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Abstract

Topological nodal-line semimetals are exotic conductors that host symmetry-protected conduct-

ing nodal lines in their bulk electronic spectrum and nontrivial drumhead states on the surface.

Based on first-principles calculations and an effective model analysis, we identify the presence

of topological nodal-line semimetal states in the low crystalline symmetric TT’X family of com-

pounds (T, T’ = transition metal, X= Si, or Ge) in the absence of spin-orbit coupling (SOC).

Taking ZrPtGe as an exemplar system, we show that owing to small lattice symmetry this ma-

terial harbors a single nodal line on the ky = 0 plane with large energy dispersion and unique

drumhead surface state with a saddle-like energy dispersion. When the SOC is included, the nodal

line gaps out and the system transitions to a strong topological insulator state with Z2 = (1; 000).

The topological surface state evolves from the drumhead surface state via the sharing of its saddle-

like energy dispersion within the bulk energy gap. These features differ remarkably from those

of the currently known topological surface states in topological insulators such as Bi2Se3 with

Dirac-cone-like energy dispersions.

b These authors contributed equally to this work.
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I. INTRODUCTION

Recent discovery of non-trivial band structures in semimetals has prompted prodigious

research interest in topological semimetals1–17. Unlike topological insulators (TIs), whose

protected gapless states live only on their surfaces, topological semimetals (TSMs) feature

unusual crystal-symmetry-protected states both in the bulk as well on the surface. In par-

ticular, the bulk Fermi surfaces of TSMs enclose non-trivial band-touching points that bring

quantized numbers for integral of the Berry flux over any closed surface enclosing these

points, and provide the relevant topological invariants. Depending on band degeneracy

and the momentum-space distribution of the band-touching points, three different types

of TSMs, namely, Weyl semimetal (WSM)5–10, Dirac semimetal (DSM)11,12, and nodal-line

semimetal (NLSM)13–17 have been proposed. WSMs and DSMs exhibit two- and four-fold

band-touching points with low energy Weyl and Dirac fermion excitations, respectively,

with zero dimensional (0D) Fermi surfaces in the 3D bulk Brillouin zone (BZ). In sharp

contrast to WSMs and DSMs, NLSMs support extended band-touching points along a line

with 1D Fermi surfaces in the bulk BZ. WSMs have been found in noncentrosymmetric

TaAs9,10, MoxW1−xTe2
18–20, LaAlGe21 families, while DSMs have been realized in Na3Bi11

and Cd2As3
12.

Among the TSMs, NLSMs offer many unique properties that are distinct from WSMs and

DSMs14–17,22–24. For example, NLSMs have higher density of states at the Fermi level than

DSMs and WSMs, and therefore, provide an ideal platform to study interaction-induced in-

stabilities. They also feature topological surface states (TSSs), known as “Drumhead surface

states (DSSs)”, which could be interesting for achieving superconductivity and correlation

physics23–25. Despite much theoretical efforts26–34, the experimental evidence for NLSMs has

been only reported recently for ZrSi(S,Te)35,36, PbTaSe2
37, and PtSn4

38. A focus of discus-

sion has been the issue of the stability of nodal lines in the absence of spin-orbit coupling

(SOC) effects16,17,26–29. Turning on the SOC either splits the nodal line into nodal points,

depending on crystalline symmetries present7,8,26,27, or fully gaps the spectrum due to hy-

bridization with bands of same symmetry28,29,34–36. Regardless, saddle-like TSSs have not

been found in these materials.

In this paper, we identify topological nodal-line fermion states in the large family of

silicides or germanides, TT’X (T, T’ = Transition metal, X= Si, or Ge) when the SOC is
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ignored. Taking ZrPtGe as an explicit example, we show that a single nodal line lies on the

ky=0 bulk plane and a saddle-like DSS nested inside the nodal line projection on the (010)

surface. Inclusion of the SOC gaps the nodal line, realizing a Z2 nontrivial topological state

with Z2 = (1; 000). The TSS evolves from the DSS with similar saddle-like energy disper-

sion. This is very unique since the known TIs such as Bi2Se3 have Dirac-cone-like surface

states39,40. It is well known that saddle-points in the band structure give rise to interesting

saddle-point Van Hove singularities (VHSs) where the 2D density of states diverges41. When

the VHS lies close to the Fermi level, the instabilities among lattice, charge, and spin degrees

of freedom as well superconducting transition temperature, ferromagnetism and/or antifer-

romagnetism are substantially enhanced even in the weak coupling limit42–47. Our proposal

of NLSM with saddle-like TSSs in the large family of silicides and germanides therefore

provides an exciting materials platform to explore these exotic properties in the presence of

a nontrivial band topology.

II. METHOD AND CRYSTAL STRUCTURE

We performed electronic structure calculations with the projector augmented wave (PAW)

method48–50 and generalized gradient approximation (GGA)51, using the VASP49. SOC was

included in calculations self-consistently. The surface energy dispersions were calculated

within the tight-binding scheme, using the Wannier-tools52–54.

The TT’X compounds considered all crystallize in an orthorhombic Bravais lattice with

the non-symmorphic space group D16
2h (Pnma, No. 62)60,61. The crystal structure of ZrPtGe

is illustrated in Fig. 1(a) as an example. In this structure, Pt and Ge atoms form a strongly

corrugated Pt3Ge3 hexagonal network and Zr atoms fill the cavities left in the network.

Due to strong puckering between different atomic layers, Pt forms a distorted tetrahedral

configuration with Ge whereas Zr is coordinated with five Ge atoms as seen in Fig. 1(b).

The first orthorhombic bulk and (010) surface BZs with the relevant high-symmetry points

are shown in Fig. 1(c).
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III. ECECTRONIC STRUCTURE

The electronic structure of ZrPtGe without the SOC [Fig. 1(d)] unveils its semimetallic

ground state. The valence and conduction bands are seen to cross along the high-symmetry

lines Γ−X, Γ− Z, and Γ− U that are tied to the ky = 0 plane of the bulk BZ. A full BZ

exploration shows that these band crossings persist along a closed path, realizing a single

nodal line on the ky = 0 plane inside the bulk BZ as shown in Fig. 1(c). When we include

the SOC, the nodal line evaporates with the opening of a gap at the band-crossing points

[Fig. 1(e)]. It should be noted that owing to the coexistence of inversion (P ) and time

reversal symmetry (Θ), each band still remains doubly degenerate in the presence of the

SOC at each k-point. Furthermore, additional non-symmorphic crystalline symmetries in

this system lead to four-fold band crossings at the BZ boundary planes (ki = π) above and

below the Fermi level. These band crossings are protected against gap opening and may

realize high-symmetry Dirac cones at X, Y , and Z points. The energy-dispersion can be

tuned by changing the transition metal elements in the system as shown in appendix.

In order to characterize the nature and the topological protection of the nodal line, we

systematically examine the band crossings in Fig. 2. We know that nodal line resides on

the ky = 0 plane, which is a My : (x, y, z) → (x,−y, z) mirror invariant plane. Each band

on this plane can have a well defined My mirror eigenvalue. If a band crossing happens

between two bands of different eigenvalues, it can remain gapless. Figure 2(a) shows the

bands along two principal directions on the ky = 0 plane and the corresponding mirror

eigenvalues in the absence of the SOC. Note that we have obtained My eigenvalues from

our first-principles Bloch wavefunctions and since the Hamiltonian remains spin-rotation

invariant without SOC, it has eigenvalues +1 or −1. Clearly, the lowest conduction band

and the highest valence band have different mirror eigenvalues and thus their crossing points

are topologically protected against gap opening. Further analysis of orbital characters shows

that bands around the Fermi level are dominated by Pt and Zr d states with a clear signature

of band inversion at the Γ-point [Fig. 2(a)]. We explicitly calculated the topological invariant

for the system using the mirror eigenvalue analysis28,29. The computed topological invariant

ν takes nontrivial value only inside the nodal line (Fig. 2(c)) and thus, signals the existence

of an odd number of DSSs inside the nodal line projection over the surface28,29.

The topological stability can be further assessed by calculating the topological invariants
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Z2 = (ν0; ν1ν2ν3) defined in the presence of P and Θ symmetries without the SOC26. Our

calculations yield a nontrivial Z2 = (1;000) [see Fig. 2(d)]. This result demonstrates that

the nodal-line in ZrPtGe is also protected by P and Θ. In Fig. 2(b), we present the nodal

line structure in the E − kx − kz space. The nodal line is seen to exhibit a substantial

energy dispersion around the Fermi level with the corresponding energies of 0.189 eV, -0.023

eV, and -0.119 eV along kx, kz, and the plane diagonal to the (kx − kz) directions. The

large energy dispersion of the nodal line results in a unique Fermi surface that constitutes

compensated electron and hole pockets as shown in Fig. 2(e).

Figure 2(f) illustrates the energy bands with SOC. In general SOC can drive NLSMs into

DSM, WSM, or a fully gapped insulator. However, in view of the lowered crystalline sym-

metries of ZrPtGe, the SOC opens a full gap at the crossing points, making the conduction

and valence band to separate at each k-point. Since the nodal line winds around a single

time reversal invariant point (Γ) with a nontrivial band topology, the SOC drives the system

into a nontrivial insulating state with Z2=(1;000) [see appendix for details].

To further showcase the protected surface states and their connection to bulk nodal-

lines, we present these states for the semi-infinite (010) surface in Fig. 3. The bulk bands

projected onto the (010) surface without the SOC are shown in Fig. 3(a) where the nodal-

line crossings can be clearly seen. The DSSs nested inside the nodal line are visible in

Fig. 3(b), which is consistent with the calculated non-trivial invariant inside the nodal line.

Unlike the nearly flat DSSs reported in earlier works26–29, the states in ZrPtGe are more

dispersive, and interestingly, they have opposite band curvatures along the Γ−X and Γ−Z

directions, realizing a unique saddle-like energy dispersion.

Figures 3(c) and 3(d) show (010)-projected bulk bands and surface bands, respectively,

with the SOC. The nodal line is now gapped and the DSS splits away from the time-reversal

invariant Γ-point, deforming into a topological Dirac-cone state. Since the SOC here is

much smaller than the dispersion of the DSS, the upper and lower branches of the TSS

display the same band curvatures or carrier velocities. Furthermore, these states retain the

saddle-like features of the DSS energy dispersion, which is more clearly visible in the Fermi

band contours shown in Figs. 3(e)-3(f). The constant energy contours (CECs) are seen to

be open and disperse along the kx direction above the Dirac-point or the saddle-point. As

we lower the Fermi energy, the electronic states undergo a Lifshitz transition and the CECs

change direction and dispersion to lie along the kz direction.
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We want to emphasize that TSSs with saddle-like energy dispersion are unique to the

ZrPtGe family. They are symmetry allowed (see below) and their characteristic saddle-like

dispersion is controlled by their bulk nodal-line structure. Therefore, we should expect

these states to be robust over a range of different surface potentials, although details of

their energy positions can be shifted via changes in surface potentials, see appendix for

details. In particular, we have found that when we repeat our computations using the more

advanced Heyd-Scuseria-Ernzerof (HSE) exchange-correlation functional to obtain the bulk

and surface spectrum, the dispersive nature of the bulk nodal-line as well as the saddle-like

TSSs remain preserved.

IV. LOW-ENERGY EFFECTIVE MODEL

In order to better understand the saddle-like TSSs, we now present a low-energy effective

model Hamiltonian using the theory of invariants in a manner similar to the case of Bi2Te3
40.

On the (010) surface, in addition to Θ, the only other preserved symmetry is the glide-mirror

symmetry M z = {Mz|1201
2
}, which sends (kx, kz)→ (kx,−kz). Based on our first-principles

results and a symmetry analysis, a single-band k.p model Hamiltonian for the DSSs in the

absence of the SOC takes the form

H0(kx, kz) =
1

2m∗
(k2
x − ηk2

z) = − 1

2m∗
[
η + 1

4
(k2

+ + k2
−) +

η − 1

2
k+k−], (1)

where k± = kz ± ikx. Here coefficient η describes the form of the E − K dispersion and

depends on the rotational symmetries and materials properties of the system. While η <

0 gives a parabolic energy dispersion, η > 0 ensures a saddle-like energy dispersion (see

appendix for details). The n-fold rotational symmetry Cn for n > 2 normal to the surface

in a system forbids η > 0 since it requires η = −1, i.e a saddle-like energy dispersion for the

surface state whereas for n ≤ 2 this is allowed. We have verified this point from symmetry

constrains of Cn on the Hamiltonian H0(kx, kz) with η > 0. Since Cn sends k± → k±e
±i 2π

n

and (k2
+ + k2

−) → (k2
+e

i 4π
n + k2

−e
−i 4π

n ), this Hamiltonian remains invariant only for Cn with

n ≤ 2. Notably, this is only a necessary condition for realizing a saddle-like energy dispersion

as material properties are also involved in achieving such a dispersion. As ZrPtGe exhibits

a substantial nodal-line dispersion in the bulk and its (010) surface lacks Cny with n > 2, it

hosts a symmetry allowed saddle-like state as found in our results [cf. Fig. 3]. The energy
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dispersion associated with the model Hamiltonian 1 is presented in Figs. 4(a)-4(c), which

show a saddle-like energy dispersion for the DSS with a single saddle-point at the Γ-point.

The density of states (DOS) is logarithmically diverging at the Γ point, confirming that it

has a saddle-point VHS.

In the presence of SOC, the DSS splits into two branches, developing into the spin-

polarized surface states of a strong Z2 TI. A two-band k.p Hamiltonian is therefore necessary

for describing these states. Considering M z = −e−i(kx−kz)/2iσz and Θ = iσyK, where σi=x,y,z

denote Pauli spin matrices, and K is the complex conjugate operator, the effective model

Hamiltonian with SOC can be written as

HSOC(kx, kz) =
1

2m∗
(k2
x − ηk2

z) + vk(kzσx − kxσz)− v′kkzσy, (2)

where vx = vk = v0(1 + αk2) and vz =
√
v2
k + v′k

2 = vz0(1 + αk2) are the Dirac velocities

along the x- and z-axis, respectively, with a second order correction. The corresponding

energy dispersion E±(k) is

E±(k) =
1

2m∗
(k2
x − ηk2

z)±
√
v2
xk

2
x + v2

zk
2
z . (3)

The preceding energy dispersion demonstrates a new type of symmetry-allowed TSS

which is distinct from surface states studied so far1,2. This new TSS evolves from a saddle-

like DSS with a single Dirac-point at Γ and two pairs of saddle points at generic k points.

The two saddle points are located at (kx, kz) = (±m∗vx, 0) with energy, ω∗− = −m∗v2x
2

, on the

lower branch while the other two points lie at (kx, kz) = (0,±m∗vz/η) with energy ω∗+ = m∗v2z
2η

on the higher branch of the TSS (see Figs. 4(d)-4(f)). This can be further seen in the DOS

[Fig. 4(f)] where the two saddle-point VHSs are evident at ω∗− and ω∗+. Such VHSs which

appear because of the saddle-points at generic k-points are classified as type-II VHSs46.

V. DISCUSSION

The exotic TSSs with VHSs that we have delineated in this study would provide a new

platform for exploring the interplay between topological states and strong correlation physics

and the related interaction-driven instabilities. For example46, a type-II VHS system can

favor the odd-parity pairing and lead to unconventional superconductivity via weak repulsive

interactions. Also, the generic competing orders such as the ”valley” charge imbalance,
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density wave orders (through enhanced nesting via a uniaxial pressure, for example), and

superconductivity could possibly be driven by electron-electron interactions23–25,42–47. It

should be emphasized, however, that the actual ground state realized by a specific material

will be influenced by details of the location of the chemical potential, nesting properties,

and the nature of the various interactions involved and their relative strengths.

The transition metal silicides and germanides have been explored in connection with

search for new high-temperature superconductors in the intermetallics. In particular, a num-

ber of the materials we have proposed here have been synthesized as single crystals57,58,60,61.

Since our predicted exotic states lie close to the Fermi level, these states could of course be

probed directly via ARPES experiments. Moreover, the proposed materials feature unique

bulk Fermi surfaces, which may, for example, lead to balanced electron-hole resonance condi-

tions, and thus induce unusual transport characteristics such as a large positive unsaturated

magnetoresistance20.

In summary, our first-principles computations predict that the orthorhombic TT’X family

of silicides and germanides harbors a single topologically protected nodal line on the ky = 0

plane in the absence of the SOC. We have demonstrated the existence of DSSs nested inside

the nodal line on the (010) surface of ZrPtGe as an exemplar system, which hosts a unique

symmetry-allowed saddle-like energy-momentum dispersion relation. Inclusion of the SOC

gaps the nodal line and eventually drives the material into the TI phase. The nontrivial

TSSs evolve from the DSS and retain their saddle-like energy dispersion and support two

pairs of saddle point VHSs. Our results establish that TT’X materials family provides an

ideal platform for exploring unique physics, including symmetry-breaking quantum states,

related with the NLSMs and the saddle-like topological surface states.
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APPENDIX A: BAND-GAP CORRECTION

It is well known that the generalized gradient approximation (GGA) usually underesti-

mates band gaps and results in an overestimation of the band inversion strength. In order

to check the robustness of our band inversion and the nodal-line semimetal state in ZrPtGe,

we also carried out computations using the more advanced Heyd-Scuseria-Ernzerof (HSE)

exchange-correlation functional59, which yields improved band gaps in closer agreement with

experiments. Fig. 5(a) shows the band structure of ZrPtGe obtained using the GGA, which

is the band structure presented also in the main text. The nodal-line band crossings are

highlighted with broken red circles. Fig. 5(b) gives the band structure based on the HSE

functional, where although the band gaps at high-symmetry points are slightly enlarged, the

overall features of the GGA band structure are seen to be retained. These results demon-

strate that the topological properties and nodal-line semimetal state of ZrPtGe is quite

robust to changes in the exchange-correlation functional.

In Figs. 5(c) and 5(d), we present the topological surface states of ZrPtGe on the (010)

surface obtained with GGA and HSE functional, respectively. The non-trivial drumhead

surface states (DSSs) with unique saddle-like energy dispersion shown in Fig. 5(c) are same

as those presented in the main text. Similar to the bulk nodal-line structure, the DSSs

obtained with HSE continue to display saddle-like energy dispersion, see 5(d).

APPENDIX B: NON-TRIVIAL BAND TOPOLOGY

Here we present calculations of non-trivial topological invariants of ZrPtGe in the pres-

ence of spin-orbit coupling (SOC). As discussed in the main text, ZrPtGe is a non-trivial

semimetal with Z2 = (1;000) without the SOC. While the semimetal state is maintained

when the SOC is included with the presence of electron and hole pockets at the Fermi level,

the SOC separates valence and conduction bands at all crossings points and opens a contin-
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uous band gap between valence and conduction states, see Figs. 1 and 2 of the main text.

The Z2 = (ν0; ν1ν2ν3) topological invariants can still be determined as in a fully gapped insu-

lator. Fig. 6 shows the evolution of Wannier charge centers (WCCs) in the six time-reversal

invariant momentum planes in the bulk Brillouin zone (BZ) of ZrPtGe. The WCCs have

non-trivial connectivity in ki = 0 planes with Z2 index 1, while they are connected trivially

in ki = π planes with Z2 = 0, leading to Z2=(1;000) or a strong topological insulator phase

in ZrPtGe.

APPENDIX C: ROBUSTNESS OF SADDLE-LIKE TOPOLOGICAL SURFACE

STATES

ZrPtGe has a layered crystal structure along the (010) direction with two repeated atomic

layers, see Fig. 7. Each atomic layer contains all three constituent atoms (Zr, Pt, and Ge).

These two atomic layers are related via {C2y|01
2
0}. Unlike TlBiSe2

62, if we consider only a

flat surface, there is only one surface termination, which is highlighted by the broken blue

line in Fig. 7. This is the surface termination we use in our calculations.

We have examined the robustness of topological surface states and their saddle-like dis-

persion in ZrPtGe within the framework of our tight-binding Hamiltonians by including an

additional surface potential energy (SPE) as an on-site energy parameter, which is added to

all the atoms in the surface layer. Figs. 8 and 9 present the results obtained by changing

the SPE from -0.3 eV to +0.3 eV for our GGA-based tight-binding Hamiltonian. Although

the surface states shift towards the bulk valence or conduction bands depending on the sign

of the SPE parameter, we see that the saddle-like dispersion of the surface states remains

unchanged. These saddle-like surface states can be removed if they hybridize with the bulk

bands, which occurs for large values of the SPE (∼ ±0.4 eV), much like the Dirac surface

states in Bi2Se3. Similar results are obtained when we consider effects of the value of the

SPE parameter on our HSE-based tight-binding Hamiltonian. These results show clearly

that the TSSs with saddle-like dispersion in ZrPtGe are robust against variations in the

surface potential.
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APPENDIX D: MODEL HAMILTONIAN FOR THE (010) SURFACE STATES

The effective k.p model Hamiltonian for the saddle-like TSSs in the presence of the SOC

and the corresponding energy dispersion given in Eqs. (2) and (3) of the main text are:

HSOC(kx, kz) =
1

2m∗
(k2
x − ηk2

z) + vk(kzσx − kxσz)− v′kkzσy, (4)

E±(k) =
1

2m∗
(k2
x − ηk2

z)±
√
v2
xk

2
x + v2

zk
2
z . (5)

Here, vx = vk = v0(1+αk2) and vz =
√
v2
k + v′k

2 = vz0(1+αk2) are the Dirac velocities along

the x- and z-axis, respectively, including a second order correction. The first and second

terms in Eq. 4 describe the kinetic energy and the Rasbha SOC, respectively. The third term

arises from the lowered symmetry group of the (010) surface. Its origin can be understood

by recalling how the SOC comes about. When an electron with momentum k moves in an

electric field E, it experiences a magnetic field Beff ∼ E×k/mc2 in its rest frame. This gives

rise to a momentum-dependent Zeeman interaction or the SOC, ĤSO ∼ µB(E× k) · σ/mc2.

In a crystal, the electric field is given by the gradient of the crystal potential E = −∇V 65.

For a 2D system with C2v symmetry, Vasko63 and Bychkov and Rashba64 showed that

the interfacial electric field perpendicular to the surface, E = Ezẑ, gives rise to the SOC of

the form ĤR = αR
h̄

(ẑ × k) · σ = αR
h̄

(kxσy − kyσx), where αR is called the Rashba parame-

ter. In ZrPtGe, the bulk system respects a two-fold screw rotation symmetry, {C2y|01
2
0},

which yields two symmetry related surface terminations on the (010) surface. However, for

either surface termination, the symmetry is lowered to Cs with only one glide mirror plane

{Mz|1201
2
}. This allows an interfacial electric field E = (Ex, Ey, 0) and results in the survival

of the third term in Eq. 4 on the surface. It should be noted that for the other surface

termination, the sign of the third term in Eq. 4 is reversed.

We now discuss the classification of saddle-points and possible Lifshitz transitions result-

ing from variations in η based on our model Hamiltonian. As noted above as well as in

the main text, the first-principles (010) surface of ZrPtGe supports the presence of unique

surface states with a saddle-like dispersion, which is described by η > 0 in our model Hamil-

tonian. Without SOC, η > 0 guarantees a saddle-point Van Hove singularity (VHS) at Γ.

Moreover, when the SOC is included, η > 0 induces two pairs of type-II VHSs on the kx

and kz axis. Note that VHSs in ZrPtGe can only appear on the kx or kz axis due to the
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constraints of Cs and time-reversal symmetries.

In Fig. 10, we demonstrate a general classification of the saddle-point VHSs as a function

of η for a 2D system with Cn for n ≤ 2, taking linear SOC terms into account. η =

−v2
z/v

2
x gives a typical Rasbha-like parabolic energy dispersion without a saddle-point VHS.

However, for η > −v2
z/v

2
x, one pair of saddle-point VHSs appears on the x-axis at (kx, kz) =

(±m∗vx, 0) with energy ω∗1 = −m∗v2x
2

. For η < −v2
z/v

2
x or η > 0, one pair of VHSs emerges

on the z-axis at (kx, kz) = (0,±m∗vz/η) with energy ω∗2 = m∗v2z
2η

. In other words, if η ≤ 0

(excepting η = −v2
z/v

2
x), one pair of saddle-point VHSs can still be induced by the SOC.

Note, however, that this is a consequence of the SOC, so that no saddle-point VHSs can

appear in the absence of the SOC for η ≤ 0. Finally, for η > 0, two pairs of saddle-point

VHSs emerge with one pair lying on the x-axis and the other on the z-axis, as is the case in

ZrPtGe.

For a 2D system (xz-plane) with n-fold rotation symmetry about the y-axis, Cny, for

n ≥ 2, the allowed linear SOC terms are iλvλ(k+σ− + (−1)λk−σ+), where λ = 0 or 1. Here,

Cny sends σ± → e±i
2π
n σ± and k± → e±i

2π
n k±, where k± = kz ± ikx and σ± = σz ± iσx. The

presence of additional crystalline symmetries drives the SOC term into taking the form of

the Rashba SOC, v1(kzσx − kxσz) for λ = 1 (Cnv symmetry, for example); v0(kzσz + kxσx)

for λ = 0 (e.g. Dn symmetry); and, both v0 and v1 terms are allowed (e.g. Cn symmetry).

Note that according to Eq. 5, in all cases v2
z = v2

x (= v2
1, or v2

0, or v2
0 + v2

1), resulting in the

critical point −v2
z/v

2
x = −1. For n > 2, however, η is not allowed to take any other value

than −1. This clearly shows that a system with Cny(n > 2) can only support Rashba-like

parabolic energy dispersion for the surface state when only linear SOC terms are considered.

APPENDIX E: BAND STRUCTURE OF TT’X FAMILY

Figs. 11 and 12 present the bulk band structures of all members of the TT’X family

without and with SOC. The 16 members in this family are listed in Table I along with the

lattice constants60,61 used in our calculations and their topological invariants (with SOC). All

these compounds host single nodal lines (without SOC) with substantial dispersions similar

to ZrPtGe. Inclusion of SOC gaps the nodal line in all cases and yields the topological

insulator state with Z2=(1;000). A reference to the band structures, however, shows that the

area occupied by the nodal loop on the ky = 0 plane of the bulk BZ depends on the transition

12



metal element involved. This is also the case with the details of band crossings at the high-

symmetry points above and below the Fermi level (see Figs. 11 and 12). These results show

that the TT’X family offers an interesting materials platform where the electronic structure

can be tuned through the choice of the transition metal element.
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FIG. 1. (a) Crystal structure of ZrPtGe with Pnma symmetry. (b) Local coordination of the

Zr (top panel) and Pt (bottom panel) atoms in the unit cell. (c) Bulk Brillouin zone and its

projection on the (010) surface. The relevant high-symmetry points are marked with black dots.

The calculated momentum distribution of the nodal line is shown with orange on the ky=0 plane.

(d) Bulk band structure without spin-orbit coupling (SOC). Band crossings are evident along the

Γ −X, Γ − Z, and Γ − U directions near the Fermi level. (e) Bulk band structure with SOC. A

small band gap opens at the band-crossing points. The shaded region highlights the continuous

gap below which the topological invariants are calculated.
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FIG. 2. (a) Orbital compositions and mirror eigenvalues of the bulk bands without SOC. (b)

Energy-dependent nodal line configuration on the ky=0 plane. (c) Variation of non-trivial topolog-

ical invariant along the high-symmetry lines in the bulk Brillouin zone. The topological invariant

is calculated using My mirror eigenvalues of the occupied bands on the mirror symmetric ky = 0

and ky = π planes without SOC. (d) Products of parity eigenvalues of the occupied bands at eight

time-reversal-invariant k points in the bulk BZ and the related Z2 indices without SOC. (e) The

Fermi surface with electron (red) and hole (violet) pockets. (f) Orbital compositions of the bulk

bands with SOC. A small band gap opens at the band crossings.
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non-trivial drumhead surface states (DSSs) are marked with arrows. (c)-(d) Same as (a)-(b) but

with the SOC included. The non-trivial surface states evolve from the DSSs with different band

curvatures along different high-symmetry directions. The Dirac point (DP) is identified with the

arrow. Isoenergy band contours at (f) E = 0.030 eV, (g) E = 0.000 eV, and (h) E = -0.030 meV

with SOC.
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FIG. 4. (a) Energy dispersion of the Hamiltonian H0(kx, kz) with η = +1, and (b) the associated

isoenergy band contours without SOC. A single saddle-point S0 of the DSS lies at the Γ point. See

main text for the meaning of energy band contours ω∗+ and ω∗−. (c) Calculated density of states

(DOS) for the surface states using the model Hamiltonian (eq. 1). (d)-(e) Same as (a)-(b) but

with the SOC included. Four saddle points away from Γ (S1, S2, S3, and S4) emerge due to band

splittings in the presence of the SOC. (f) DOS for the surface states with SOC (eq. 4).
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FIG. 9. Same as the caption of Fig. 8, except that this figure refers to results in which the SOC

is included.
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given in the top row. VHSs (S1, S2, S3, and S4, shown by red dots) emerge in pairs on the kx or
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2
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TABLE I. Lattice constants a, b, and c used in our calculations and the Z2 invariants for all 16

members of the TT’X family of compounds. The lattice parameters are taken from experimental

studies60,61.

Compound a b c Z2

(Å) (Å) (Å)

ZrPtGe 6.658 3.975 7.665 (1;000)

ZrPdGe 6.677 3.954 7.702 (1;000)

ZrNiGe 6.553 3.883 7.360 (1;000)

ZrPtSi 6.597 3.902 7.539 (1;000)

ZrPdSi 6.590 3.890 7.570 (1;000)

ZrNiSi 6.470 3.815 7.263 (1;000)

TiPtGe 6.371 3.857 7.537 (1;000)

TiNiGe 6.244 3.747 7.147 (1;000)

TiPtSi 6.336 3.802 7.337 (1;000)

TiPdSi 6.324 3.779 7.394 (1;000)

TiNiSi 6.139 3.661 7.006 (1;000)

HfPtGe 6.603 3.950 7.617 (1;000)

HfNiGe 6.500 3.810 7.290 (1;000)

HfPtSi 6.550 3.881 7.505 (1;000)

HfPdSi 6.570 3.874 7.675 (1;000)

HfNiSi 6.390 3.890 7.200 (1;000)
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FIG. 11. Bulk band structures of TT’X family (without SOC). (a) ZrPtSi, (b) ZrPdGe, (c) ZrPdSi,

(d) ZrNiGe, (e) ZrNiSi, (f) HfPtGe, (g) HfPtSi, (h) HfPdSi (i) HfNiGe, (j) HfNiSi, (k) TiPtGe, (l)

TiPtSi, (m) TiPdSi, (n) TiNiGe, and (o) TiNiSi.
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FIG. 12. Same as the caption to Fig. 11, except that this figure refers to band structure with SOC.
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