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In a recent experiment [P. Roushan et al, Nature Physics 13, 146151 (2017)], a spin current in an
architecture of three superconducting qubits was produced during a few microseconds by creating
synthetic magnetic fields. The life-time of the current was set by the typical dissipative mechanisms
that occur in those systems. We propose a scheme for the generation of permanent currents, even
in the presence of such imperfections, and scalable to larger system sizes. It relies on striking a
subtle balance between multiple nonequilibrium drives and the dissipation mechanisms, in order to
engineer and stimulate chiral excited states which can carry current.

I. INTRODUCTION

Understanding and engineering transport properties
of mesoscopic and condensed-matter systems is useful
both from a fundamental perspective (e.g. understand-
ing quantum impurity physics1–3 or open system Bose-
Hubbard dynamics4) and from the point of view of de-
vice applications (e.g. quantum diodes, rectifiers, cir-
culators and transistors5,6). More recently transport in
quantum information technologies has been of great in-
terest as uninterrupted, fast, and reliable transmission of
information is key to quantum computation and simula-
tion schemes7–9.

Recenly, there has been remarkable progress in engi-
neering quantum dot circuit-QED systems where elec-
tronic transport is harnessed as a gain medium10–12 and
helps in the realization of novel quantum devices such
as microwave amplifiers and lasers in microwave regime.
Similarly, the role of phonons in making thermoelectric
transistors and rectifiers in quantum-dot based systems
is actively investigated13. Quantum dot cQED architec-
tures, however, are difficult to scale up to many qubit sys-
tems. Similar advances have also been made in transmon-
resonator cQED architectures; results of particular rele-
vance to this work include the passive stabilization of ar-
bitrary single qubit states14–16, and more complex many-
qubit entangled states4,17–21, using engineered dissipa-
tion (see Ref.22 for a review).

On the other hand, creating controlled photonic cur-
rents is even more challenging because of the lack of a
chemical potential for photons23,24. One could, in princi-
ple, subject a photonic system to a finite temperature

bias to generate a photonic Seebeck current, but this
remains a would be extremely challenging25,26. Among
the recent progresses in the engineering and the control
of Hybrid Quantum Systems, the creation of synthetic
magnetic fields for photons opens the door to investigat-
ing quantum hall physics27–30, and other exotic quantum
many-body phenomena31 in mesoscopic setups. In a re-
cent experiment32 originally proposed by one of us33, a
synthetic magnetic field was successfully produced in a
transmon qubit architecture, generating a current in a
three-qubit ring (of a magnitude of 106 excitations per
seconds). Such circulation also suppresses phase noise34

and may be useful for quantum information processing.
However, due to unavoidable environmental dissipative
mechanisms, the current could only be observed for a few
microseconds, thereby resulting in only a few excitations
transported during the experiment.

From the point of view quantum computation and
quantum simulation, passive generation and stabilization
of many-qubit states has long been an important goal22.
In these cases, natural dissipative processes, which be-
come more and more detrimental to quantum coherence
as the system complexity is increased, are balanced by
adding cleverly tuned dissipative sources, which are ca-
pable of passively correcting unwanted processes from in-
trinsic dissipation, and generating states from vacuum.
In this Letter, we leverage these techniques to show how
to achieve indefinitely long-lived currents in a ring of su-
perconducting qubits. We use a delicate interplay of drive
sources and the unavoidable dissipative mechanisms to
stabilize a current-carrying chiral non-equilibrium steady
state. We do so by adapting a scheme proposed by some
of the authors35–37 for generating high-fidelity quan-
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FIG. 1. N=3 qubits, Q0, Q1, and Q2, are coupled together
in a ring geometry via time-dependent couplers whose phase
φ creates an artificial magnetic flux. The latter is the main
force to drive a current I of qubit excitations. To balance
the dissipative losses, and generate a persistent current, the
qubits are also coupled to optical cavities driven by microwave
sources with carefully selected frequencies ωd

i , i = 0, 1, 2.

tum entanglement between distant qubits, since validated
experimentally20. We show that currents on the order of
mega-excitations per second can be reached with real-
istic device parameters and coherences. Our results also
demonstrate connections between persistent currents and
long-lived entangled states, and progress on one side will
benefit the other.

II. DRIVEN-DISSIPATIVE RING OF
CAVITY-QUBITS

We consider an open quantum system variant of a re-
cent experimental setup32. As shown in Fig. 1, it con-
sists of N qubits (artificial two-level systems) arranged
in a ring geometry, and capacitively connected by time-
dependent couplers. Each qubit is also coupled to a pho-
tonic cavity which is coherently driven by an independent
microwave source. Note that it is also possible to have
only one of the qubits coupled to a driven cavity. In this
Letter, we present analytical results for a generic ring of
size N . However, in order to make a strong connection
with the recent experiment of Ref.32, we display figures
in the particular case of N = 3. The time-dependent
Hamiltonian is given by (we set ~ = 1)

H(t) = Hσ(t) +Ha(t) +Hσa , (1)

where Hσ(t), Ha(t), and Hσa are respectively the coupled
qubits, the driven cavities, and the cavity-qubit couplings

Hamiltonians:

Hσ(t) =
∑
i

ωq
i

σzi
2
− Ji(t)

[
σ+
i σ
−
i+1 + h.c.

]
, (2)

Ha(t) =
∑
i

ωc
ia
†
iai + 2εdi cos(ωd

i t+ Φd
i )
[
ai + a†i

]
, (3)

Hσa =
∑
i

g σxi

[
ai + a†i

]
. (4)

Importantly, the qubits have different energy splittings
ωq
i at different sites. We write ωq

i = ωq + δi. Their time-
dependent nearest-neighbor coupling is given by Ji(t) =
2J0 cos(∆it + φi) where the amplitude J0 ∈ R and the
driving frequency ∆i will be set below. For simplicity, the
phases of the couplers are taken to be equal for all bonds,
φi = φ ∈ [0, 2π). We take the cavities to be fabricated
such that their mode frequencies are set by ωc

i = ωc + δi,
thus ensuring the cavity-qubit detuning ωq

i − ωc
i ≡ ∆

to be site independent. εdi , ωd
i , Φd

i are respectively the
amplitude, frequency, and phase of each cavity microwave
drive. Our computations show that the site-dependence
of the driving amplitudes and phases does not play any
crucial role in what follows. Therefore, for simplicity, we
present our results when all cavities are driven with the
same amplitude εdi = εd, and the same phase Φd

i = 0.
The light-matter coupling, Hσa, is of the Rabi type and
its strength is controlled by the dimensionless ratio g/∆.

Qubits and cavities are also subject to inevitable spon-
taneous dissipative mechanisms: decay of qubit excita-
tions, intrinsic qubit dephasing, and cavity damping, oc-
curring at rates γ, γφ, and κ, respectively. As we shall
see later, the qubit degeneracies are lifted by the qubit-
qubit coupling, implying that the phase noise spectrum
(typically 1/f -like) is probed at a finite frequency J0
rather than DC. This strongly suppresses γφ compared to
uncoupled qubits (see Refs.20,22,32 for details). In mod-
ern superconducting architecture, a good phenomenolog-
ical set of parameters is: ωq ≈ 7, ωc ≈ 6, g = 10−1,
|δi| ≈ 10−2, J0 ≈ 10−3, κ ≈ 10−4, γ ≈ 10−5, and
γφ ≈ 10−6, all in units of 2π GHz. These are the values
that we use in our computations. They correspond to the
hierarchy ∆� g � |δi| � J0 � κ� γ � γφ that guides
the different approximations in our analytic framework.
Since the current we stabilize is distributed uniformly
across the qubits, variations in loss and dephasing rates
from site to site do not qualitatively impact what fol-
lows (provided that the hierarchy is not violated), so we
neglect them for simplicity.

By setting the driving frequency of the qubit cou-
plers to match the energy difference between adjacent
qubits, i.e. ∆i = δi − δi+1 6= 0, together with driv-
ing the cavities at the frequencies ωd

i = ωd + δi, the
Hamiltonian (1) can be rendered time-independent by
moving to a rotating frame via the U(1) transformation

U(t) ≡
∏
i exp

[
iωd
i t
(
σzi /2 + a†iai

)]
, and safely neglect-

ing the remaining time-dependent terms oscillating at
2ωd ∼ ωc + ωq, i.e. far from any relevant transition in
the system’s spectrum.
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The light-matter interaction, Hσa, is treated with a
standard Schrieffer-Wolff transformation, i.e. a second-
order perturbation in g/∆. Altogether, we obtain

Hσ =
∑
i

hi ·
σi
2
− J0

[
eiφσ+

i σ
−
i+1 + h.c.

]
, (5)

Hσa =
( g

∆

)2∑
i

σzi
2

[
2∆a†iai + εda

†
i + h.c.

]
, (6)

Ha =
∑
i

[
−∆ca

†
iai + εd(ai + a†i )

]
, (7)

with hxi = 2(g/∆)εd, hyi = 0, hzi = ∆q + δωq where
∆q ≡ ωq − ωd, ∆c ≡ ωd − ωc, and δωq = ∆(g/∆)2 is the
cavity-induced Lamb shift. We neglected the emergent
qubit-mediated cavity-cavity interactions, which are vir-
tual processes occurring at energy scales much smaller
than the cavity linewidth, namely J0 (g/∆)

2 � κ.
Note that we started with a system that is not trans-

lationally invariant (qubits and cavities are different at
each site) nonetheless, once driven appropriately, the ef-
fective description of the model is now translationally
invariant with two main independent drive parameters,
ωd and φ, that can be easily tuned in situ. Our scheme
will thus be robust against unwanted (but known) static
parameter variations.

III. GENERATION OF A PERMANENT
CURRENT

In this Section, we identify the lowest-lying eigenstates
of the qubit ring which carry a current, and we devise
a driven-dissipative protocol to make them the unique
steady states of the dynamics.

A. Energetics

In order to diagonalize the qubit sector of the Hamil-
tonian, Hσ, we first simplify the problem by truncat-
ing its Hilbert space to the zero-energy ground state
|0〉 ≡ | ↓ . . . ↓〉 and the states of the single-excitation
manifold, |i〉 ≡ | ↓0 . . . ↓i−1 ↑i ↓i+1 . . . ↓N−1〉. This trun-
cation is valid as long as higher-excited states are in-
significantly populated, this assumption will be checked
numerically below. The truncated Hσ reads

Hσ =
∑
k

Ek|k〉〈k|+
( g

∆

)√
Nεd (|k = 0〉〈0|+ h.c.) , (8)

where |k〉 ≡ 1/
√
N
∑N−1
i=0 eiki |i〉 are the chiral one-

excitation eigenstates of Hσ when turning off the cav-
ity drives (εd = 0). They carry a single qubit excitation
of quasi-momentum k = 2π n/N , with n = 0 . . . N − 1,
delocalized over the entire ring, with a dispersion rela-
tion Ek = εk − ωd, εk = ωq + δωq − 2J0 cos(k + φ).
Here, we anticipated the renormalization of the qubit

energies in Hσ by the photonic mean field to be per-
formed in Sect. III B around Eq. (11), and we set δωq '
(g/∆)2∆

[
1 + 12(εd/∆)2

]
.

We then diagonalize the qubit sector by perturbation
theory in the lowest order in (g/∆)(εd/∆q). The spec-
trum of Hσ reads

|0̃〉 ' |0〉−
( g

∆

)√Nεd
∆q

|k = 0〉, Ẽ0'−
( g

∆

)2Nε2d
∆q

, (9)

|k̃〉 ' |k〉+δk,0
( g

∆

)√Nεd
∆q

|0〉, Ẽk'Ek−
1

2

( g
∆

)2Nε2d
∆q

.

For the consistency of the perturbation theory, we also in-

cluded the corrections of order (g/∆)2 to Ẽk that are due
to the coupling to double-excited states. They may be
estimated by a standard two-magnon coordinate Bethe
ansatz computation.

B. Dynamics

Since we are mostly concerned with the dynamics of
the qubits, we integrate over the cavity degrees of free-
dom by linearizing the photon excitations around a clas-
sical background, ai ≡ ā + di with ā = εd

ωd−ωc+iκ/2 , and

we later treat the dynamics induced by the quantum
fluctuations, i.e. the di’s, via a Fermi Golden Rule ap-
proach. Neglecting those light-matter interaction terms
that are quadratic in the fluctuations, the linearized light
and light-matter sectors reduce to

Ha → Hd =
∑
i

(ωc − ωd)d†idi , (10)

Hσa → Hσd =
( g

∆

)2∑
i

σzi (∆ā+
1

2
εd)d†i + h.c. . (11)

Assuming that the photon fluctuations are thermalized
close to zero temperature, we integrate them out by em-
ploying the Fermi Golden Rule. The Born approxima-
tion is valid due to the small residual light-matter cou-
pling in the Hamiltonian Hσd. The Markov approxima-
tion becomes exact in the steady state since the typical
timescale of variation of the reduced density matrix for
the qubits, ρσ(t) ≡ Trd [ρ(t)], is always much larger than
the timescale of the photon fluctuations, 1/κ. In the
steady state, ρ∞σ ≡ lim

t→∞
ρσ(t), the driven-dissipative dy-

namics are given by the following Master Equation

∂tρ
∞
σ = 0 = −i [Hσ, ρ

∞
σ ] +

∑
k

Γ0→kD[|k̃〉〈0̃|]ρ∞σ

+ γ
∑
k

D[|0̃〉〈k̃|]ρ∞σ +
2γφ
N

∑
k q

D[|q̃〉〈k̃|]ρ∞σ . (12)

The qubit decay terms γD[|0̃〉〈k̃|], with the Lindblad
operator D[X]ρ ≡ (XρX†−X†Xρ+h.c.)/2, describe the
spontaneous relaxation from single-excited states to the
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FIG. 2. Nonequilibrium steady-state current I as a func-
tion of the microwave drive frequency ωd and the phase of
the time-dependent couplers φ (energies in units of 2π GHz).
(a) Analytical prediction based on Eqs. (14) and (15). The
horizontal dashed lines correspond to phases at which there
cannot be a current. (b) Numerical results from a Master
Equation approach (see the text). The main differences come
from the population of higher-excited states carrying a non-
vanishing current, which were neglected in the analytics.
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FIG. 3. Steady-state population nk of the states |k = 0〉,
|k = 2π/3〉, and |k = 4π/3〉 as a function of the microwave
drive frequency ωd (in units of 2π GHz) and the phase of
the time-dependent couplers φ. The green dashed lines are
the theoretical predictions for the optimal driving frequency
ωopt
d (φ) in Eq. (14).

ground state. The qubit dephasing terms describe all-
to-all transitions between states in the single-excitation
manifold. The pumping rates induced by the photon fluc-
tuations are

Γ0→k = 2πΛ2 ρ(ωd + Ẽ0 − Ẽk) , (13)

where the cavity density of states is the Lorentzian
ρ(ω) = −π−1Im [ω − ωc + iκ/2]−1, and the transi-
tion matrix element is given by Λ2 = (g/∆)6(1 +
2∆/∆c)

2ε4d/∆
2
q. To maximize the transition rate Γ0→k,

ωd should satisfy the energy conservation ωd+Ẽ0−Ẽk =
ωc, i.e. the optimal ωd is set by

ωopt
d (φ) = ω̄d − J0 cos(k + φ) , (14)

with 2ω̄d ≈ ωc + ωq + δωq + (g/∆)
2
Nε2d/∆. This ex-

pression reveals the Raman inelastic scattering nature of
the process: two incoming photons contribute to creat-
ing a qubit excitation and dumping the excess energy in
a cavity photon.

C. Current

Using the framework developed above, we compute the
non-equilibrium steady-state current of qubit excitations
circulating around the ring, i.e, we compute I = Tr[Iiρ

∞
σ ]

where Ii = −iJ0
[
eiφσ+

i σ
−
i+1 − h.c.

]
. The current can be

expressed in terms of the steady state populations (or
fidelities) of the qubit eigenstates, nk(ωd, φ) ≡ 〈k|ρ∞σ |k〉,

I(ωd, φ) =
2

N
J0
∑
k

sin(k + φ)nk(ωd, φ) . (15)

The above formula makes it transparent that a sizable
current can be achieved by populating a specific qubit
eigenstate |k〉 with high fidelity, nk ≈ 1, or by populating
several neighboring |k〉 states close enough to contribute
constructively to the overall current. The latter regime is
relevant for large rings, where the state-crowding in the
one-excitation manifold prevents targeting a given state
with high fidelity, but where a sizable current can be
obtained as long as κ� J0. Equation (15) also predicts a
magnitude for the pemanent current which is on the order
of 2J0/N . This matches the values of the evanescent
currents experimentally realized in Ref.32.

Let us now work out how the permanent current I
behaves as a function of our two drive parameters: the
microwave source frequency ωd and the phase of the time-
dependent couplers φ. We first remark that at the spe-
cific values φ = nπ/N with n = 0 . . . 2N−1, the complex
hopping amplitudes in Hσ can be be made real by sim-
ple local unitary rotations, resulting in a time-reversal in-
variant qubit Hamiltonian which, therefore, cannot carry
any current. In the case of N = 3, this yields a vanish-
ing current I(ωd, φ) = 0 at φ = 0, π/3, 2π/3, 4π/3 for
any ωd. Away from those zero-current lines, the cur-
rent is extremized when the energy matching condition
necessary for the Raman inelastic scattering processes is
satisfied, i.e. when the driving frequency is set to ωopt

d (φ)
in Eq. (14). There are N of these curves, one for each
value of k. Along those curves, assuming the state |k〉
is achieved with a near perfect fidelity, nk ≈ 1, the total
current is given by I(ωopt

d (φ), φ) ≈ 2
N J0 sin(k + φ). The

energy matching condition above Eq. (14) is expected to
be valid within a frequency range set by the cavity decay
loss, κ. Away from this, the qubits are in their ground
state |0〉 which does not carry any current.

D. Numerics

We numerically control the different analytic approxi-
mations and assumptions made above (truncation of the
Hilbert space, perturbation theory in the drive ampli-
tude, perfect fidelities). We compute the current I =
Trσ[Jiρ∞σ ] by (i) performing an exact numerical diago-
nalization of the untruncated Hamiltonian Hσ in Eq. (5),
(ii) computing all the Fermi Golden Rule rates between
the 2N qubit eigenstates, (iii) computing the steady-state
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density matrix by solving the Master Equation general-
izing the one in Eq. (12) to the full qubit Hilbert space.

The analytical and the numerical results for the cur-
rent I(ωd, φ) are gathered in Fig. 2. Figure 3 presents
the steady-state populations nk(ωd, φ). By and large, the
numerics confirm the analytic predictions, validating a
posteriori the different approximations and assumptions
that were made. Figure 2 also reveals new regions where
the current is reversed compared to the predictions.
These correspond to regimes where a resonance of the
energy splittings between ground-state and single-excited
states on the one hand, and between single-excited states
and double-excited states on the other hand, is responsi-
ble for a nonvanishing overlap of the state of the system
with the eigenstates of the two-excitation manifold.

IV. CONCLUSIONS AND OUTLOOK

We have successfully demonstrated a scalable, experi-
mentally realizable scheme for achieving permanent spin
currents in a superconducting-qubit architecture subject
to dissipation. The drive frequencies ωd

i can be in-
dividually tuned dynamically to alleviate imperfections

that may occur in the qubit or cavity frequencies. This
relative robustness against imperfections is paramount
for the study of topological phases and more generally
for quantum computation with mesoscopic systems. A
future interesting challenge is the enhancement of the
current, further than the mega-excitation per second
scale. This may be possible by using higher-excited chi-
ral states, which carry more than one excitation around
the ring. One way is to use “colored” cavity microwave
drives with multiple frequencies finely tuned to steer the
system to converge and remain in those higher-excited
states36.
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