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We apply the method of self-adjoint extensions of Hermitian operators to the low-energy, con-
tinuum Hamiltonians of Weyl semimetals in bounded geometries and derive the spectrum of the
surface states on the boundary. This allows for the full characterization of boundary conditions and
the surface spectra on surfaces both normal to the Weyl node separation as well as parallel to it.
We show that the boundary conditions for quadratic bulk dispersions are, in general, specified by a
U(2) matrix relating the wavefunction and its derivatives normal to the surface. We give a general
procedure to obtain the surface spectra from these boundary conditions and derive them in specific
cases of bulk dispersion. We consider the role of global symmetries in the boundary conditions
and their effect on the surface spectrum. We point out several interesting features of the surface
spectra for different choices of boundary conditions, such as a Mexican-hat shaped dispersion on the
surface normal to Weyl node separation. We find that the existence of bound states, Fermi arcs,
and the shape of their dispersion, depend on the choice of boundary conditions. This illustrates the
importance of the physics at and near the boundaries in the general statement of bulk-boundary
correspondence.

I. INTRODUCTION

Topological phases of matter have garnered an increas-
ingly central standing in condensed matter physics and
related fields. A generic feature of such phases is an inti-
mate correspondence between nontrivial topology of bulk
states, expressed in terms of topological invariants of bulk
bands under periodic boundary conditions, and the ap-
pearance of robust states bound to the physical edges of
the system in a bounded geometry. Examples of this bulk-
boundary correspondence abound: quantum hall phases
in two dimensions support chiral edge modes;1,2 time-
reversal invariant topological phases in two and three
dimensions support gapless edge and surface states;3–8

topological superconductors support Majorana modes at
edges, surfaces, and inside vortex cores;9–12 and Weyl
semimetals are known to support unconventional surface
states with open “Fermi arcs.”13–15 Intuitively, the ap-
pearance of these robust surface states regardless of local
details of the surface is the result of the global, topolog-
ical character of the bulk.

Despite many examples and its intuitive appeal, a pre-
cise theory of the bulk-boundary correspondence is lack-
ing.16–18 Surface states are, of course, not special to topo-
logical phases. Tamm19 and then Shockley20 showed a
long time ago that terminating a periodic potential gener-
ically leads to the appearance of states bound to the
termination surface, whose energy and wavefunction de-
pend on the boundary conditions at the surface. The
role of boundary conditions for surface states of topolog-
ical phases is, however, not systematically studied. The
form of the boundary condition is often not specified or
assumed ad hoc.21,22 In many cases, the bulk Hamilto-
nian is stripped down to a linear bulk dispersion,23 which
would then only support a restricted set of boundary
conditions, say, characterized by a single parameter,24,25

which artificially limits the range of possible physical ef-
fects at the surface. A recent work26 considers a more
general dispersion; however, as our approach illustrates,
the conditions imposed for the boundary conditions in
this work are also too restrictive; as a result, not all phys-
ically possible boundary conditions are accounted.

In this work, we address this question by studying the
effect of boundary conditions on surface spectra of Weyl
semimetals in a bounded geometry in the most general
terms. We do so by studying the generic low-energy, con-
tinuum Hamiltonians of a Weyl semimetal and their self-
adjoint extensions in bounded geometries.27–29 This ap-
proach allows us to find all physically possible boundary
conditions for the given continuum Hamiltonian. Fur-
ther restrictions on the boundary conditions can be im-
posed by symmetries of the bulk Hamiltonian. However,
it must be emphasized that respecting those symmetries
is not necessary at the boundary, where bulk symmetries
may be broken extraneously or spontaneously.30 While
not every boundary condition is easily realized or practi-
cal in the lab, each boundary condition represents physics
that is, in principle, possible at and near the boundary.

Specifically, we consider two generic Hamiltonians sup-
porting a pair of degenerate Weyl nodes: one with a min-
imal bulk dispersion, and the other with an isotropic bulk
dispersion. We show that the boundary conditions are in
general specified by a U(2) matrix relating the wavefunc-
tion and its derivatives normal to the surface. On a sur-
face parallel to the Weyl node separation, we find condi-
tions for the existence of Fermi arcs. In particular, for the
minimal dispersion, we fully characterize these conditions
in terms of a U(1) phase. For the isotropic dispersion, we
find the subset of U(2) boundary conditions that support
straight-line Fermi arcs connecting the Weyl nodes on
the surface. In both cases, all self-adjoint boundary con-
ditions spontaneously break particle-hole symmetry on
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these surfaces. Moreover, we show that with the simplest
boundary condition where the wavefunction vanishes on
the surface, the surface spectrum is linear, with surface
bound states whose confinement length is independent of
the dispersion and a standing-wave modulation normal
to the surface. Moreover, for the surface normal to the
Weyl node separation, we characterize the surface bound
state spectrum fully in the case of the minimal dispersion
and give specific results for the isotropic dispersion. For
the minimal dispersion, the energy bands are those of a
gapped Dirac spectrum. Interestingly, for the minimal
dispersion, the surface states only exist over a range of
momenta determined by spin-orbit coupling, and their
energy bands are gapped in the shape of a Mexican hat.
This raises the possibility of realizing exotic electronic
phases at the surface in the presence of interactions or
by local potential engineering.

II. MODEL

For a Weyl semimetal with nodes separated by a wave
vector k0 much smaller than the inverse lattice spac-
ing, we can take a minimal continuum model with Bloch
Hamiltonian

Hk =

[
εk λ(kx − iky)

λ(kx + iky) −εk

]
≡ dk · σ, (1)

where k = (kx, ky, kz) is the crystal momentum (we use
natural units ~ = 1), σ is the vector of Pauli matri-
ces, dk = (λkx, λky, εk), λ parameterizes the spin-orbit
interaction, and εk is the bulk dispersion relation in the
absence of spin-orbit coupling. We shall consider two dis-
persion relations: (1) εk = (k2z − k20)/2m corresponds to
the minimal model of Ref. 22; and (2) εk = (k2−k20)/2m
is isotropic in k. Here k0,m > 0 are constants.

The bulk spectrum is given by ±Ek,

Ek = |dk| =
√
ε2k + λ2(k2x + k2y). (2)

There are two Weyl nodes at ±k0 with k0 = (0, 0, k0).
The winding of the vector dk in the Brillouin zone de-
termines the existence of the Weyl nodes through the
monopoles of the Berry’s flux. The monopole charge is
given by

sgn det
∂dk

∂k

∣∣∣∣
k=±k0

= ±1. (3)

In the following, we will work with dimensionless quanti-
ties, k/k0 → k, 2mλ/k0 → λ, and 2mE/k20 → E. Then
the two dispersion take the form: (1) εk = k2z − 1; and
(2) εk = k2 − 1.

We now note some of the symmetries of the bulk sys-
tem model:

1. There is an inversion symmetry represented by the
unitary Π = σz:

ΠHkΠ = H−k. (4)

We note that this is not the same as the parity
in the full system, which is broken in the Weyl
semimetal. This symmetry describes the symmet-
ric splitting of Weyl nodes in the minimal model
and is therefore only approximate in a local neigh-
borhood around the pair of Weyl nodes in the Bril-
louin zone.

2. There is an anti-unitary particle-hole symmetry
represented by Γ = σyK, Γ2 = −1, where K is
the complex conjugation:

ΓHkΓ−1 = σyH
∗
kσy = −Hk. (5)

For an eignestate ψE of energy E, ΓψE is an eigen-
state of energy −E. We see that for E = 0 the
Hamiltonian commutes with Γ; then, since Γ2 =
−1, by Kramer’s theorem the zero-energy subspace
is doubly degenerate. We also note that the oper-
ator Θ = ΓΠ, Θ2 = 1 is an effective time-reversal
operator, ΘHkΘ−1 = H−k.

3. Reflection symmetries through the plane normal to
the xµ-direction, xµ = x, y, z, are represented by
Υµ = (σx, σy,1):

ΥµHkΥµ = (−1)ρµHRµk, (6)

where the sign (−1)ρµ = (−1,−1, 1) and Rµk is
the reflection of k. Defining k = kµ‖ +kµ⊥ with par-

allel and perpendicular components to the plane,
Rµk = kµ‖ − kµ⊥. Thus, our model Hamiltonian is

even under a reflection through the xy-plane, and
odd under reflections through xz- and yz-planes,
since the spin-orbit term breaks the latter sym-
metries. However, the two broken reflection sym-
metries result in a spectral symmetry, whereby an
eigenstate ψE of energy E is mapped to eigen-
states ΥxψE and ΥyψE of energy −E. Note that
ΥxΥy = iΠ.

On the surface normal to the Weyl node separation, all
reflection symmetries are broken; thus, we only focus on
the effective particle-hole symmetry. On surfaces paral-
lel to the Weyl node separation, the reflection symmetry
through the surface normal to the Weyl node separation
is respected. In our model, this is represented in the
spinor space by the identity matrix and a sign reversal
of kz; thus, as we shall see, our results below respect
this symmetry trivially. We shall also see that the effec-
tive particle-hole and time-reversal symmetries on these
surfaces are spontaneously broken for all self-adjoint ex-
tensions of the bulk Hamiltonian.

III. SURFACE BOUND STATES THROUGH
SELF-ADJOINT EXTENSION

In order to study the surface states, we consider a semi-
infinite geometry terminating at a single two-dimensional



3

plane normal to the xµ-direction. The momentum kµ‖
parallel to the plan remains conserved, but the momen-
tum normal to the plane must be treated as the normal
component, p̂µ⊥, of the momentum operator p̂→ −i∇ in
the position basis representation. Correspondingly, the
Hamiltonian is the operator Ĥµ = Hkµ‖+p̂µ⊥

. The pres-

ence of the surface affects the spatial symmetries of the
Hamiltonian.

In a bounded or semi-bounded geometry, the specifi-
cation of boundary conditions is an integral part of the
definition of a self-adjoint operator: different boundary
conditions result in different spectral properties. This is
because at the physical boundary of the system, differ-
ent boundary conditions specify different physics at the
interface, say with a trivial or topological insulator, a
regular or topological metal or semimetal, a supercon-
ductor, etc. In this work, we take an agnostic view of
what lies on the other side of the interface. Instead,
we would like to specify all possible boundary condi-
tions physically admissible. We also pay attention to
interfaces that preserve certain bulk symmetries of the
system. However, we note that from a physical point
of view, symmetry-breaking boundary conditions are no
less interesting, since they can describe interfaces with
material that break the corresponding symmetries at the
surface.

In a semi-bounded geometry, in order for the Hamil-
tonian Ĥµ to be self-adjoint, its domain D(Ĥµ) in the
Hilbert space needs to be properly defined. The set of
self-adjoint operators is determined fully by von Neu-
mann’s deficiency index theorem.29 This method, while
comprehensive, is technical and not physically transpar-
ent. Instead, we use a formulation based on a correspond-
ing conserved current derived from the unitary evolution
generated by the self-adjoint operator. For two states
ψ, φ ∈ D(Ĥµ), the current defined as

jµ = i

∫ xµ

x0

[
ψ†(Ĥµφ)− (Ĥµψ)†φ

]
(x̄µ) dx̄µ + jµ0 , (7)

where x0 is an arbitrary reference point and jµ0 = jµ(x0),
is local and conserved: it satisfies the continuity equation

∂ρ

∂t
+
∂jµ

∂xµ
= 0, (8)

with ρ = ψ∗φ. By unitarity of time evolution, d
dt

∫
ρdx =

0, where the integral is over the entire system. Since in
a semi-infinite geometry, the wave functions vanish at
infinity, we must have jµ(∞) = 0. Thus,

jµ(0) = 0. (9)

This conserved current is a sesquilinear, Hermitian form
of the two arbitrary states ψ and φ. In general, Eq. (9)
can be expressed as νµ+[ψ]†νµ+[φ] = νµ−[ψ]†νµ−[φ], where
νµ±[ψ] is, for our quadratic two-band Hamiltonians, a 2-
component vector of the wave function and its derivative,

normal to the surface, at µ = 0. In turn, this yields the
boundary condition

νµ+[ψ] = Uνµ−[ψ] (10)

where the unitary matrix U ∈ U(2) parametrizes the
boundary conditions. We summarize the relevant results
in the Appendix.

In the following, we parametrize an element of U(2) as

U = eim0

[
eiα cos δ −e−iβ sin δ
eiβ sin δ e−iα cos δ

]
, (11)

As a special case, we note the subset with sin δ = 0 cor-
responds to a diagonal U(1)× U(1) subgroup.

The condition to find the spectrum of surface bound
states can be obtained by writing the bound state wave-

function e
ikµ‖ ·x

µ
‖ψµb (kµ‖ , x

µ), with xµ‖ the coordinates on

the surface, and the bound state

ψµb (kµ‖ , x
µ) =

1√
κµ
e−κ

µxµψµ0 , (12)

where κµ with Reκµ > 0 is the dimensionless inverse
confinement length, which may also depend on kµ‖ . The

energy of the bound state is ±Eµb ,

Eµb (kµ‖ , κ
µ) = Eκµ , (13)

where κµ = kµ‖ + iκµx̌µ and x̌µ is the unit vector in the

xµ-direction. The spinor ψµ0 has the form

ψµ0 ∝
[
dxκµ − idyκµ
Eµb − dzκµ

]
(14)

up to a normalization factor.
In order to determine κµ and ψµ0 for a given value of

energy Eµb = E, we invert Eq. (13) and write κµ as a
function of E. There are two cases that we treat sepa-
rately:

1. If there is only one solution with Reκµ > 0, the
corresponding bound state in Eq. (12) must satisfy
the boundary conditions, which we can write as

Nµ
+ψ

µ
0 = UNµ

−ψ
µ
0 , (15)

where

Nµ
±ψ

µ
0 = νµ±[ψb] (16)

depend on κµ. The condition to find a nontrivial
solution to ψµ0 is then

det(Nµ
+ − UN

µ
−) = 0. (17)

2. If there are more than one possible solutions ψµbn
with Reκµn > 0, indexed by n, we write a general
solution as a superposition,

ψµb =
∑
n

cnψ
µ
bn, (18)
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which must satisfy the boundary conditions, which
we can write as

Mµ
+c = UMµ

−c, (19)

where c = (c1, c2, · · · )T, and

Mµ
±c = νµ±[ψµb ]. (20)

This is then solved for E and c with the condition
for solutions to exists given by

det(Mµ
+ − UM

µ
−) = 0. (21)

IV. SURFACE NORMAL TO WEYL NODE
SEPARATION

In this case, regardless of our choice of dispersion, the
conserved current reads

jz = i
(
ψ′†σzφ− ψ†σzφ′

)
(22)

where the prime stands for d/dz. Then, for ψ = (ψ1, ψ2)T

νz±[ψ] =

[
ψ1 ± iψ′1
ψ2 ∓ iψ′2

]
. (23)

and, denoting the inverse confinement length κz = κ,
Nz
± = diag(1∓ iκ, 1± iκ).
For a diagonal unitary U ∈ U(1) × U(1), the bound-

ary conditions reduce to two separate sets of conditions
on each component of ψ for the self-adjoint extensions of
the operator −d2/dz2 over a semi-infinite geometry. The
spectral properties including the surface bound states
are previously studied.31 The full space of U(2) unitaries
is much larger and, therefore, we expect a richer set of
bound state spectra.

Before analyzing these spectra, let us characterize the
subset of boundary conditions that preserve the relevant
symmetries of the bulk. First, under particle-hole oper-
ation

Γ : νz± 7→ σyν
z∗
± , (24)

after which the boundary condition reads, νz+ =
σyU

∗σyν
z
−. Thus, the boundary condition is symmetric

iff U = ΓUΓ−1, which is satisfied for U given in Eq. (11)
with m0 = 0 or π.

In this section we shall denote the momentum along
the surface, kz‖ = (kx, ky, 0) ≡ q. We note that upon

replacing k→ κ = q+ iκž in the bulk dispersion, the re-
sulting dispersion Eκ does not necessarily represent the
surface bound state spectrum. Further conditions and re-
strictions are imposed by the boundary conditions, from
which the existence and the possible values of κ must be
extracted. However, assuming such solutions do exist,
the functional form of the dispersion is given by Eκ.

A. Minimal dispersion

For a given energy of the bound state Ezb = E with the

minimal dispersion, we find κ2 = ±
√
E2 + λ2q2− 1 ∈ R,

so there is at most a single solution with Reκ > 0, for

which κ ∈ R and, thus, κ2 =
√
E2 + λ2q2 − 1 > 0. The

bound state energy is then ±Ezb ,

Ezb =
√

(κ2 + 1)2 + λ2q2. (25)

This is a gapped Dirac-like dispersion describing an in-
sulating surface spectrum with minimum gap κ2 + 1.

Now, Eq. (17) yields the q-independent solutions

κ = κ(±) =
− cos δ sinα± ξ1

√
cos2 δ − cos2m0

cosm0 + cos δ cosα
, (26)

where we have defined a sign ξ1 = sgn(cosm0 +
cos δ cosα). Since only κ ∈ R is admissible, a necessary
condition for the existence of surface states is

| cos δ| ≥ | cosm0|. (27)

Three separate cases arise, depending on the signs ξ1 and
ξ2 = sgn(cos δ sinα). First, if ξ1ξ2 > 0, bound states ex-
ist only when | cos δ cosα| > | cosm0| and κ = κ(+). Sec-
ond, if ξ1ξ2 < 0 and | cos δ cosα| > | cosm0| then bound
states exist and κ = κ(+). However, third, if ξ1ξ2 < 0
and | cos δ cosα| < | cosm0|, then bound states exist for
both values of κ = κ(±). In the latter case, bound states
form two bands of surface energy bands given by Eq. (25)

For particle-hole-symmetric boundary conditions,
sinm0 = 0. Then, the necessary condition (27) gives
also sin δ = 0. These boundary conditions form the
set of diagonal unitaries U = diag(eiαU , e−iαU ), where
eiαU = sgn(cos δ cosm0)eiα. Then, bound states exist
only when sinαU < 0, for which two degenerate surface
bands exist with κ = − tan(αU/2).

B. Isotropic dispersion

For the isotropic dispersion, denoting Ezb = E and
κz = κ, we find two possible solutions κ2± = q2 − 1 ±√
E2 + λ2q2. When κ2− becomes negative and therefore

unphysical, there is only one possible value of κ with
Reκ > 0. This value is found from the boundary condi-
tions leading to Eq. (26) and the subsequent analysis. A
sufficient condition for κ2− < 0 is

q < q∗ = λ/2 +
√

(λ/2)2 + 1. (28)

Then, the bound state energy is ±Ezb ,

Ezb =
√

(q2 − κ2 − 1)2 + λ2q2. (29)

This spectrum has a direct insulating gap, obtained at
q = 0 when λ2 > 2(κ2 + 1) and at qm =

√
κ2 + 1− λ2/2

when λ2 < 2(κ2 + 1). As shown in Fig. 1, in the latter
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FIG. 1. The bound state dispersion, Ez
b , on the surface nor-

mal to the Weyl node separation with momentum (kx, ky)
along the surface, in units of half the separation of the Weyl
nodes, and dimensionless spin-orbit coupling λ2 < 2(κ2 + 1),
where κ is the inverse confinement length of surface bound
states.

case the surface spectrum has a Mexican-hat shape with
a minimum energy Ezb = λ

√
q2m + (λ/2)2 at a circle with

radius qm and a local maximum at q = 0, Ezb = κ2 + 1.
Thus for chemical potentials between these local min-
imum and maximum, the Fermi surface consists of an
electron-like and a hole-like pockets.

When both κ2± > 0, we find two possible solutions with

Reκ± > 0. In this case, taking qx + iqy ≡ qeiφ, we first
find the spinor ψz0 from Eq. (14) to be

ψz0± ∝
[

λqe−iφ

E + κ2± + 1

]
. (30)

Then, taking a general superposition in Eq. (18), we find

M± =

[
λqe−iφ(1∓ iκ+) λqe−iφ(1∓ iκ−)

(E + κ2+ − 1)(1± iκ+) (E + κ2− − 1)(1± iκ−)

]
.

(31)
Finally, E is found as a solution to Eq. (21).

For general U , the above procedure is tedious and not
very instructional. Indeed, there may not even be any
solutions depending on the choice of U , i.e. the form
of the boundary conditions. To illustrate this point, let
us take a simple example U = −1 corresponding to the
boundary condition ψ(z = 0) = 0. Then,

M+ − UM− = M+ +M− (32)

= −2i

[
λqe−iφ λqe−iφ

E + κ2+ − 1 E + κ2− − 1

]
. (33)

Thus, det(M+ − UM−) = 0 only when κ+ = κ−, i.e.
q = 0, which is outside the acceptable range of q. A
similar result follows for U = 1, which corresponds to
the boundary condition ψ′(z = 0) = 0.

This is a remarkable and unconventional result: for
boundary conditions as commonly used as the vanishing
of the wavefunction or its derivative on the plane, we see
that not only the spectrum has an uncommon Mexican-
hat shape for a range of spin-orbit couplings, but that
no surface bound states exist in a “forbidden” range of
momenta in the surface Brillouin zone.

V. SURFACE PARALLEL TO THE WEYL
NODE SEPARATION: FERMI ARCS

We take the surface normal to the y-direction be-
low and denote the momentum along the surface ky‖ =

(kx, 0, kz) ≡ p.

A. Minimal dispersion

With the minimal dispersion, the conserved current
takes the form

jy = λψ†σyφ. (34)

This current yields, in fact, ν±[ψ] = ψ1 ± iψ2, which are
complex numbers instead of spinors. Thus, the boundary
conditions in this case are characterized by a single U(1)
phase,29,32

ψ1 + iψ2 = eiγ(ψ1 − iψ2). (35)

Under particle-hole operation, Γ : ν± 7→ ∓ν∗∓, and

eiγ 7→ −eiγ . Thus, all permissible boundary conditions
supporting a self-adjoint extension of the Hamiltonian
with the minimal dispersion break particle-hole symme-
try on the surface parallel to Weyl node separation.33

Denoting the inverse confinement length κy = κ and
the bound state energy Eyb = E, we have E2 = (k2z−1)2+
λ2(k2x−κ2). So again, for a given energy, there is at most

one solution with Reκ > 0. Solving for ψy0 ∝
[

1
−ρ

]
in

the boundary condition equation, we have

1− iρ
1 + iρ

= eiγ ⇒ ρ = tan
γ

2
. (36)

Note that ρ is independent of p and depends only on the
choice of boundary condition. We can then find κ from
Eq. (14), which yields

ρ =
λζ − E
λ(kx + κ)

, (37)

with λζ ≡ k2z − 1.
The surface state spectrum is then found by solving

Eq. (37). The spectrum can be rewritten as (λκ)2+E2 =
(λkx)2+(λζ)2 ≡ s2; defining two angular variables −π <
θ < π and −π/2 < ϕ < π/2 as λkx = s cos θ, λζ = s sin θ
and λκ = s cosϕ, E = s sinϕ, we have tan(γ/2) = ρ =
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λζ

λkx

E

λκ

θ

ϕ

γ

γ

γ

1
FIG. 2. The geometric structure of the surface state spectra
normal to the y-direction, parallel to the direction of Weyl
node separation in the z-direction. A pair of vectors (λκ,E)
and (λkx, λζ) are related by having the same length. For the
minimal dispersion, λζ = k2z − 1 and the angle γ between
these two vectors is fixed by the boundary condition. For the
isotropic dispersion, there is in general two possible solutions
for the inverse confinement length κ; in this case, the alge-
braic relationship between the boundary condition and the
solutions is discussed in the text.

tan[(θ−ϕ)/2]. Thus, θ−ϕ = γ is fixed by the boundary
condition. We then find for E = Eyb ,

λkx = cot γ (k2z − 1)− csc γ E. (38)

with the condition,

λκ = tan γ E + sec γ λkx (39)

= sin γ (k2z − 1) + cos γ λkx > 0. (40)

The geometry of angular variables is shown in Fig. 2.
This is the Fermi arc on the surface parallel to the bulk
Weyl nodes. At E = 0, it connects the Weyl nodes pro-
jected on this surface at kx = 0, kz = ±1. At E = 0,
λκ = (k2z − 1)/ sin γ > 0, so the Fermi arc is restricted
to (|kz| − 1)ξγ > 0, where ξγ = sgn sin γ: for ξγ < 0, it
stays within |kz| < 1; for ξγ > 0, it extends to the Bril-
louin zone edges. At finite E, these ranges vary dividing
the Brillouin zone into allowed and “forbidden” regions
where surface bound states are absent. These spectra are
depicted in Fig. 3.

Note that, in contrast to the surface normal to the
Weyl node separation, the boundary conditions on the
parallel surface involve both E and κ. Together with
the eigenvalue equation, the solutions then only allow
for a single band. Thus, the bound state dispersion on
this surface has a single slope, i.e. it is “chiral.” This
is consistent with the fact that particle-hole symmetry
is broken for all boundary conditions of the self-adjoint
extensions of bulk Hamiltonian. (We note that, as antic-
ipated, reflection symmetry in the z-direction is trivially
satisfied since the dispersion is even in kz.) This chiral
dispersion reflects the topological nature of these surface
states.

(a) (b)

(c) (d)

1

FIG. 3. The spectrum on the surface parallel to the Weyl
node separation. The shaded region shows the “forbidden”
region where the confinement length diverges and surface
bound states are absent. Four different types of boundary
conditions are characterized by the angle γ, see Eq. (36), (a)
0 < γ < π/2, (b) π/2 < γ < π, (c) π < γ < 3π/2, and
(d) 3π/2 < γ < 2π. The black circles show the projection
of the Weyl nodes on the surface and the solid black curve
connecting them is the Fermi arc at E = 0.

B. Isotropic dispersion

Now, the conserved current reads

jy = i(ψ′†σzφ− ψ†σzφ′) + λψ†σyφ, (41)

which yields

νy±[ψ] =

[
ψ1 ∓ i(ψ2 + 2ψ′1/λ)
ψ2 ± i(ψ1 + 2ψ′2/λ)

]
. (42)

Writing the bound states ψyb ∝
[

1
−ρ

]
e−κy with energy

Eyb = E, we find two possible solutions

κ2± = p2 − 1 +
1

2
λ2 ±

√
E2 + λ2[k2z − 1 + (λ/2)2], (43)

and ρ± =
p2−1−κ2

±−E
λ(kx+κ±)

, where p = (kx, 0, kz). Note that if

we define ζ± = −λ/2 ∓
√

(E/λ)2 + k2z − 1 + (λ/2)2, we
have (λκ±)2 + E2 = (λkx)2 + (λζ±)2 ≡ s2± and ρ± =
λζ±−E
λkx+λκ±

. Then, for each solution the pair of vectors

(λkx, λζ±) and (λκ±, E), with (complex) lengths s± and
(complex) angles θ± and ϕ± constrained to s+ sinϕ+ =
s− sinϕ− = E and s+ cos θ+ = s− cos θ− = λkx, admit a
similar geometric structure as shown in Fig. 2.

Now, since E2 + λ2[k2z − 1 + (λ/2)2] = E2 + λ2k2z −
1
4λ

2(4 − λ2) ≡ W is not always positive, even for small
p, we may have two solutions with Reκ± > 0. Indeed,
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for small p and E there is a finite range of λ where this
is true: for example, taking E = 0 for a given kz, W < 0
for λ2 < 4− k2z and we find two permissible solutions for
the bound states. In this case,

M± =

[
1± i

(
ρ+ + 2

λκ+
)

1± i
(
ρ− + 2

λκ−
)

−ρ+ ± i
(
1 + 2

λκ+ρ+
)
−ρ− ± i

(
1 + 2

λκ−ρ−
)] .
(44)

In general, the spectrum can now be found from Eq. (21).
However, this is tedious and not very instructional. In
the following we address some special cases.

First, we show that for certain boundary conditions,
the Fermi arcs are straight lines connecting the Weyl
nodes. In particular, assuming |kz| ≤ 1 and taking
E = kx = 0, we have

κ± = λ/2±
√
k2z − 1 + (λ/2)2 = −ζ±, (45)

and ρ± = −1. Then, M± =

[
1± iω 1∓ iω
1∓ iω 1± iω

]
, where

ω = 2
λ

√
k2z − 1 + (λ/2)2. Now, taking U as in Eq. (11)

and solving Eq. (21), we find

sin δ sinβ = sinm0. (46)

For example, as opposed to the minimal dispersion,
U = −1, corresponding to ψ(0) = 0, and U = 1, cor-
responding to ψ′(0) + (λ/2)σxψ(0) = 0, support straight
Fermi arcs connecting the two Weyl nodes.

Next, we shall determine the spectrum for a spe-
cific choice of boundary conditions given by U = −1,
i.e. ψ(0) = 0; then, M+ − UM− = M+ + M− =[

2 2
−2ρ+ −2ρ−

]
and Eq. (21) yields ρ+ = ρ− ≡ ρ and

c+ = −c−. Using the algebraic relationship defining ρ±
and κ± we find

λρ = −(κ+ + κ−), (47)

E =
λ2

2
(ρ2 − 1)− ρλkx. (48)

Together with Eq. (43), these equations determine the
spectrum. As must be the case, we see that for E = kx =
0 ρ = −1 and the equations are satisfied for any |kz| < 1
(this is necessary for having two solutions as discussed
above). For small E and kx, we may expand κ± to find
ρ = −1 + [E2 − (λkx)2]/[2λ2(1− k2z)] +O(k2xE

2). Thus,
up to this order, the surface state spectrum E = Eyb is
given by

Eyb = λkx. (49)

Indeed, we can show that this spectrum is correct to all
orders. Taking E = λkx and working backwards the
two solutions κ± = λ/2 ± i

√
1− (λ/2)2 − p2, where we

have assumed p2 < 1− (λ/2)2 in order to have Reκ± >
0. Thus, ρ = −1, and we see that Eq. (48) is satisfied
automatically. The wavefunction is found as

ψyb (p, y) =
√
λ[1 + (λ/2χ)2]e−

λ
2 y sin (χy)

[
1
1

]
, (50)

with χ =
√

1− (λ/2)2 − p2. Note that the surface states
all have the same confinement length 2/λ and a standing-
wave modulating factor with the wavenumber χ that de-
pends on the momentum p on the surface. We note that
particle-hole symmetry is broken for these surface states
since the dispersion has a preferred chirality.

The mapping of the general boundary conditions un-
der particle-hole operation for the isotropic dispersion is
more complicated than before: we have

Γ : ν± 7→ S+
±ν
∗
+ + S−±ν

∗
−, (51)

with Sξ± = 1
2 (∓1− ξσx +σy + iσz). Thus, a particle-hole

symmetric boundary condition must satisfy,

US+
−U
∗ + US−− − S+

+U
∗ = S−+ . (52)

As expected from the chiral surface states we found
above, it’s easy to see that U = −1 does not satisfy this
condition: S+

− − (S−− −S+
+) = 1

2 (1−σx+σy + iσz)− (1 +

σx) = 1
2 (−1−3σx+σy+iσy) 6= S−+ . Similarly, for U = 1:

S+
− + (S−− − S+

+) = 1
2 (1 − σx + σy + iσz) + (1 + σx) =

1
2 (31 + σx + σy + iσy) 6= S−+ . Our numerical search for
solutions to this set of unitaries returned a null result;
thus, we conclude that, as for the minimal dispersion,
all self-adjoint boundary conditions of the isotropic bulk
Hamiltonian also break particle-hole symmetry on the
surface parallel to the Weyl node separation.

We close this section by considering the relationship
between the surface bound states of the minimal and the
isotropic bulk dispersions. One may expect the two cases
to be related at large values of λ where the quadratic
terms in kx and ky become negligible compared to the
linear spin-orbit interaction. However, this connection
should be obtained at the level of boundary conditions,
not the final solutions.

For example, note that the solutions in Eq. (36) with
the minimal dispersion and, say, Eq. (50) with the
isotropic dispersion have different spinor structures inde-
pendent of λ. This can be seen also by the fact the Fermi
arcs of the minimal dispersion are generally curved while
the Fermi arcs of the solution Eq. (50) are straight lines.
This is because the boundary conditions leading to Eq.
(36) and Eq. (50) are not simply related. Indeed, the
condition ψ(0) = 0 leading to Eq. (50) is not allowed for
the minimal dispersion: it is not satisfied for any value
of γ in Eq. (35).

At the level of boundary conditions, we may note that
for large λ the boundary conditions obtained from Eq.
(42) reduce to Eq. (35) for δ = 0, α = ±π/2, and m0 =
−γ−α. A straight Fermi arc is obtained for the minimal
dispersion only when γ = ±π/2, which corresponds to
either δ = m0 = 0, α = −γ or δ = 0,m0 = ∓π, α = γ. In
any case, according to Eq. (46), the isotropic dispersion
for these boundary conditions also supports a straight
Fermi arc.
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VI. CONCLUSION

We have studied the most general form of boundary
conditions for a simple Hamiltonian of a Weyl semimetal
with a single pair of Weyl nodes in the continuum limit.
Our approach, based on self-adjoint extensions of the
bulk Hamiltonian in bounded geometries, allows us to de-
termine all physically possible boundary conditions and
their respective surface spectra. These boundary condi-
tions describe different physical interfaces at the bound-
ary of the Weyl semimetal with other phases of matter.
We also studied the role of bulk symmetries. In particu-
lar, we find that on the surface parallel to the direction of
Weyl node separation, all physical boundary conditions
break particle-hole symmetry and lead to chiral surface
states.

Using a minimal as well as an isotropic bulk disper-
sion, we determined physical surface spectra and found
various types of spectra, including Fermi arcs, depending
on the boundary conditions. On the surface normal to
the direction of Weyl node separation, interesting gapped
spectra arise for a wide family of boundary conditions.
For example, a dispersion in the shape of a Mexican hat
exists on this surface in a restricted region of the surface
Brillouin zone. In the presence of interactions, or by en-
gineering the local potential to induce coexisting particle
and hole Fermi surfaces, such a spectrum could support
novel correlated phases of matter at the surface. On the
surface parallel to the Weyl node separation, we deter-
mined the general conditions giving the surface bound
states and Fermi arcs. We found chiral surface bound
states in restricted parts of the surface Brillouin zone;
the chiral nature of the surface states is consistent with
their topological nature.

Some interesting directions for future work are finding
concrete models that realize given boundary conditions
and studying the effects of interactions or potential pro-
files in cases of unusual surface state spectra. Another
interesting direction is to study the general self-adjoint
boundary conditions in other topological material, such
as type-II Weyl semimetals.34,35
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Appendix: Self-adjoint extensions

The distinction between self-adjoint and Hermitian op-
erators is a subtlety that is usually ignored in introduc-
tions to quantum mechanics.31 One reason for this is that
the two definitions coincide for non-singular Hamiltoni-
ans acting on systems that extend to infinity in all direc-
tions. When either of these conditions fail, the two are
not the same, and a further analysis is needed. There
is a strong physical basis for requiring that observables
should correspond with self-adjoint operators. One key
result comes from Stone’s theorem,36 which states that a
transformation of the form exp(itA) is unitary for real t
if and only if A is self-adjoint.

The difference between self-adjoint and Hermitian op-
erators is a constraint on the functions that they can be
defined on. All self-adjoint operators are Hermitian, but
the converse is not true. Unbounded operators (deriva-
tives in our case) have some properties with no analogue
in finite-dimensional linear algebra. One such result is
the Hellinger-Toeplitz theorem,36 which states that un-
bounded, Hermitian operators cannot be defined on the
entire Hilbert space, H.

With this context in mind, the definitions will be more
transparent. Recall that an operator A is Hermitian if

〈ψ|Aφ〉 = 〈Aψ|φ〉 (A.1)

for any elements ψ and φ in the domain D(A) of A. The
adjoint A† of A is defined through

〈ψ|Aφ〉 = 〈A†ψ|φ〉 (A.2)

for all φ ∈ D(A) and ψ in the adjoint domain D(A†).
A self-adjoint operator A is a Hermitian operator with
D(A) = D(A†). In the general case, the domains of A
and A† are unrelated in the sense that one does not neces-
sarily contain the other. However, when A is Hermitian,
the domain is always contained in the adjoint domain,
that is D(A) ⊆ D(A†). We can interpret self-adjoint op-
erators as maximally defined Hermitian operators. This
suggests that there is a method of extending the domain
of a Hermitian operator to promote it to a self-adjoint op-
erator. von Neumann’s theorem allows you to determine
when this is true and classify all possible extensions.

1. Deficiency indices and von Neumann’s theorem

The procedure outlined by von Neumann’s theorem
has the benefit that it may be applied to any Hermitian
operator, A. In the first step, we compute its adjoint A†

and its domain D(A†). The second step is to pick two
values +iη+ and −iη− laying in the upper and lower half
of the complex plane respectively. With this choice, we
solve the eigenvalue equations

A†ψ = ±iη±ψ (A.3)
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and determine the eigenspaces E± ⊆ D(A†) correspond-
ing to η±. An important result states that the deficiency
indices n± = dim E± do not depend on the choice of η±.

Now, von Neumann’s deficiency index theorem states36

that iff n+ = n− = n, then A has (infinitely many) self-
adjoint extensions, AU , parametrized by a n × n uni-
tary map U : E+ → E−, and defined over the domain
D(AU ) = {φU = φ + ψ+ + Uψ+} where φ ∈ D(A)
and ψ+ ∈ E+ ⊂ D(A†), with the action AUφU =
Aφ + iη+ψ+ − iη−Uψ+. In a bounded geometry, each
self-adjoint extension corresponds to a boundary condi-
tion parameterized by U .

2. Conserved-current formulation

While von Neumann’s deficiency index method is gen-
eral, it is not physically transparent. A more intuitive
picture of self-adjoint extensions is given by a conserved
current defined, up to a constant, by29

jA = i

∫ x [
ψ†(Aφ)− (Aψ)†φ

]
(x̄) dx̄, (A.4)

as in Eq. (9). In general, this current can be written as
a sesquilinear form of ψ and φ as j = ν[ψ]†JAν[φ] where
ν[ψ] is a vector of the wavefunction and its derivatives
and JA is a finite Hermitian matrix. In a semi-infinite
geometry, the conservation condition jA(0) = 0 can then
be written algebraically as

ν+[ψ(0)]†ν+[φ(0)] = ν−[ψ(0)]†ν−[φ(0)], (A.5)

where ν+[ψ]⊕ν−[ψ] := (d+⊕d−)Tν[ψ] and T is a unitary
matrix that diagonalizes JA as TJAT

† = (d+ ⊕ d−)2,

with d± = ±d†± diagonal. In this diagonal basis, d+
(d−) are the square roots of JA projected to the subspace
of positive (negative) eigenvalues of JA. This condition
states that the inner product of ν± must be preserved
regardless of the states ψ and φ. Thus, the existence of
self-adjoint extensions of A is equivalent to the condition

ν+[ψ(0)] = Uν−[ψ(0)], (A.6)

for a unitary matrix U .29
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