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URu2Si2 exhibits an anomalous peak in the nonlinear magnetic susceptibility at the hidden order
transition. In order to investigate this anomaly, we conducted direct magnetization measurements
and investigated the detailed angular dependence of the 29Si nuclear magnetic resonance Knight
shift tensor. We find that the nonlinear magnetization is smaller than previously reported, and the
analogous nonlinear Knight shift tensor is below the detection limit. Our results suggest that the
magnitude of the anomalous peak is sample dependent.
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In recent years, there has been a growing recognition
that nonlinear response functions may uncover broken
symmetries that remain hidden to linear responses. In
most cases, an order parameter, such as the sublattice
magnetization in the case of an antiferromagnet, couples
to an external field so that the linear susceptibility ex-
hibits an anomaly at the phase transition temperature.
However, the external field may not be a conjugate vari-
able to a ‘hidden’ order parameter, so that the linear
susceptibility remains unaffected or is only weakly mod-
ified by the onset of long-range order. In such cases, the
higher order nonlinear susceptibility terms may exhibit
anomalies at the phase transition. Recent studies of the
nonlinear optical response in Sr2IrO4 and in YBa2Cu3O7

have revealed broken symmetries that were not evident
in the linear electric susceptibilities of these materials1,2.
Another important example is the heavy fermion ma-
terial URu2Si2, which exhibits a ‘hidden order’ at low
temperature that remains one of the most enduring mys-
teries in condensed matter physics3. Although several
key experiments have shed new light on the nature of the
hidden order phase, the order parameter remains diffi-
cult to discern4–8. In this material, the linear magnetic
susceptibility exhibits only a modest change in slope at
the hidden order phase transition, whereas the nonlinear
component exhibits a sharp enhancement just below the
transition9–11. The behavior in URu2Si2 is unusual, and
may reflect the Ising nature of the coupling between the
hidden order and the magnetic field12.

Nonlinear susceptibility terms generally are enhanced
at second order phase transitions; however, their mag-
nitudes are progressively smaller with increasing powers
of external field. In contrast to the linear susceptibility,
the four-fold symmetry of the nonlinear term in URu2Si2
is significantly enhanced at the hidden order transition,
T0 = 17.5 K, and has been interpreted as a consequence
of a coupling between the hidden order parameter and

the magnetic field11,12. Indeed, the jump in the non-
linear susceptibility can be related quantitatively to the
jump in the specific heat at the ordering temperature,
implying that the effect is an intrinsic thermodynamic
phenomenon13. However, the microscopic origin of the
non-linear susceptibility is not well understood. Nuclear
magnetic resonance (NMR) is a powerful tool to inves-
tigate local physics, and has proven instrumental in un-
covering the discrepancies between bulk and microscopic
measurements of the magnetization in electronically in-
homogeneous systems14,15. The Knight shift, K, probes
the local magnetization in the crystal via a hyperfine cou-
pling to the electron spins. Given the large anomaly in
the nonlinear magnetization observed previously9, we es-
timated a nonlinear Knight shift should also be present
and detectable. We measured K as a function of angle,
θ, between the magnetic field and the crystal c-axis, and
find that, contrary to expectation, this quantity varies
only as cos2 θ, as expected for a second-rank tensor. In
order to further investigate the discrepancy between the
local and macroscopic response we measured the nonlin-
ear magnetization in the same sample, and found that
the anomalous jump at T0 was reduced compared to pre-
vious reports9,11. Our results suggest that the nonlinear
susceptibility observed in this sample is consistent with
thermodynamic constraints, but is sample dependent.

A single crystal was grown by means of the Czochralski
method with isotopically-enriched 29Si (I = 1/2), with a
nominal concentration of 31%. A thin rectangular prism
of approximate dimensions 7.6 mm× 5.1 mm× 1.7 mm
was cut from the growth rod, with the c-axis perpen-
dicular to the main face. The crystal was mounted in a
custom-built dual-axis goniometer NMR probe16, so that
the crystalline c-axis could be rotated between −20◦ and
120◦ with respect to the fixed magnetic field H0 of 11.7
T (see inset Fig. 1). The angle was measured by count-
ing the number of turns of the drive rod, and the gear
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FIG. 1. (color online) 29Si NMR spectra of URu2Si2 as a
function of angle at 16 K. Solid black lines are fits as described
in the text. The inset shows the angular dependence of the
mean frequency.

ratio is approximately 1:600, so that one rotation of the
drive rod is equivalent to 0.6◦. At this field, the contribu-
tion of the nonlinear susceptibility is significant, so that
the magnetization should exhibit a small but discernable
anomaly at the hidden order transition, as shown in Fig.
29,11. NMR spectra were collected by summing a se-
quence of Carr-Purcell-Meiboom-Gill (CPMG) echoes as
a function of frequency, angle, and temperature. Because
both the width and the spin-echo decay time T2 varied
significantly with angle and temperature, the CPMG pa-
rameters were updated for each case. Spectra were ob-
tained by sweeping the frequency, while acquiring echo
signals in both channels in quadrature detection, and uti-
lizing computer-controlled stepper motors to rotate the
goniometer orientation. The signals were phase adjusted
and the echo was integrated in a single channel. Errors
in the echo integrals were determined by scaling the stan-
dard deviation of the noise baseline by the square root of
the number of integration points using the python uncer-
tainties package17. A representative data set is shown in
Fig. 1 at 18 K. These spectra were fit to a skewed Gaus-
sian to extract the mean, ω0, and standard deviation, σ.
The fits also capture the skew asymmetry of the spectra
seen in Fig. 1. The skew arises due to a variation of the
demagnetization field over the volume of the crystal, as
discussed below. The shift of the resonance, K, is deter-
mined by the mean frequency: K = ω0/γH0 − 1, where
γ = 8.458 MHz/T is the gyromagnetic ratio of the Si.

FIG. 2. (color online) (a) Knight shift (error bars are the

point sizes), (b) K4 and χ(3)H2/6, and (c) the reduced χ2

both for including just the second rank, or second and fourth-
rank tensors in the fits. The χ3 data in (b) (dotted line) is
reproduced from11.

There are two important contributions to the shift of
the NMR resonance in solids: K = Ks + Kd, where
the Knight shift Ks arises due to the hyperfine coupling
to the electron magnetic moments, and Kd is the con-
tribution from the demagnetization field of the sample.
In general, Ks � Kd because the hyperfine coupling
between the nuclear and electron moments is large. In
heavy fermions, Ks can have a complicated relationship
to the magnetization of the electrons due to the presence
of multiple hyperfine couplings. The hyperfine Hamilto-
nian is: H = I · (AcSc + AfSf ), where Sc is the con-
duction electron spin and Sf is the f-electron spin, with
hyperfine couplings Ac and Af to the two types of spins.
In a magnetic field, the nuclei experience a hyperfine
field Hα = AfMα/(gµBγ~) + ∆Hα in the α direction,
where Mα is the magnetization and ∆Hα is proportional
to Ac − Af and becomes non-zero below the coherence
temperature, T ∗, in heavy fermions18. However, since
Ac ≈ Af in URu2Si2, ∆Hα/Hα . 0.02, and this term is
negligible. Relaxing this assumption, however, does not
affect the conclusions, as we show below.

In general, the magnetization is given by both the
second-rank linear susceptibility, χ(1), and fourth-rank
nonlinear susceptibility, χ(3), tensors20:

Mα = χ(1)
αβHβ +

1

3!
χ(3)

αβγδHβHγHδ + · · · (1)

χ(1) contains two independent parameters, χaa and χcc.
In URu2Si2, these are highly anisotropic and reflect the
Ising-like nature of the g-factor in this material21,22.
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FIG. 3. (color online) Kcc versus χ
(1)
cc measured at 12 T.

The solid line is linear fit with hyperfine coupling constant
Af = 4.4 ± 0.1 kOe/µB , consistent with published data19.

χ(3) contains four independent parameters, χaaaa, χaabb,
χaacc, and χcccc, as shown by Trinh et al11. The Knight
shift thus acquires the tensor nature of the susceptibili-
ties: Ks

αβ = (Af/gµBγ~)χ(1)
αβ is the usual second-rank

Knight shift tensor, and Ks
αβγδ = (Af/gµBγ~)χ(3)

αβγδ

is the fourth-rank Knight shift tensor. The Knight shift
is then:

Ks(θ) = K0 +K2 cos2(θ) +K4 cos4(θ), (2)

where θ is the angle between the external field H0 and
the c-axis. The coefficients are given in Appendix A.
Importantly, K4 depends only on χ(3), so it vanishes in
the absence of nonlinear contributions. Note we assume
that the hyperfine coupling tensor is isotropic23, however,
any anisotropies in the hyperfine coupling tensor would
only modify the values of K0 and K2, but not affect K4.

It is important to also account for the angular depen-
dence of the demagnetization shift, Kd = |B|/H0 − 1.
Fig. 4 show Ks = K −Kd, in which the angular depen-
dence of the demagnetization field has been subtracted,
as described in Appendix B and shown in the inset. The
solid lines in Fig. 4 are fits to Eq. 2, in which K4 is either
held at zero or allowed to float. Fig. 2 shows how these
fit parameters vary as as a function of temperature, as
well as the reduced χ2 value for the angular-dependent
fits. For the fits without the K4 term, the residuals ex-
hibit tiny deviations from zero that are slightly improved
by including the K4 term. However, the reduced χ2 val-
ues exhibit no statistically-significant improvement in the
goodness-of-fit. The absence of a K4 term is also high-
lighted in the linear dependence seen in Fig. 5, which
shows Ks versus cos2 θ.

The Knight shift was determined solely based on the
mean values extracted to from the fits to spectra shown
in Fig. 1, however the spectra also exhibit a pronounced
variation in linewidth as a function of angle. The stan-
dard deviation of the spectra, σ, is shown in Fig. 6. σ
is maximum for θ = 0 (H0 || [001]) and minimum for
θ = 90◦ (H0 || [100]). The resonance can be broadened
by (i) the variation of local fields due to the neighboring
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FIG. 4. (color online) Knight shift, Ks, versus angle and
temperature with (upper) and without (lower) including the
fourth-rank tensor contribution. The solid lines are fits as
described in the text, and residuals are shown below for each
set of fits. The error bars were computed by summing in
quadrature the fitting parameter uncertainty for the spectral
fits given the measured echo integral errors, a 10% uncertainty
in both the demagnetization factor and in the magnetic sus-
ceptibility at each angle, as discussed in the text. The inset
shows the demagnetization shift as a function of angle, as
discussed in the text.

dipolar fields of other 29Si nuclei in the lattice, (ii) the
dipolar field of the 101Ru neighbors, (iii) electronic inho-
mogeneity within the sample, and (iv) variation of the
local demagnetization field within the sample itself. The
calculated broadening due to the nuclear dipole-dipole
coupling is described in Appendix C and is shown in Fig.
6 as a function of θ (red line). This contribution is only
2-3 Oe, an order of magnitude smaller than the experi-
mental values. It is clear, therefore, that the dominant
contribution to the linewidth arises either from (iii) or
(iv). We estimate the contribution from variations of the
demagnetization field over the volume of the sample, as
a function of field orientation. The standard deviation of
the local field distribution due to the inhomogeneous de-
magnetization field is shown in Fig. 6 as the solid black
line. Although the agreement with the measured values
is not exact, the order of magnitude and the trend with
angle agrees well. We note further that the skew observed
in the spectra is also clear in the histogram of the com-
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FIG. 5. (color online) Knight shift versus cos2 θ and tem-
perature. The solid lines are linear fits to the data, and the
residuals are shown below. The error bars are the same as
those shown in Fig. 4.

FIG. 6. (color online) Standard deviation of the lineshape
versus angle and temperature. The red solid line is the second
moment of the nuclear dipole spin fields, and the solid gray
line is the second moment of the demagnetization fields, as
described in the text.

puted local fields, with a tail extending to higher fields
for angles close to 0◦, in agreement with the data shown
in Fig. 1.

The temperature dependence of Kcc, Kaa and K4 are
shown in Figs. 2(a) and (b), where Kaa = K0 and
Kcc = K0 + K2. Kcc and Kaa behave similarly to the
bulk linear susceptibilities, χcc and χaa, and Kcc exhibits
a slight change in slope at T0. Kcc is linearly propor-
tional to χcc, as seen in Fig. 3. The anisotropy of these
Knight shifts is consistent with previous measurements
of the Ising anisotropy observed in this material11. The
nonlinear component, K4, is essentially temperature-
independent and close to zero. This non-zero average
value of −0.007± 0.003% may be the result of a system-

atic error, possibly due to a misalignment of less than
1◦ towards the axis of rotation. The angular fits shown
in Fig. 4 yield an offset of ∼ 1.4◦, consistent with this
scenario. The nonlinear susceptibility reported in Ref.11

is also shown in Fig. 2(b), as well as that measured
on a crystal from the same batch as the Knight shift.
The measured jump ∆χ3 we observe is only 16% of that
reported in Ref.11 (and only 1.7% of that reported in
Ref.9). The jump in the specific heat, ∆CV /T = 146
mJ/mol·K2, and the change in slope of the linear sus-
ceptibility at T0, ∆(dχ1/dT ) = 2.558 emu/(mol·T·K)
of the current sample yield the thermodynamic relation
∆CV

T (∆χ3) (∆dχ1/dT )
−2 ≈ 1.6, which the same order of

magnitude as the theoretical value of 313.

In summary, we have measured the Knight shift
through the hidden order transition in URu2Si2 and
found no evidence for a fourth-rank tensor that would
give rise to a four-fold symmetry as a function of an-
gle. Our results differ from recent measurements of the
bulk magnetization, in which the nonlinear susceptibil-
ity exhibits a sharp anomaly at the hidden order tran-
sition and displays a cos4 θ angular variation. Direct
measurements of the nonlinear susceptibility in the cur-
rent sample, however, reveal a nonlinear anomaly that
is approximately ten times smaller than previously ob-
served, which would not be detectable within the pre-
cision of our Knight shift measurements. The anoma-
lous jump in the nonlinear susceptibility is related to the
field-dependence of T0(H), and different samples may ex-
hibit the same transition temperatures but with different
anomalous magnetic behavior. The isotopically-enriched
sample used in this study exhibits a T0 = 16.4 K, but the
size of the thermodynamic anomalies at T0 are consistent
with thermodynamic predictions. However, unlike the
nonlinear optical studies in Sr2RuO4 and YBa2Cu3O7,
the anomalous nonlinear magnetization in URu2Si2 does
not reveal fundamental new information about the bro-
ken symmetry in this material, but rather is a natural
consequence of the field-dependence of T0.

Nonlinear magnetization has also been observed by
torque magnetometry in URu2Si2 as a four-fold cos(4φ)
variation for field oriented in the basal plane24. Knight
shift measurements do not reveal any in-plane angular
variations, but do find a four-fold variation of the NMR
linewidth (in addition to a two-fold variation)25. This
variation may reflect a finite χ(3) term11,20, however the
magnitude of the measured effect is independent of tem-
perature and has been interpreted as originating from
local disorder26. Our finding that the magnitude of the
temperature dependence of χ(3) is sample dependent sug-
gests a possible role of local disorder. Further studies are
necessary to determine to what extent impurities and dis-
order can affect the nonlinear magnetization in URu2Si2.
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Appendix A: Appendix A: Nonlinear susceptibility
tensor

Trinh et al.11 show that the anisotropic susceptibil-
ity is well described by χ3 = χaaaa + (χcccc + χaaaa −
6χaacc) cos4 θ. The Knight shift coefficients in Eq. 2 are
thus given by:

K0 =
Af

gµBγ~

(
χaa +

H2
0

6
χaaaa

)
(A1)

K2 =
Af

gµBγ~
(χcc − χaa) (A2)

K4 =
Af

6gµBγ~
H2

0 (χcccc + χaaaa − 6χaacc) . (A3)

Appendix B: Appendix B: Demagnetization Field

The contribution from the demagnetization field can
be computed numerically using the measured suscep-
tibility tensor and the dimensions of the crystal. We
computed the demagnetization tensor, D(r), for points
within the sample using the magnetic scalar potential for
a 3D uniform set of 71,680 points within a rectangular
prism of the same dimensions as the sample. The mag-
netic field within the sample is then given by: B(r) =

[Γ(r) + 4πχ · Γ(r)]H0, where Γ(r) = (I− D(r) · χ)
−1

.
We consider here only the linear susceptibility, χ = χ(1),
which nevertheless is anisotropic. We computed B(r)
for various field orientations and determined Kd(θ) =
0.00012 + 0.00011 cos(2θ), which is an order of magni-
tude less than the measured K.
Appendix C: Appendix C: Nuclear Dipole-Dipole

Coupling

The dipole-dipole second moment is given by:

σ2
dip =

3

4
γ4~2I(I + 1)P

∑
k

1− 3 cos2 θk
r6
k

(C1)

where rk is the vector between the Si sites in the lattice,
θk is the angle between H0 and rk, and P ≈ 0.40 is the
abundance of the 29Si isotope.
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