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We study the localization and oscillation properties of the Majorana fermions that arise in a two-
dimensional electron gas (2DEG) with spin-orbit coupling (SOC) and a Zeeman field coupled with
a d-wave superconductor. Despite the angular dependence of the d-wave pairing, localization and
oscillation properties are found to be similar to the ones seen in conventional s-wave superconductors.
In addition, we study a microscopic lattice version of the previous system that can be characterized
by a topological invariant. We derive its real space representation that involves nearest and next-to-
nearest-neighbors pairing. Finally, we show that the emerging chiral Majorana fermions are indeed
robust against static disorder. This analysis has potential applications to quantum simulations and
experiments in high-Tc superconductors.

I. INTRODUCTION

The idea of a fermionic particle being precisely its own
antiparticle has been puzzling physicists for generations.
These exotic particles were hypothesized by Majorana [1]
and have been thoroughly studied in high energy physics
as a possible solution to the intriguing nature of neutrinos
and dark matter [2]. However, the detection of Majorana
fermions had remained elusive until they were introduced
as quasiparticles in certain condensed matter systems.
A series of experiments has claimed the observation of
signatures of Majorana states [3–8].

Roughly, the condensed matter version of Majorana
fermions constitutes half of a usual fermion, i.e. an ordi-
nary fermion is a superposition of two Majorana modes
which can be separated by arbitrary distance. The re-
sulting state is highly delocalized and robust against local
perturbations. Moreover, Majorana states exhibit novel
statistics: they are non-abelian anyons. The two latter
features draw the attention of the quantum computa-
tion community. Braiding Majorana fermions provides
a method for realizing topological quantum computation
[9–12]. Novel methods combining Majorana physics with
topological error correction have also appeared recently
[13–17].

Correspondingly to these unusual properties, an in-
creasing interest on how to get and manipulate Majorana
fermions has grown up. The appearance of Majorana
states was predicted in a system with odd superconduct-
ing pairing [18]. Since odd superconducting pairing has
not been found in Nature, the proposal seemed to be un-
realistic. A few years later, a remarkable idea to induce
topological superconductivity at the surface of a topo-
logical insulator by means of proximity effect made it
feasible [19].

Alternatively, approaching a semiconductor nanowire,
with spin-orbit coupling and subject to a magnetic field,
to the surface of a superconductor induces an odd super-
conducting pairing among the electrons in the semicon-
ductor [20, 21]. The resulting phase is topological and
has Majorana quasiparticles.

Initially, various experimental setups using s-wave su-
perconductors were proposed to host Majorana fermions
[22, 23]. Recent experiments confirm the success of the
experimental proposal [24, 25]. It is also possible to
obtain topological superconductivity by depositing mag-
netic adatoms on top of a conventional s-wave supercon-
ductor [26–33], where signatures of Majorana modes have
been seen.

Additionally, high-Tc superconductors were suggested
to induce topological superconductivity [34–36]. The mo-
tivation to study these type of superconductors comes in
two directions. First, the induced superconducting gap
is proportional to the gap in the original superconductor
but reduced by a factor, as a consequence of proximity ef-
fect. Since the superconducting gap is larger for high-Tc
superconductors, the induced gap becomes wider. Sec-
ond, high-Tc superconductors show anisotropic pairing.
Therefore, they induce different pairing depending on the
orientation of the sample.

Since high-Tc superconductors are an instance of a d-
wave pairing , one may wonder what would happen when
a d-wave superconductor induces a superconducting gap
in a two-dimensional electron gas (2DEG) with spin-orbit
coupling and a Zeeman field. A realization of a 2DEG
could be a semiconductor even though the aim of this
work is to provide a general framework which can be
applied also to other schemes [37] and include quantum
simulation in the pathway.

Considering a host d-wave superconductor, we analyze
the interesting features of the new Majorana fermions
comparing them to the Majorana bound states induced
by s-wave superconductors. To accomplish this task, we
develop a phenomenological model using a d-wave super-
conductor as a parent Hamiltonian to induce supercon-
ductivity. As a result, we get an effective pairing which
has f -wave symmetry (l = 3), in contrast to the effec-
tive p-wave symmetry (l = 1) that appears for a parent
s-wave superconductor.
d-wave superconductors act differently from s-wave su-

perconductors in two fundamental ways: 1) d-wave pair-
ing shows an angular dependence. As a consequence,
d-wave superconductors present a richer phenomenology



2

with respect to s-wave superconductors. They can induce
a p-wave paring and also a novel f -wave pairing depend-
ing on the orientation of the superconductor [34]. We
focus our study on the latter case. Majorana fermions
created present clearly defined edge localization, despite
the angular dependence of d-wave pairing and its ex-
pected larger correlation length. We also show that the
frecuency of oscillations of Majorana fermions for d-wave
and s-wave superconductors are indeed very similar for
a wide range of parameters. 2) Since d-wave pairing
has nodal lines, where the superconducting gap is zero
[38–40], Majorana and nodal states coexist. As a conse-
quence, nodal states appear in the system where the gap
in the effective model closes, similarly to what happens
for Majorana states.

Furthermore, we study a microscopic lattice Hamilto-
nian that comprises the previous effective model. We
characterize the phase diagram using the parity of the
Chern number, which is a well-defined topological invari-
ant even for nodal systems. In addition, we consider the
effect of static disorder to prove the robustness of the
propagating Majorana modes.

The paper is organized as follows: In Section II, a novel
superconducting Hamiltonian with effective f -wave pair-
ing is derived. We use this simplified Hamiltonian model
to calculate analytically the wave function of Majorana
fermions in Section II B. Moreover, we exhaustively study
the properties of Majorana fermions arising from this in-
duced f -wave pairing. In Section III, we study a lattice
version of the previous effective model. In particular, we
obtain a microscopic model in real space and define the
topological invariant for this nodal system. The robust-
ness of Majorana states against disorder is also discussed.
Detailed analytic calculations on how to obtain the wave
function of the Majorana bound states are explained in
Appendix A.

II. PHENOMENOLOGICAL HAMILTONIAN

In this Section, we study the problem of a 2DEG with
strong spin-orbit interaction and Zeeman field; as well as
an induced d-wave superconducting pairing mechanism.
There are several physical platforms that can realize this
model such as: (i) a planar semiconductor approximated
to a high-Tc superconductor [22], (ii) a d-wave super-
conductor with intrinsically strong spin-orbit interaction
[38], (iii) cold atoms simulation of d-wave superconduc-
tors [41], where the spin-orbit interaction can be also
induced by laser [42].

Any of the above proposals requires three key ingre-
dients: Spin-Orbit Coupling (SOC), an strong Zeeman
field and a parent superconductor. The Zeeman field
is introduced perpendicular to the semiconductor plane,
as shown in Fig. 1. In certain parameter regimes,
the Hamiltonian presents an effective spin-triplet pairing
symmetry with propagating Majorana states at edges,
similar to s-wave parent superconductors. However, we

show that the localization, oscillation and stability prop-
erties of these new Majorana modes are very similar
when the underlying parent symmetry of the supercon-
ductor is d-wave, despite the angular dependence that
the superconducting pairing exhibits. In what follows we
present both analytic and numerical results supporting
these claims.

A. Derivation of the Hamiltonian

We begin by considering a 2DEG with SOC [23].
Crucially, the SOC breaks the spin degeneracy of the
2DEG bands. Since we will eventually include supercon-
ductivity, we already embed the particle-hole structure
in the Hamiltonian. To this end, we use the follow-
ing Nambu spinor basis in momentum space, Ψ†(k) =(
ψ†↑(k), ψ†↓(k), ψ↓(−k),−ψ↑(−k)

)
, where ψ(ψ†) are an-

nihilation (creation) operators satisfying the fermionic
anti-commutation relations. The Hamiltonian reads

Hα =
1

2

∫
d2k Ψ†(k)Hα(k)Ψ(k), (1)

with

Hα(k) =

(
k2

2m
− µ

)
τz⊗Iσ+α τz⊗

(
ky σx−kx σy

)
, (2)

where kx(ky) is the crystalline momentum in the
x(y)−direction, k2 = k2

x + k2
y, m is the effective mass

of the electron in the material, µ is the chemical poten-
tial, α is the Rashba SOC strength and σi and τi are
Pauli matrices acting on spin and particle-hole space re-
spectively. As a result, Hamiltonian Hα(k) is a 4 × 4
matrix.

Next, we include a Zeeman field perpendicular to the
2DEG plane to open a gap between the spin-up and the
spin-down bands:

HV = V Iτ ⊗ σz. (3)

The Zeeman field could be generated by a ferromagnetic
insulator or by a magnetic field. Since the field was cho-
sen to be perpendicular to the plane, using a magnetic
field would cause orbital effects which are neglected in
Eq.(3).

The corresponding energy dispersion relations for the
particle bands are

E±(k) =
k2

2m
− µ±

√
V 2 + α2k2. (4)

where ± denotes the upper and lower bands respectively.
At k = 0 the separation between the two is 2 |V |. If µ is
placed inside the gap, |µ| < |V |, only the lower band is
occupied. This is necessary to reach the spinless regime.

By placing a superconductor on top of the 2DEG, it
is possible to induce superconductivity through proxim-
ity effect. Provided we assume spin-singlet pairing, the
induced Hamiltonian is given by
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H∆(k) = ∆(k) τx ⊗ Iσ, (5)

where ∆(k) is the induced pairing amplitude, considered
real throughout the paper.

Combining all terms from Eqs. (2), (3) and (5), we
find the final Hamiltonian with induced superconducting
pairing

H = Hα(k) +HV +H∆(k). (6)

In order to further simplify the above Hamiltonian, let
us express it in the diagonal basis of Hα(k) + HV with
Rashba coupling and Zeeman field only:

H =

 E+ 0 ∆+− ∆++

0 E− ∆−− ∆+−
∆∗+− ∆∗−− −E− 0
∆∗++ ∆∗+− 0 −E+

 , (7)

where

∆−−(k) =
−αk∆(k)√
V 2 + α2k2

−ikx + ky
k

, (8)

∆++(k) =
−αk∆(k)√
V 2 + α2k2

ikx + ky
k

, (9)

∆+−(k) =
−V∆(k)√
V 2 + α2k2

. (10)

Therefore, the originally parent pairing ∆(k) has gen-
erated an effective intraband ∆++, ∆−− and interband
∆+− pairing. If the interband coupling ∆+−, which is of
the order of ∆(k), is much smaller than the separation
between the two particle bands ≈ |V |, i.e., |V | � ∆(k),
we can neglect the upper unoccupied band. As a result,
we focus on the 2× 2 effective Hamiltonian given by the
lower bands. In this limit, the intraband terms couple
electrons with the same spin, i.e. spin-triplet pairing,
reaching the spinless regime. This is essential to have
Majorana bound states, since creation and annihilation
operators for Majorana quasiparticles must be equal to
each other in order to fulfill the condition that Majorana
fermions are their own antiparticles.

For d-wave pairing symmetry, the amplitude is given
by

∆(k) =
∆d

k2
F

(
k2
x − k2

y

)
, (11)

where kF is the Fermi momentum in the 2DEG. It is im-
portant to highlight that the d-wave pairing amplitude,
unlike the constant s-wave pairing, depends on the az-
imuth angle, θk, since k2

x−k2
y = k2 cos(2θk). The momen-

tum parallel to the interface is conserved and therefore,
the induced pairing for d-superconductors takes the form
given in Eq. (11) [34, 43–46]. Note that for an s-wave
parent superconductor where ∆(k) = ∆s is constant, the
above condition, |V | � ∆(k), is more restrictive than for

x

z

y

2DEG

Superconductor

V

FIG. 1. Orientation of the d-wave superconductor with re-
spect to the 2DEG with SOC and Zeeman field.

a d-wave parent superconductor, where |V | � ∆(k) is
automatically satisfied for k ∼ 0, unlike the s-wave case.
We stress that the continuum theory given by Hamilto-
nian (6) is strictly valid in the vicinity of the Γ point
k ≈ 0. In this case, the d-wave superconductor is itself a
gapless system and supports flat bands at the edge. The
effect of these modes on the 2DEG depends on the par-
ticular details of the setup and are considered negligible
for the present study.

Assuming that the Zeeman field is also much larger
than the spin-orbit energy, |V | � ESO = 1

2mα
2, and

that we have a parent d-wave superconductor, we arrive
at the following effective Hamiltonian:

Heff (k) =

(
k2

2m − µ− |V | ∆f (k)

∆∗f (k) − k2

2m + µ+ |V |

)
, (12)

with an induced pairing

∆f =
−α∆d

|V |
(−ikx + ky)

(
k2
x − k2

y

)
k2
F

, (13)

where kF =
√

2m (µ+ |V |). If we expand the above
equation in polar coordinates to study the orbital sym-
metries of the pairing, we have: ∆f ∼ k3(e3iθk − e−iθk).
Thus, the resulting pairing has both orbital p-wave and
f -wave symmetries and both form a spin-triplet that al-
lows the existence of Majorana states. From now on, we
call the mentioned pairing f -wave pairing for simplicity.

We note that the energy gap closes when µ + |V | = 0
signaling a phase transition. For µ > − |V | the super-
conductor is in a topological phase, and in a trivial phase
otherwise. Additionally, the energy gap also closes at four
nodal points at the Fermi surface when kx = ±ky = ±kF
[47].

It is worth mentioning that the effective f -wave pairing
in Eq. (13) is obtained when the crystallographic orien-
tation of the d-wave parent superconductor with respect
to the 2DEG plane is the one shown in Fig. 1. Otherwise
a different pairing symmetry would be induced [34].
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B. Majorana wavefunction from d-wave
superconductors

So far we have derived a effective two-band Hamilto-
nian, which is simple enough to analytically compute the
localization and oscillation properties of the induced Ma-
jorana modes. In particular, we would like to study how
the wave function of the Majorana fermions is modified
due to the inclusion of a parent d−wave superconductor,
instead of the more commonly studied case with s-wave
pairing symmetry.

Starting from Hamiltonian in Eq. (12), we assume
semi-infinite boundary conditions in the x-direction and
periodic boundary conditions in the y-direction. As men-
tioned before, we take the pairing amplitude ∆(k) to be
real. Majorana zero modes (MZMs) have to fulfill the
zero energy condition Heffψ = Eψ = 0 at ky = 0, giving
rise to the following system of differential equations{

1
2m∂

2
xψ1 + α∆0

|V | ∂
3
xψ2 + (µ+ |V |)ψ1 = 0

1
2m∂

2
xψ2 + α∆0

|V | ∂
3
xψ1 + (µ+ |V |)ψ2 = 0

. (14)

The equation above can be easily decoupled using
particle-hole symmetry, since ψ1 and ψ2 are related by
ψ1 = −ψ2. We are left with a single independent linear
differential equation where the third order term comes
from the f -wave pairing in Eq. (13). Subsequently, a
third degree characteristic polynomial is solved to find
the solutions. Since we consider a semi-infinite system
and we are looking for localized states at the edge, we
enforce the boundary conditions: ψ(x = 0) = 0 and
ψ(x = ∞) = 0. The only possible solution for Eq. (14)
with these constraints casts the form

ψ1 (x) = Ne−ux sin vx, (15)

where u and v are, respectively, the real and imaginary
parts of one of the roots of the characteristic polynomial.
Since u and v are the solutions for a d-wave parent Hamil-
tonian, henceforth we will add the subindex ud and vd to
denote these solutions. For an s-wave parent Hamilto-
nian, the solution for MZMs also takes the form in Eq.
(15). In this case, the solutions are called us and vs.
We study first the properties of Majorana wave function
coming from a d-wave superconductor and we compare
the new results with the MZMs induced by an s-wave
superconductor.

The decay of the MZMs into the bulk is given by ud,
and the amplitude of the oscillation of the wave function
by vd. The third order differential equation for ψ1 leads
to a third order algebraic equation for ud. Making use
of the relations between the coefficients of a third order
polynomial and its roots, it is possible to find an explicit
expression for ud:

ud =− |q|
q

√
p

3
cosh

(
1

3
arccosh

(
3 |q|
2p

√
3

p

))
− 1

3

∣∣∣∣ |V | (µ+ |V |)
α∆d

∣∣∣∣ , (16)

FIG. 2. Ratio between the exponential decays, ud/us, of Ma-
joranas coming from d- and s-wave superconductors, respec-
tively, as a function of V and µ. Only the area with |µ| < |V |
is shown. Parameters: ∆s = ∆d and ESO = 0.05∆d.

where p and q are defined as

p :=
1

3

∣∣∣∣ V

2mα∆d

∣∣∣∣2 , (17)

q := − 2

27

∣∣∣∣ V

2mα∆d

∣∣∣∣3 − (µ+ |V |)
∣∣∣∣ V

α∆d

∣∣∣∣ . (18)

The detailed calculation of these expressions is specified
in Appendix A.

Having the analytic expression of the decay of the
MZMs, one may wonder why it is important that Ma-
jorana fermions remain localized. This is crucial for in-
stance from the point of view of quantum computation,
since one reason for the protection of the MZMs is due
to their non-local character that result into protection
against local perturbations.

The coherence length of the superconductor ξ is in-
versely proportional to the superconducting gap. Con-
sequently, the larger the gap, the more localized we
may expect the MZMs to be. This is true regardless
of whether the underlying pairing symmetry is s-wave or
d-wave. The angular dependence for d-wave supercon-
ductors, Eq. (11), leads to an effective reduction of the
superconducting gap, which implies a larger coherence
length ξ on average in the superconductor. As a result,
we may intuitively expect a stronger interaction between
Majorana fermions at the edges due to this larger coher-
ence length. An exponentially small gap in the length of
the sample opens because of the interaction of the two
edge Majoranas. Therefore, edge localization constitutes
a figure of merit for the usefulness of MZMs.

Remarkably, we show that for a wide range of values in
the system parameters, the effect of the angular depen-
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dence of the d-wave pairing symmetry is irrelevant and
MZMs are as isolated as for an underlying s-wave pairing.
Furthermore, since experiments show a larger pairing gap
for d-wave superconductors ∆d � ∆s [48–52], the local-
ization of MZMs should be even more pronounced in that
case.

Larger values of ud mean that MZMs are more localized
and decay faster into the bulk. We compare the decay ud
with us =

∣∣α∆s

V

∣∣m, where |V | � ∆s, ESO, in Figs. 2 and
3. Fig. 2 shows the ratio ud/us as function of V and µ
considering the underlying s-wave superconducting gap
equal to the d-wave one, ∆s = ∆d in order to isolate and
study the influence of the angular dependence solely. Fig.
3 shows this same ratio as a function of ESO and µ. The
ratios between the Hamiltonian parameters are taken to
resemble experimental values in semiconductors such as
InAs or InSb [49, 51, 52].

In Fig. 2 it can be seen that provided the Zeeman
energy V is large with respect to ∆d, the ratio ud/us
is nearly equal to 1. This implies that the larger V the
more similar the s-wave and the d-wave case become, re-
gardless of the angular dependence of the d-wave pairing.

Nevertheless, there are certain areas where the ratio
ud/us decreases, where the localization of MZMs coming
from s-wave superconductor is much greater than the lo-
calization of Majoranas induced by a d-wave supercon-
ductor. This can be seen in a small band in the lower
part of Fig. 3 where µ ∼ −V . Also, in Fig. 2 the ratio
decreases for low values of V . However, this latter area
is outside the valid regime of our effective model. In Fig.
2, we need to have |V | � ∆s for us (and |V | � ∆(k) for
ud) and |V | � ESO in Fig. 3.

A possible instance of d-wave superconductors corre-
sponds to high-Tc superconductors, where the supercon-
ducting gap is one or two orders of magnitude greater
than a conventional s-wave superconductor [44, 48]. This
means that ∆s would be much smaller than ∆d. Consid-
ering realistic ∆s values, the ratios in Figs. 2 and 3 are
multiplied by the relation ∆d/∆s. Thus, MZMs arising
from d-wave superconductors should be much more lo-
calized for high V than their counterparts, induced by
s-wave superconductors.

Additionally, the wave function of MZMs, see Eq. (15),
oscillates at a frequency vd,

v2
d =

2(s1 + 2u)

u
, (19)

where s1 = (µ+|V |)|V |
α∆d

. A detailed derivation of Eq.
(19) can be found in Appendix A. The equivalent ex-
pression for Majoranas coming from an s-wave supercon-

ductor is vs =

√
2m (µ+ |V |)−m2

∣∣α∆s

V

∣∣2. It is impor-
tant to remark that vs can take imaginary values. For
2m (µ+ |B|) < m2

∣∣α∆
B

∣∣2 the square root is imaginary
and the sine of vs turns into a hyperbolic sine. Therefore,
in order to compare vs and vd, we should consider vs = 0
for the range mentioned before. Nevertheless, this occurs
when V/∆s is small. Therefore this region with vs = 0

FIG. 3. Ratio between the localization of MZMs induced by
d and s-wave superconductivity, ud/us, as a function of ESO
and µ. Parameters: ∆s = ∆d and V = 4∆d.

is outside the scope of our calculations, since we require
|V | � ∆s. Outside these regions, when |V | � ∆s, ESO
we have vs '

√
2m (µ+ |V |) = kF . The resulting ratios

vd/vs have very similar behavior to ud/us, taking values
close to 1 but always smaller. The larger the Zeeman
energy, V , the closer this ratio gets to 1. It was men-
tioned previously that the ratio ud/us is multiplied by a
factor ∆d/∆s when ∆d 6= ∆s. Contrary to what happens
with the decay ratio, ud/us, the oscillation ratio does not
appreciably change with ∆d/∆s and keeps always values
close to 1.

In sum, we have proven that the angular dependence
of an underlying d-wave superconductor has little effect
on the localization and oscillation properties of MZMs
induced on a 2DEG. Moreover, since d-wave supercon-
ductors have larger superconducting pairing amplitudes,
we may expect MZMs to be more localized than in the
s-wave parent superconductor case. This fact could have
positive implications in current proposals for topological
quantum computation using MZMs, since the robustness
of the Majorana quasiparticles partly relies on their non-
local and edge-localized character.

III. MICROSCOPIC HAMILTONIAN

In Sec. II we have derived an effective model to study
the low energy physics around k ∼ 0. In this section,
we define a microscopic lattice model that comprises the
effective Hamiltonian previously described in Eq. (12).
Moreover, we calculate a topological invariant which dis-
tinguishes between topological and trivial phases, i.e.
whether Majorana states exist or not. his microscopic
model corresponds to the exotic pairing phenomenologi-
cally derived in Sec. II.
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FIG. 4. Energy spectra for the f -wave lattice model (21) on
a cylindrical geometry. Parameters: µ̃ = 2t, ∆̃ = t. Lattice
sites in x-direction N=100. Chiral gapless edge modes can be
seen, since the system is topological for these parameters.

A. Lattice Hamiltonian

Assuming that k and k2 terms in Eq. (12) correspond
to the lowest order expansion of the trigonometric func-
tions sin k and cos k, we can write a lattice Hamiltonian
in momentum space that casts the form

Hmicro =
1

2

∑
k

(
c†k, c−k

)
Hm (k)

(
ck
c†−k

)
, (20)

where

Hm (k) =

(
ε(k) d(k)
d∗(k) −ε(k)

)
, (21)

with ε (k) = −2t (cos kx + cos ky) − µ̃ + 4t, d (k) =

4i∆̃ (sin kx + i sin ky) (cos ky − cos kx), t = 1/2m, µ̃ =

µ + |V | and ∆̃ = α∆d

2|V |k2F
. We recover Eq. (12) in the

k → 0 limit. The energy bands for the lattice model are

given by E (k) = ±
√
ε2 (k) + |d (k)|2. The gap vanishes

at the points (kx, ky, µ̃) = (0, 0, 0) , (0, π, 4t) , (π, 0, 4t)
and (π, π, 8t), suggesting phase transitions. Additionally,
there are nodal lines, placed at kx = ±ky = ±kF .

Despite the existence of nodal lines that render the
system gapless, it is possible to define a topological in-
variant that distinguishes between non-trivial and trivial
phases. The Chern number [53] calculated for nodeless
superconductors is no longer well-defined [38, 54]. To
define the Chern number in a system with gapless lines
like ours, it is necessary to remove the nodal states by
adding a small perturbation. Nevertheless, the value of
the Chern number is not independent of the perturbation
introduced, and only the parity of the Chern number is
uniquely defined by this procedure. Thus, this is a well-
defined topological invariant even in the presence of bulk

gapless excitations. The parity of the Chern number can
be computed as

(−1)
νCh =

∏
α,i=1,2,3,4

sgn Eα (Γi) , (22)

where Eα (k) is the eigenvalue of Hamiltonian (21) for
each band α. In our particular case, α only takes one
single value because the model only has one indepen-
dent band, due to particle-hole symmetry. Γi are the
time-reversal-invariant momenta (0, 0), (0, π), (π, 0) and
(π, π). Since d (k) vanishes at time-reversal-invariant mo-
menta we have

E1 (Γi) = ε (Γi) = −2t (cos Γi,x + cos Γi,y)− µ̃+4t. (23)

Applying the definition, the following expression is ob-
tained:

(−1)
νCh = sgn

[
(−µ̃) (−µ̃+ 4t)

2
(−µ̃+ 8t)

]
, (24)

and the parity of the Chern number is −1 in the interval
0 < µ̃ < 8t, where the system is in a topological phase.
The lower phase boundary µ̃ = 0 is in agreement with the
results shown in Section II B, where there was a topolog-
ical phase transition at µ̃ = 0. Additionally, the lattice
model presents an upper bound for the topological phase
at µ̃ = 8t arising from the gap closing at the M point
(kx, ky) = (π, π). This feature was not captured in the
phenomenological analysis around the Γ point k = 0.

In order to obtain a microscopic model in real space,
we employ the inverse Fourier transform:

ckx,ky =
1

L

∑
n,m

einkxeimkycn,m, (25)

where n(m) runs over all sites in x(y)-direction and the
result of this calculation is:

Hmicro =
∑

m,n

{
−(µ̃− 4t)c†m,ncm,n − t

(
c†m+1,ncm,n

+c†m,ncm+1,n + c†m,n+1cm,n + c†m,ncm,n+1

)
+ ∆̃(c†m+1,n+1c

†
m,n + c†m+1,nc

†
m,n+1) + H.c.

− i∆̃(c†m+1,n+1c
†
m,n + c†m,n+1c

†
m+1,n) + H.c.

−∆̃(c†m+2,nc
†
m,n) + i∆̃(c†m,n+2c

†
m,n) + H.c.

}
.

(26)

Notably, the pairing in Eq. (21), when transformed from
momentum to real space as it is done in Eq. (26), involves
nearest and next-to-nearest-neighbors interactions. This
is in marked contrast to the microscopic model coming
from a host s-wave superconductor, since the latter in-
volves only nearest-neighbors interactions.

We want to study the properties of propagating Majo-
rana states hosted by (26). Thus, we consider a cylin-
drical geometry with periodic boundary conditions in
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the y-direction and open boundary conditions in the x-
direction. In Fig. 4 we depict the energy spectrum
for this particular geometry. The propagating Majorana
states cross linearly at ky = 0 and are separated by a gap
from the bulk states. At ky = ±kF the gap closes again
at the Fermi momentum kF , due to the nodal character
of the superconducting pairing.

B. Disorder analysis

We observe the stability of Majorana fermions under
static disorder in our lattice model. A random perturba-
tion which depends on the site position modifies slightly
the chemical potential. In order to introduce this per-
turbation, we add a new term to Hamiltonian in (26),
namely:

Hδµ̃ =
∑
m,n

δµ̃m,nc
†
m,ncm,n. (27)

The coefficients δµ̃m,n ∈ [−σµ, σµ] are picked from a
random uniform distribution with zero mean value and
width 2σµ. We seek to probe the edge localization of
the zero modes. Results show that even in the presence
of a random potential, the propagating Majorana modes
are robust. Similar studies in odd-frequency s-wave pair-
ing show that Majorana fermions are also robust against
disorder [55, 56].

We introduce static disorder in both x- and y-direction,
considering a cylindrical geometry for our system. Nei-
ther kx nor ky are good quantum numbers now, since
we are breaking translational symmetry. Thus, we cal-
culate the spectrum of the perturbed Hamiltonian and
focus on the low energy states. We plot the wave func-
tion of zero energy modes to check the localization of
MZMs in Fig. 5. The results obtained show that even
in the presence of weak static disorder, the edge states
remain localized. Moreover, the exponential decay that
characterizes MZMs is preserved up to a scale of energies
where the static disorder could be treated as a perturba-
tion with respect to the other energies in the system (see
Fig. 6 in Appendix B). Majorana fermions may interact
with nodal states under certain conditions making the
Majoranas less robust [38].

On the other hand, nodal states exposed to static dis-
order may change their position in momentum space, but
cannot be removed. These states appear when the gap

closes, E =

√
ε2 (k) + |d (k)|2 = 0, which can only hap-

pen if ε (k) = d (k) = 0. ε (k) = 0 is the Fermi surface,
while d (k) = 0 yields the nodal lines kx = ±ky. The in-
tersection of the nodal lines and the Fermi surface results
in the nodal states. Static disorder introduces a pertur-
bation, δµ̃, which consequently alters the Fermi surface,
ε+ δε, changing the point at which nodal lines cross the
surface [57].

(a)

(b)

FIG. 5. Wave functions of the zero energy edge modes on a
cylindrical geometry. (a) Shows the wave function of the zero-
energy state with no disorder in the system. (b) Depicts the
same state with σµ = 0.1. Parameters: µ̃ = 2t, ∆̃ = t = 1.
Lattice size is Nx ×Ny = 40× 40.

IV. CONCLUSIONS AND OUTLOOK

The purpose of this work is to study the properties of
emerging Majorana modes in a 2DEG with strong spin-
orbit coupling, a Zeeman field and proximity induced d-
wave superconductivity. Although the angular depen-
dence of d-wave superconducting pairing that would in-
tuitively increase the superconducting coherence length,
we have remarkably shown that Majorana modes are al-
most as localized as the ones obtained with a constant
s-wave pairing amplitude. Moreover, since realistic val-
ues of the d-wave gap are much greater than the s-wave
superconducting gap, sharper localization profile is ex-
pected for Majorana states induced by the former.

We have also studied a microscopic lattice version of
the previous model with an effective f -wave pairing.
In real space this model involves nearest and next-to-
nearest-neighbors interactions. We have computed the
phase diagram of this model by means of the parity of
the Chern number, a topological invariant that is well-
defined even for nodal systems. In addition, we have
proven the stability of the propagating Majorana modes
against static disorder.

This analysis has direct implications in experiments
and proposals with high-Tc superconductors [9], as well
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as in cold atoms simulation of d-wave superconductors
[41], with Raman-induced spin-orbit coupling [28].
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Appendix A: Derivation of Majorana states from an
effective f-wave pairing

Given a cylindrical geometry for Hamiltonian (12),
we look for MZMs solutions, that satisfy the equation
Heff ψ = 0 at ky = 0. This yields the system of differen-
tial equations in Eq. (14). Using particle-hole symmetry
we can decouple these equations and obtain a single dif-
ferential equation:

α∆d

|V | k2
F

∂3
xψ1 −

∂2
x

2m
ψ1 − (µ+ |V |)ψ1 = 0, (A1)

which has a third derivative instead of the first derivative
we would find in the p-wave case. Using the ansatz ekx we
obtain the associated characteristic polynomial of (A1):

k3 − (µ+ |V |) |V |
α∆d

k2 − 2m (µ+ |V |)2 |V |
α∆d

= 0. (A2)

We will now discuss when does equation (A1) have
Majorana solutions with boundary conditions ψ (0) =
ψ (∞) = 0. Polynomial (A2) may be rewritten as
(k − k1) (k − k2) (k − k3) = k3 − s1k

2 + s2k − s3, where
k1, k2 and k3 are the roots of the cubic polynomial and
s1 = k1+k2+k3 = (µ+|V |)|V |

α∆0
, s2 = k1k2+k2k3+k1k3 = 0

and s3 = k1k2k3 = 2m(µ+|V |)2|V |
α∆0

. The discriminant of
the cubic equation reads

D = −4s3
1s3 − 27s2

3. (A3)

D vanishes for (µ+ |V |) = 0, V = 0 and (µ+ |V |) |V |2 =
− 27

2 mα
2∆2

0. Considering α,m,∆0 ∈ R+ and µ, V ∈ R;
we have D > 0 when (µ+ |V |) |V |2 < − 27

2 mα
2∆2

0, and
negative D otherwise. If D ≥ 0 we have three real roots,
otherwise we have one real and two complex roots. A
general solution for differential equation (A1) is ψ1 =
C1e

k1x + C2e
k2x + C3e

k3x, where we need to enforce the
boundary conditions ψ (0) = 0 and ψ (∞) = 0. We are

working under the constraint |µ| < |V |, thus we have
that our solutions satisfy D < 0. If D < 0 there is
one real root, k1, and two complex, k2 and k3. Since s1

and s3 are real, one finds that k2, k3 = −u ± iv, thus
s1 = k1 − 2u, s2 = −2k1u +

(
u2 + v2

)
= 0 and s3 =

k1

(
u2 + v2

)
. Therefore:

• k1, u > 0 or k1, u < 0 are not possible since s2 = 0.

• k1 < 0 and u < 0: we have C2 = C3 = 0 to satisfy
the boundary conditions at infinity and C1 = 0 to
satisfy them at z = 0. No solution.

• k1 > 0 and u > 0: C1 = 0 to satisfy bound-
ary conditions at infinity and C2 = −C3 to satisfy
them at x = 0. Therefore ψ1 = C2

(
ek2x − ek3x

)
=

C2e
−ux sin vx.

Summing up, if there are any Majoranas for ky = 0,
equation (A2) needs to have a positive real root and two
complex roots with negative real part.

For the cubic polynomial (A2) there is a hyperbolic
solution for the real root, k1, given by

k1 = −2
|q|
q

√
p

3
cosh

(
1

3
arccosh

(
3 |q|
2p

√
3

p

))
+
s1

3
,

(A4)
where p and q are defined in the main text, in Eqs. (17)
and (18). From this equation we can immediately find
equations for u = −s1+k1

2 and for v2 = 2k1
u . These vari-

ables are called ud and vd in the main text.

Appendix B: Exponential decay of MZMs with
static disorder

This appendix is devoted to provide a detailed descrip-
tion of the exponential decay of the MZMs. To this end,
we plot the wave function of the zero energy modes in
logarithmic scale. If the decay were purely exponential,
the wave function would be a straight line. However,
we know that there are natural oscillations due to the
ansatz of the wave function, Eq. (15) in the paper. Fig.
6a shows the decay of a Majorana state without disor-
der. The red dashed line represents a linear fitting of the
results obtained from the lattice model. As it can be con-
cluded from the figure, it is a clearly exponential decay.
The same linear fitting is plotted in Fig. 6b, i.e. the gra-
dient of the red dashed line is the same in both graphics.
For weak disorder, the exponential decay remains unal-
tered. The fluctuations around the linear fitting shown
in Fig. 6b, come not only from the disorder introduced
in the system but also from the oscillations of the wave
function itself (Eq. (15)).

We can conclude that the decay of the Majorana modes
coming from d-wave superconductors remains roughly ex-
ponential even when weak static disorder is introduced
in the system.
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(a) (b)

FIG. 6. Wave function probabilities of the zero energy edge modes on a plane in a logarithmic scale. (a) Shows the wave
function of the zero-energy state with no disorder in the system. (b) Depicts the same state with σµ = 0.1. Parameters: µ̃ = 2t,
∆̃ = t. Lattice size is Nx×Ny = 100×40. An average of 15 possible realizations for every 40 possible sections in the y-direction
was performed.
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