
complex behavior can be absorbed into the linearized low
energy theory23,29–31 by imposing a boundary condition
that is consistent with particle conservation (so that the
resulting Hamiltonian is self-adjoint in the half-space),
time-reversal, and inversion symmetry. This boundary
condition takes the form Bψ|edge = 0, where the matrix
B = α0Σ0 − iMn̂ · (ẑ ×Σ), andM commutes with time
reversal, anticommutes with the current normal to the
boundary, {n̂ · α0(ẑ ×Σ),M} = 0 and is Hermitian and
unitary, so that M = M†, and M2 = 1. Here n̂ is the
unit vector normal to the edge.

For our example of a film occupying the y > 0 half-
plane, the matrix B takes the form

B = α0Σ0 + αz [Σz sinϑ+ Σy cosϑ] . (51)

Here the single parameter ϑ depends on the details of
the boundary conditions, and controls the particle-hole
symmetry breaking at the edge23. The particle-hole sym-
metric situation (as with the usual hard wall boundary)
corresponds to ϑ = 0. However, in general the one-
parameter family of boundary conditions, Eq. (51), de-
scribes all possible choices of B for which H is self-adjoint
since the von Neumann deficiency index of the problem
is nd = 1.32 Consequently, by varying ϑ we are able to
describe a wide range of edge states corresponding to dif-
ferent boundary choices in the original Hamiltonian.

Since B is diagonal in the band index, we find solutions
for each of the blocks of the Hamiltonian in the form

ψ1(x, y) =

(
U1

0

)
eikxxeλ1y , ψ2(x, y) =

(
0
U2

)
eikxxeλ2y ,

(52)
which gives the energy of the edge states for each block,
i = 1, 2,

Ei = (−1)i+1A2kx cos(ϑ) + |t(0, a)| sin(ϑ) , (53)

and the corresponding decay lengths

λi = −
∣∣∣∣ |t(0, a)|

A2
cosϑ+ (−1)ikx sinϑ

∣∣∣∣ . (54)

Note that at the value of kx when λ = 0, the edge states
merge with the energy bands of the thin film, and there-
fore, indeed, are no longer localized.

The spinor components of the wave functions for these
states are given by

Ui = Ni
(
iη[Υi(sinϑ+ η)−Ai cosϑ]
−η[Υi cosϑ+Ai(sinϑ− η)]

)
, (55)

where Υi = A2(kx − λi), Ai = (Ei + η|t(0, a)|), η =
(−1)i+1 as before, and Ni is the normalization constant.

An explicit check shows that the states corresponding
to the same energy and different indices i are partners un-
der time reversal, T = iαxΣyC, and are therefore stable
with respect to TRS-invariant disorder. These counter-
propagating edge states carry pseudospin

〈α0Σx〉i = 0 , 〈α0Σy〉i = η cosϑ , 〈α0Σz〉i = η sinϑ .
(56)

In the particle-hole symmetric case, ϑ = 0, when the
only surviving pseudospin component is along y, the edge
eigenstates become the eigenstates of the Σy matrix and
Ei(kx = 0) = 0 as in the preceding section. When the
particle-hole symmetry is broken, and the crossing point
of the two branches shifts from E = 0, the z-component
of the pseudospin is also carried by the edge states.

Previous work17,18 considered the particle-hole sym-
metric boundary conditions and argued that the exis-
tence of the edge states carrying pseudospin implies a
quantum spin Hall effect in the topological phases of
the thin films. We believe this statement to be incor-
rect. Indeed, recalling the physical spin operators, Sx,y =
~αxΣx,y/2, Sz = ~α0Σz/2, it is clear that any edge states
of the form of Eq. (52) carry no spin component in the x-
y plane. Only if we break the particle-hole symmetry at
the boundary do the edge states acquire an out-of-plane
component of the spin, 〈ψ|Sz|ψ〉 = ± sin(ϑ)/2. Hence
the analog of the quantum spin Hall effect only occurs
under non-trivial boundary conditions.

This is consistent with the analysis of the spin content
of the edge states at other boundaries. If we consider
the opposite boundary (half-space y < 0 occupied by the
thin film), the branches corresponding to the opposite
blocks switch energy and pseudospin content. Similarly,
the edge states at the boundaries parallel to the x-axis,
have the same linear dispersion but have 〈Σx〉 = ±η cosϑ,
〈α0Σy〉 = 0 and 〈α0Σz〉 = ±η sinϑ, with +/− indicating
opposite edges. Therefore a state circulating around the
periphery of the thin film changes the pseudospin orien-
tation but always carries the single, z, component of the
physical spin in the same direction.

We conclude that the observation of the spin-Hall ef-
fect in the TI thin film can be only achieved in the pres-
ence of particle-hole symmetry breaking edge potentials,
and even in that case the spin component carried by the
state may be very small, in stark contrast to the find-
ings in Refs. 17 and 18. There is an additional aspect
of these states that makes their experimental detection
difficult. Recall that the decay constant of these states
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at kx = 0 is λ0 ≡ (|t(0, a)|/A2) cosϑ. Recall also that the
tunneling gap t(0, a) is exponentially small in the film
thickness, so that, for example for Bi2Se3, for a = 15Å
(film thickness 2a = 3nm, or about 3 quintuple layers
(QL)), |t(0, a)| = 4meV, which corresponds to the decay
length, λ−1

0 , of at least 80nm (for ϑ = 0). For the thick-
ness of about 10 quintuple layers the edge states extend
over 10-100µm from the boundary. Therefore these states
are very delocalized, with the spectral weight distributed
over a wide range away from the edge, making their de-
tection with spectroscopic techniques very challenging.
For the observation of these states using transport mea-
surements we need to move away from the particle-hole
symmetric case, towards ϑ = π/2 when their spin con-
tent becomes substantial. However, because of the spa-
tial extent of the edge states, to avoid back scattering
across the sample and/or hybridization of the states of
the opposite edges, one needs to have a good quality 3QL
thick film with micron-size area, or a thicker film with an
area of several square millimetres. This suggests that the
observation of the edge state in Bi2Se3 thin films is diffi-
cult. From the inset of Fig. 2(b), Bi2Te3 is a much more
promising candidate material for observation of the topo-
logical effects in thin films as t(0, a) remains on the order
of several meV even for close to 100Å thick films. For a
3 QL thin film of Bi2Te3 the decay length, λ−1

0 ≈ 10 nm,
while for a 5 QL thick it is about 30 nm.

V. CONCLUSIONS

We showed that a thin film of topological insulator ma-
terial can host both trivial and topological phases that
are controllable via the thickness of the film. To reach
these conclusions we introduced a tunneling formalism
that generically applies to thin-film based heterostruc-
tures, and used it for the free-standing case. We demon-
strated that two (hitherto missed) technical aspects are
critical for the correct analysis of this problem. First, we
had to analyze a general I-TI-I junction, and only then
obtain the free-standing film limit by setting the insula-
tor gap to infinity. Second, we had to keep track of the
dependence of the tunneling matrix element (or mass)
on the in-plane momentum of the film, as this depen-
dence is non-monotonic, and crucial for the topological
properties.

For films of Bi2Se3 and Bi2Te3 the direct spectral gap
at the Γ-point (in plane momentum k = 0) of the surface
Brillouin Zone oscillates as a function of the thickness, in
agreement with Refs. 16–18. However, in contrast to pre-
vious work that utilized the small-k expansion to draw
conclusions about the topology, we find that: a) the topo-
logical properties are entirely determined by the sign of
the tunneling matrix element at k = 0; b) all the topolog-
ical transitions occur with a gap closing (and the results
in Refs. 16–18 suggesting otherwise are artefacts of the
expansion); c) even when the gap closes and the film is
a semimetal, the states at the opposite surfaces are cou-

pled due to the k-dependence of the tunneling. This cou-
pling is manifested as the band curvature away from the
Dirac point, and therefore can be tested in doped samples
via conventional transport coefficients or via non-linear
transport measurements in the undoped films.

We investigated the topological properties of the film
by analytically computing the pseudospin textures and
numerically evaluating the Chern number to arrive at a
topological phase diagram as a function of the film thick-
ness. We confirmed the topologically non-trivial nature
of the phases by determining the spectra and the wave
functions of the edge states. We showed that, while
there are counter-circulating pseudospin currents asso-
ciated with the edge states, these states carry physi-
cal spin current only when the particle-hole symmetry
is broken by the edge boundaries. In that latter case
there is a net circulation of the out-of-plane spin compo-
nent, whose magnitude depends on the specifics of the
symmetry-breaking at the boundary. These findings are
again in contrast to previous work16–18, which argued for
a quantum spin Hall state associated with the in-plane
spin component of the edge modes for the particle-hole
symmetric case. We find the particle-hole symmetric sit-
uation to be more reminiscent of the valley Hall effect in
graphene26.

In the absence of particle-hole symmetry introduced
by the potentials at the edge the edge-states carry a
non-quantized z-component of the spin. Therefore, the
quantum spin-Hall effect is absent in the its usual sense
of quantized spin transport. Nonetheless, a setup com-
bining spin selection via the metallic spin-Hall transport
with measurements of charge conductivity using split-
gate techniques, would still observe quantized charge σxy
that has been interpreted as evidence for the quantum
spin-Hall conductivity33.

In our treatment we ignored terms in the bulk Hamil-
tonian that break particle-hole symmetry. These include
the lowest order terms in Eq. (2) that introduce asymme-
try between the conduction and the valence bands which
are proportional to the identity matrix and have the form
of ε(k) = C+D1k

2
z+D2k

2 where C and D1,2 are material
specific parameters. We checked, using the parameters
in Refs. 34 and 35 for Bi2Se3, that this leads to a slight
renormalization of the decay lengths, λ(k). However, the
hopping element t(k = 0, a) still oscillates as a function of
the film thickness, and there still exists the cutoff value
k0 beyond which t(k > k0, a) is non-oscillatory. This
means that our conclusions remain unchanged, although
the exact correspondence between the film thickness and
the Chern number is somewhat modified compared to
Fig. 5. For Bi2Te3 some work36 indicates that, if the
bulk particle-hole anisotropy is accounted for, the fourth
order in k terms should also be included for consistency,
albeit qualitative picture of the surface states is not mod-
ified. We leave this issue for a separate future discussion.

We also found that the spatial extent of the edge states
is very large in Bi2Se3, making their observation by ei-
ther spectroscopic or transport measurements difficult,
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and requiring large area samples to avoid back-scattering
and hybridization of the modes at the opposite edges. We
suggested that Bi2Te3, at least within the approximation
we employed, is a more promising material for the obser-
vation of the edge states, since the oscillatory behavior of
the tunneling matrix element is more pronounced there,
and the edge states are more localized. Whether this
prediction for Bi2Te3 holds after inclusion of the higher
order in k remains to be verified, perhaps by ab-initio
calculations.

We believe that our method and the results shown here
will stimulate theoretical and experimental studies of the

topological phases of the thin films, and their potential
use in next generation functional devices. Our method
can also be extended37 to films deposited on substrates,
where the behavior of the interface states is more com-
plex22 as well as superlattices containing these films as
building blocks38, such as those proposed for the realiza-
tion of Weyl semimetals39.
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