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The electrical resistivity of several relatively clean metallic ferromagnets, as well as the helimag-
net MnSi, is commonly observed to exhibit non-Fermi-liquid behavior at low temperatures. This
behavior, which is found in both ordered and disordered phases, and both near and away from the
magnetic transition, remains a major unsolved problem. We derive and discuss three novel mecha-
nisms underlying such behavior that are based on electron scattering mediated by the exchange of
(1) ferromagnons or (2) skyrmionic fluctuations, both in conjunction with weak disorder, or (3) heli-
magnons in clean systems. Since the magnetic transition in weakly disordered sytems is generically
discontinuous, static droplets of the ordered phase can exist within the disordered phase, making
the mechanisms viable there as well. We compare our theoretical results with existing experimental
ones and suggest additional experiments.

I. INTRODUCTION, AND RESULTS

A. Non-Fermi-liquid behavior in magnets

A characteristic property of Fermi liquids is a low-
temperature (T ) electrical resisitivity ρ of the form
δρ(T → 0) ∝ T 2, with δρ = ρ − ρ0 the T -dependent
part of the resistivity and ρ0 the residual resistivity;1
this behavior is realized in simple metals.2,3 A resistiv-
ity that does not satisfy this law is one of the hallmarks
of metals referred to as non-Fermi liquids (NFLs). An
obvious cause for NFL behavior is the vicinity of a quan-
tum critical point, where the critical dynamics can lead
to an unusual time and temperature dependence of vari-
ous correlation functions.4,5 More puzzling are examples
where the NFL behavior is observed in large regions of
the phase diagram, even far from any phase transition.
One such class of NFL materials is comprised of metallic
ferromagnets (FMs) and helimagnets (HMs). The NFL
behavior can occur in either the magnetically ordered or
disordered phases, or in both, and it is characterized by
a T s behavior

δρ(T → 0) = AsT
s (1.1)

with an exponent s that is commonly observed to be
3/2 . s < 2. Examples include the ferromagnets ZrZn2,6
Ni3Al tuned by either doping with Pd7 or pressure,8
and CaxSr1−xRuO3,9 all of which display a power-law
T -dependence of δρ with an exponent s that is clearly
smaller than 2 on either side of the quantum FM transi-
tion. Another example is the HM MnSi, which is tunable
by pressure and displays a T 3/2 behavior over a tempera-
ture range of nearly three decacdes in a large region in the
disordered phase, with a remarkably large prefactor A3/2,
but T 2 behavior in the ordered phase.10 These systems
all fulfill two requirements that help rule out possible rea-
sons for the NFL behavior: (1) They are relatively clean,
as evidenced by a small value of ρ0, or a large mean-

free path. This rules out effects due to diffusive electron
dynamics that can lead to NFL behavior.11,12 (2) The
NFL behavior is generic, i.e., it is observed in large re-
gions of the phase diagram, which rules out the possible
influence of quantum critical behavior. In Figs. 1, 2 we
show the schematic phase diagrams of ZrZn2 and MnSi,
respectively, for illustrative purposes. Notice that the ex-
ponent s for ZrZn2 takes on its smallest value of 1.5 in
a pocket around T = 10K and p = 2GPa, but is close
to 1.7 in a large part of the phase diagram. This some-
what ill-defined value of s suggests that several compet-
ing scattering mechanisms lead to an effective power law.
In MnSi, by contrast, a very clean T 3/2 behavior is ob-
served over more than two temperature decades, which
suggests one dominating scattering mechanism. There
are other examples, such as Nb1−yFe2+y,17 NiGa3,14,18
and (Ni1−xPdx)3Al,7 that allow for more possibilities
since they lack one or both of these requirements; we
will come back to some of these in the discussion.

In the context of requirement (2), and for later ref-
erence, we mention that it is now well understood
theoretically,19,20 and confirmed experimentally,21 that
the quantum phase transition in clean metallic FMs is
generically discontinuous or first order, so by definition
there is no standard magnetic quantum critical behavior.
This is indeed the case for all of the FM examples listed
above, and also for MnSi. Requirement (2) is still use-
ful, however, as critical fluctuations may be found in a
pre-asymptotic region in the vicinity of a transition that
is weakly first order. We also mention that phase sep-
aration is routinely observed away from the coexistence
curve in systems that display a first-order transition,22–24
which means that each phase displays, to some extent,
characteristics of the other phase. We will come back to
this phenomenon, as it is crucial for some of our argu-
ments.

The generic NFL behavior summarized above has
proved very challenging to explain, and is still far from
understood. One mechanism leading to a T 3/2 behavior
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Figure 1: Experimental temperature-pressure phase diagram
of ZrZn2 showing the ferromagnetic (FM) and paramagnetic
(PM) phases. The tricritical point (TCP) separates the line
of second-order transitions (solid) from the line of first-order
transitions (dashed). The false colors indicate the exponent
s that characterizes the power-law T dependence of the elec-
trical resistivity δρ. After Ref. 6.

that is applicable to HMs was reported in Ref. 25, where
it was shown that scattering of electrons by columnar
fluctuations (which in HMs can be realized by skyrmionic
spin textures, see Ref. 26) in conjunction with weak
quenched disorder leads to a T 3/2 behavior of the elec-
trical resistivity.

The fact that similar NFL behavior has been found
in various FMs implies that the above mechanism, which
vanishes in the FM limit q → 0, is not sufficiently general
to explain all of the observations. In addition, the expo-
nent observed in MnSi is s = 1.5 over several decades of
temperatures,10 whereas the exponents observed in FMs,
while clearly less than 2, tend to be slightly larger than
1.5, and the smallest values of s are not necessarily ob-
served at the lowest temperatures, see Fig. 1. Also, in
MnSi the NFL behavior is observed in the disordered
phase only, whereas in the various ferromagnets it is
found in either phase. All of this indicates that different
mechanisms may be at work in different materials. The
observed NFL transport properties of low-temperature
FMs and HMs thus remains a major unsolved problem.

In this paper we derive and discuss three additional
mechanism that lead to a T 3/2 NFL behavior of the elec-
trical resistivity. The first one relies on FM order and in-
volves magnon-mediated scattering of electrons in differ-
ent subbands of the exchange-split conduction band (in-
terband scattering) in the presence of weak disorder. The
second mechanism is applicable to HMs with skyrmionic
spin textures, where interband scattering in conjuction
with weak disorder leads, in a large pre-asymptotic tem-
perature region, to a T 3/2 behavior. The third one in-

Figure 2: Temperature-pressure phase diagram of MnSi com-
bining experimental data from Refs. 13–15 with theoretical in-
terpretations from Ref. 16. HM and PM are the helimagnetic
and paramagnetic phases, respectively. The tricritical point
(TCP) separates the line of second-order transitions (solid)
from a line of first-order transitions (dashed). The shaded
area is the NFL region; its upper limit (dotted line, T ∗) is
not sharp. The observed resistivity exponent value changes
abruptly at the critical pressure as shown in the inset. The
region below T0 is where Ref. 15 found partial helical order.
This was interpreted in Ref. 16 as a chiral liquid, separated
from the chiral gas above T0 by a first-order transition that
ends in a critical point (CP). See the text for further infor-
mation.

volves HMs without skyrmions and does not require any
quenched disorder. It involves scattering of electrons in
different subbands with the interaction mediated by he-
limagnons. We compare and contrast these mechanisms
with the one previously reported in Ref. 25, and also
with various competing scattering mechanisms that lead
to different power laws.

This paper is organized as follows: In the remainder
of this section we summarize our main results. In Sec. II
we discuss some general physical principles that allow for
very simple derivations of our results, which are given in
Sec. III. We discuss our results and the experimental
situation in Sec. IV.

B. Summary of main results

For the convenience of the reader we first summarize
our main results; see also Table I. We have identified
three mechanisms that lead to a T 3/2 behavior of the elec-
trical resistivity in sizable temperature regimes, namely:
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1. Mechanism 1: Magnon-mediated scattering in weakly
disordered ferromagnets

The first mechanism relies on FM order. It involves
magnon-mediated scattering of electrons in different sub-
bands of the exchange-split conduction band (interband
scattering) in the presence of weak disorder (ballistic
regime, see Refs. 27 and 28,29). In the current context,
weak disorder is defined by the inequalities λτ � 1 and
T � Tball ≡ T1/(εFτ)2, with λ the exchange splitting of
the conduction band, T1 the magnon energy at the edge
of the Brillouin zone (i.e., the magnetic Debye tempera-
ture), εF the Fermi energy, and τ the elastic mean-free
time that determines the residual resistivity. The result
for δρ for this case can be written

δρFM/ρ0 = γ1T
3/2/T1

√
T0 , (1.2)

with γ1 a numerical constant. It is valid for Tball � T .
T0, with T0 = T1λ

2/ε2F. Equation (1.2) also holds for
the thermal resistivity, only the numerical prefactor is
different.

2. Mechanism 2: Skyrmionic columnar fluctuations in
helimagnets with weak disorder

The second mechanism is applicable to HMs with
skyrmionic spin textures comprised of three helices with
pitch wave number q, as proposed in Ref. 26. Fluctua-
tions of the resulting columnar order lead, in conjuction
with weak disorder and for interband scattering, to a re-
sult that is identical to the one in weakly disordered FMs,

δρsky/ρ0 = γ2T
3/2/T1

√
T0 , (1.3)

with γ2 another constant. The prefactor of the T 3/2 law is
much larger than the one found previously for intraband
scattering mediated by columnar fluctuations.25 This re-
sult is valid for Tball � T . T0, except that for tem-
peratures lower than T1(q/kF)4 it crosses over to a T 5/4

behavior (provided the crossover temperature is larger
than Tball). It also holds for both the electrical and the
thermal resistivity.

3. Mechanism 3: Helimagnon-mediated scattering in clean
helimagnets

The third mechanism is applicable to HMs, and does
not rely on quenched disorder. It involves interband scat-
tering of electrons mediated by helimagnons. While the
dominant contribution at asymptotically low T is given
by the scattering of electrons in the same subband (in-
traband scattering, see Refs. 29,30), this mechanism pro-
vides the leading contribution in a pre-asymptotic tem-
perature window. The result is

δρHM/ρ0 = γ3 (q/kF)λτ (T/T1)
3/2

. (1.4)

Here q is the pitch wave number of the helically ordered
phase, and γ3 is a third constant. Equation (1.4) is valid
for q/kF � 1 and T0 . T . T1(q/kF)2 (provided this
temperature window exists). This result holds for the
electrical resistivity, the contribution to the thermal re-
sistivity is proportional to T .

II. GENERAL CONSIDERATIONS

All of the mechanisms discussed in this paper hinge
on three basic observations. The first one is that any
nonanalytic T -dependence of δρ requires the existence of
soft or massless modes that are infinitely long lived in the
limit of long wavelengths and couple to the conduction
electrons.

The second observation is that in any metallic mag-
net the Fermi surface is split by the exchange splitting λ.
In general one thus expects two types of scattering pro-
cesses. One is scattering between electrons in different
subbands (interband scattering). In clean systems, these
processes will be exponentially frozen out at low temper-
atures, so any power law generated by an exchange of soft
modes must cross over to an exponentially small rate at
asymptotically low temperatures. A second type of pro-
cesses is scattering between electrons in the same sub-
band (interband scattering). These can produce power
laws even at arbitrarily low temperatures, and hence will
asymptotically always dominate the interband processes.
However, as we will see, this argument may be irrele-
vant for practical purposes, since small prefactors can
make the asymptotic low-temperature region unobserv-
ably small, and small amounts of quenched disorder can
qualitatively change the behavior. Also, in ferromag-
nets intraband scattering is absent since ferromagnetic
magnons do not couple electrons in the same subband.

The third observation is that in the vicinity of a first-
order transition, as is realized at low T in all of the mag-
nets under discussion (see above), phase separation, i.e.,
the existence of a finite fraction of the ordered phase
within the disordered one, and vice versa, is commonly
observed; see Refs. 22–24 for examples involving some
of the magnets under discussion here. This has recently
been explained by the realization that static, finite-size
droplets of the minority phase are stable within the ma-
jority phase on either side of the coexistence curve, pro-
vided there is a moderate amount of quenched disorder
that couples predominantly to the order-parameter de-
grees of freedom, in this case the magnetization.31 This
allows features that are characteristic of one phase to ex-
ist, to a limited extent, on both sides of the coexistence
curve. This will play an important role in our discussions.

We now discuss the relevant soft modes and energy
scales, and provide basic expressions for scattering rates
that can be used to derive all of our results.
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A. Goldstone modes, and susceptibilities

An obvious soft mode in a FM is the ferromagnon with
dispersion relation3

ωFM(k→ 0) = Dk2 (2.1)

with D the spin-stiffness coefficient.
The corresponding Goldstone mode in the helical phase

of a HM is the helimagnon with dispersion relation32

ωHM(k→ 0) =
√
c2k2

z + c4k4
⊥ , (2.2a)

with kz and k⊥ the components of k parallel and per-
pendicular, respectively, to the pitch wave vector q. In
the limit of a long pitch wavelength, q/kF � 1, one has
c2 ∝ c4 q

2 with c4 ∝ D2. Ignoring numerical prefactors,
we have

ωHM(k) = D
√
q2k2

z + k4
⊥ (k . q) . (2.2b)

This is valid for k . q; in the opposite limit the resonance
frequency crosses over to the ferromagnetic one.

Finally, in a phase with columnar order the Goldstone
modes are columnar fluctuations with a dispersion rela-
tion of the form33,34

ωcol(k) =
√
c4k4

z + c2k2
⊥ . (2.3a)

An example of columnar order in a magnet is the
skyrmion spin texture observed in the A-phase of the HM
MnSi.26 If the skyrmions are comprised by a superposi-
tion of three helices, as proposed in Ref. 26, one has again
c2 ∝ c4q

2 ∝ D2q2, and ignoring numerical prefactors we
write

ωsky(k) = D
√
k4
z + k2

⊥q
2 (Dq4/k2

F . ωsky . Dq2) .

(2.3b)
The region of validity of this expression is bounded above
by k ≈ q or ω . Dq2; for larger k the frequency again
crosses over to the ferromagnetic one. It is bounded be-
low by ω & Dq4/k2

F; for asymptotically small frequencies
the dynamics of the soft modes change and one obtains35

ωsky(k) = D(k2
F/q

2)
(
k4
z/q

2 + k2
⊥
)

(ωsky . Dq4/k2
F) .

(2.3c)
We will refer to all of these Goldstone modes arising

from magnetic order summarily as “magnons”. For deriv-
ing their contributions to the electronic relaxation rates,
we consider the effective interaction between electrons
mediated by the exchange of magnons, see Fig. 3. The
effective potential is proportional to the susceptibility χ
of the order-parameter phase fluctuations that also de-
termine the Goldstone propagator. In the case of the
FM these phase fluctuations are simply the transverse
components of the magnetization. In the HM case they
are a generalized phase that involves a transverse gradi-
ent that leads to the characteristic anisotropic dispersion

Figure 3: Effective interband scattering of electrons mediated
by magnon exchange. The effective potential is represented
by the dotted line, and σ = ±1 ≡↑, ↓ is the spin projection.

relation for the helimagnons.32 The leading contribution
to χ in FMs and in the helical and columnar phases of
HMs, respectively, apart from a numerical prefactor, is
given by the following expressions (see Refs. 30,36, and
also Sec. IVA).
FM:

χ(k, iΩ) ∝ m0Dk2

ωFM(k)2 − (iΩ)2
, (2.4a)

HM helical:

χ(k, iΩ) ∝ m0Dq2

ωHM(k)2 − (iΩ)2
, (2.4b)

HM skyrmionic:

χ(k, iΩ) ∝

{
m0Dq2

ωsky(k)2−(iΩ)2 for ωsky & Dq4/k2
F

m0(kF/q)
2ωsky(k)

ωsky(k)2−(iΩ)2 for ωsky . Dq4/k2
F .

(2.4c)
Here m0 is the magnetization scale, i.e., the expectation
value of the local spin density, and we neglect the damp-
ing of the magnons. Note that in a FM the numerator
is proportional to a gradient squared, while in the HM
helical case this is replaced by a q2. As a result, the
HM helical susceptibility is softer than the FM one, even
though the HM helical resonance frequency is stiffer than
the FM one.

B. Energy scales

For later reference we discuss various energy scales that
are relevant for the problem at hand. The highest of
these is the microscopic or atomic energy scale Ea. In
good metals this is usually the Fermi energy,37 which
we denote by εF. The magnetism is characterized by
several closely related energy scales. One is given by the
maximum excitation energy,

T1 = D/a2 ≈ Dk2
F , (2.5)

with a the microscopic length scale, which in good met-
als is close to the inverse of the Fermi wave number kF.
T1 is the magnetic analog of a Debye temperature. A
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second one is the exchange splitting λ, which is due to
the effective magnetic field seen by the conduction elec-
trons. It is related to the magnetization scale m0 via the
exchange interaction Γt that couples the electronic spin
to the magnetization:38

λ = Γtm0 . (2.6)

A third relevant scale arises in interband scattering
processes. The smallest wave number that can be trans-
ferred by means of magnon exchange is on the order of
k0 = λ/vF, with vF the Fermi wave number, and the
smallest energy that can be transferred is therefore

T0 = Dk2
0 ≈ T1 (λ/εF )

2
. (2.7)

Another energy scale is relevant in HMs. The expres-
sion (2.2b) is valid only for k < q; for larger wave numbers
they cross over to a ferromagnetic dispersion relation.
The temperature region where these excitations deter-
mine the scaling of the scattering rates is thus bounded
above by

Tq = Dq2 = T1(q/kF)2 . (2.8)

Finally, consider quenched disorder as characterized by
an elastic scattering time τ . We will be interested in the
ballistic regime,27 which is separated from the diffusive
regime by the requirement vFk > 1/τ , with k the mo-
mentum transfer in the scattering process (or, alterna-
tively, by k` > 1, with ` the elastic mean-free path). The
magnon frequency scales as the temperature, and from
Eqs. (2.1, 2.2b, 2.3b) we see that in all of these cases the
wave number squared scales as the magnon frequency di-
vided by D, i.e., the wave number scales as k ∼

√
T/D.

The ballistic transport regime is therefore restricted to
temperatures T > Tball, where

Tball = T1/(εFτ)2 . (2.9)

We will be interested in situations where T0 and Tball
are well separated, Tball � T0, which requires the weak-
disorder condition λτ � 1.

C. General expressions for the scattering rates

We now provide expressions for the scattering rates in
terms of integrals, first for the single-particle rate 1/τsp
in clean systems, for both interband and intraband scat-
tering. 1/τsp determines the thermal resistivity.2 The
electrical resistivity is determined by the transport rate
1/τtr. It is well known that in clean systems the latter
differs from the former by a factor in the integrand that
suppresses backscattering and is proportional to the mo-
mentum transfer squared, or (k − p)2/k2

F in Eqs. (2.10,
2.11) below.2 We will later use this observation to deduce
the transport rate from the single-particle one. Together
with simple arguments about the effects of disorder this
will suffice to obtain both rates, and hence both the ther-
mal and the electrical resistivity, for all cases of interest
by just considering the single-particle rate in clean sys-
tems.

Figure 4: Exchange contribution to the single-particle self
energy that results from the interaction vertex shown in Fig. 3.

1. Single-particle rate, clean systems

a) Interband scattering We start with an expres-
sion for the single-particle relaxation rate 1/τsp due to
magnon exchange between electrons in different subbands
of the exchange-split conduction band (interband scat-
tering) in clean systems. For a quasiparticle with wave
vector k it is given by the imaginary part of the Fock
or exchange contribution to the quasiparticle self en-
ergy shown in Fig. 4. Averaging over the Fermi sur-
face, and remembering that the effective potential is pro-
portional to the phase-fluctuation susceptibility, we find,
apart from purely numerical prefactors,

1

τsp
∝ NFΓ2

t

∫
du

1

sinh(u/T )

1

N2
FV

2

∑
k,p

δ(ξk − λ)

×δ(ξp + λ)χ′′(k − p, u) (2.10)

Here ξk = 0 defines the Fermi surface in the absence of
an exchange splitting, V is the system volume, and χ′′

is the spectrum of the susceptibility given in Eqs. (2.4).
The two δ-functions pin the electrons to the respective
Fermi surfaces. With χ representing the FM susceptibil-
ity, Eq. (2.4a), this expression was considered in Ref. 36;
it also holds for the two helical cases.

b) Intraband scattering We now consider magnon ex-
change between electrons in the same subband (intraband
scattering). This is relevant only for the helical cases; in
ferromagnets the magnons do not couple electrons in the
same subband. The expression for the single-particle re-
laxation rate was derived in Refs. 32 and 28. The result
is very similar to Eq. (2.10); it takes the form

1

τsp
∝ NFΓ2

t

(
q

kF

)2(
εF
T1

)2 ∫
du

1

sinh(u/T )

1

N2
FV

2

∑
k,p

× δ(ξk) δ(ξp)
(k − p)2

k2
F

χ′′(k − p, u) (2.11)

The δ-functions now reflect the fact that both electrons
belong to the same Fermi surface. The extra factor of
(k − p)2 compared to Eq. (2.10) is due to the fact that
electrons in the same band can couple only to gradients
of the fluctuating phase, whereas electrons in different
bands couple to the phase directly.39
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2. Transport rate, clean systems

A determination of the electrical resistivity requires
solving the Boltzmann equation, or, equivalently, evalu-
ating the Kubo formula. Even in the simplest conserving
approximation this requires solving an integral equation
for a vertex function. This integral equation is usually
replaced by an algebraic equation.40 In Ref. 41 it was
shown that this approximation is exact with respect to
the leading low-temperature dependence of the resistiv-
ity, and the resulting algebraic equations for FMs were
derived and solved in Ref. 36. The final result is as fol-
lows: The electrical resistivity is effectively given by the
transport rate 1/τtr, which is obtained from the same
integral as the single-particle rate, Eqs. (2.10, 2.11), but
with an additional factor of (k−p)2/k2

F in the integrand.
In the context of the Boltzmann equation this is known as
the backscattering factor; it suppresses large-angle scat-
tering and thus weakens the temperature dependence of
the transport rate compared to the single-particle rate.2
With the exception of the skyrmionic case at asymptot-
ically low frequencies, the wave number squared scales
as the Goldstone-mode frequency for all of the cases we
are considering, see Sec. II A, which in turn scales as
the temperature. We can thus immediately anticipate
that generically the leading T -dependence of the trans-
port rate will have an additional factor of T compared
to the single-particle rate. The only caveat is that this
argument assumes that the final integrals are infrared
convergent once the temperature has been scaled out;
this is not always the case, see Sec. III C below.

3. Effects of disorder

The effects of weak quenched disorder are qualitatively
different depending on whether we consider interband
or intraband scattering. A complete discussion requires
evaluating the Kubo formula with impurity scattering
taken into account. The leading contribution to the elec-
tron self energy in the weak or ballistic disorder regime,
λτ � 1, is shown in Fig. 5, and the leading contribu-
tions to the electrical conductivity are shown in Fig. 6;
see Refs. 28,29 for a complete discussion for the case of
helimagnon-mediated scattering. However, for the cases
of interest here a much simpler argument suffices; we
discuss its relation to the detailed calculation in the Ap-
pendix.

a) Interband scattering Consider the expression for
the clean single-particle rate given in Eq. (2.10). Shifting
the momentum k by p and performing the p-integration
yields

1

NFV

∑
p

δ(ξk+p − λ) δ(ξp + λ) ∝
∫ 1

−1

dη δ(kvFη − 2λ)

=
1

vFk
Θ(k − 2λ/vF) . (2.12)

Figure 5: Leading contributions to the electron self energy in
the weak-disorder or ballistic regime. The dotted line repre-
sents the effective interaction mediated by the magnons; the
dashed line with a cross represents the quenched impurities.

Figure 6: Leading contributions to the conductivity in the
weak-disorder or ballistic regime. Dotted lines represent the
effective interaction mediated by the magnons; dashed lines
with crosses represent the quenched impurities. The dots rep-
resent the external current vertices.

Note the theta function, which leads to an expo-
nentially small scattering rate at asymptotically low
temperatures.36 Weak disorder smears out the δ-function
and we have, in the limit vFk � λ and λτ � 1,

1

vFk
Θ(k − 2λ/vF) =

∫ 1

−1

dη δ(vFkη − 2λ)

→
∫ 1

−1

dη
1/τ

(vFkη − 2λ)2 + 1/τ2
≈ 1

λ2τ
.(2.13)

The disorder thus results in, (1) an extra factor of
vFk/λ

2τ in the integrand, and (2) the elimination of the
step function, and hence of the lower cutoff for the k-
integral. Since k scales as k ∼ T 1/2, this means that
disorder leads to a power-law temperature dependence
of 1/τsp that is weaker than in the clean case by a factor
of T 1/2, but extends to temperatures below the energy
scale T0.

For the transport rate, disorder eliminates the
backscattering factor since it leads to more isotropic scat-
tering. The effective extra factor in the integrand is thus
(εF/λ

2τ)kF/k, and disorder strengthens the temperature
dependence of the rate by a factor of 1/T 1/2. As a result,
the single-particle rate and the transport rate display the
same temperature dependence. Again, these conclusions
may be modified by the convergence properties of the
final dimensionless integrals.

b) Intraband scattering In the case of intraband scat-
tering the arguments of the δ-functions in Eq. (2.12) are
not shifted with respect to one another, and the smearing
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argument yields

1

vFk
=

∫ 1

−1

dη δ(vFkη)

→
∫ 1

−1

dη
1/τ

(vFkη)2 + 1/τ2
≈ 1

vFk

[
1− 1

vFkτ

]
. (2.14)

Disorder thus provides a correction to the scattering rate
that comes with an extra factor of 1/vFkτ in the inte-
grand and strengthens the temperature dependence of
1/τsp by a factor of 1/T 1/2. The sign of this contribu-
tion is negative, and it always is a small correction to the
clean contribution (since T > Tball). For the transport
rate the backscattering factor is suppressed in addition,
and disorder strengthens the T -dependence of the rate
by a factor of 1/T 3/2. The disorder corrections to both
rates thus again have the same temperature dependence.

The above simple argument always yields the correct
temperature scaling of both rates for all of the cases con-
sidered here. However, the sign of the disorder correc-
tion is rendered correctly only for the skyrmionic case,
whereas intraband scattering by helimagnons results in
a positive disorder correction to the rates.28,29 The rea-
son is that in this case the simple factor of (k − p)2 in
Eq. (2.11) does not adequately describe the coupling of
the Goldstone modes to the electrons. The actual cou-
pling contains an angular dependence that flips the sign,
as explained in the Appendix.

All of these observations are consistent with the results
of the explicit calculations in Refs. 28,29.

III. DERIVATIONS

We are now in a position to provide very simple deriva-
tions of the contributions to the scattering rates, and
hence the electrical and thermal resistivities, due to the
exchange of ferromagnons, skyrmionic columnar fluctua-
tions, or helimagnons, with or without weak quenched
disorder, and involving either interband or intraband
scattering.

A. Mechanism 1: Magnon-mediated scattering in
weakly disordered ferromagnets

For ferromagnets only the interband scattering mecha-
nism is relevant; the magnons do not couple electrons in
the same subband. For clean systems the single-particle
rate is given by Eq. (2.10). With Eqs. (2.4a) and (2.1)
for the susceptibility and the magnon frequency, respec-

tively, we have

1

τsp
∝ λ

NFV

∑
k

1

sinh(Dk2/T )

∫ 1

−1

dη δ(kvFη − 2λ)

=
λ

NFV

∑
k

1

sinh(Dk2/T )

1

vFk
Θ(k − 2λ/vF)

∝ Tλ

T1

∫ T1/T

T0/T

dx
1

sinhx
, (3.1)

where we have dropped a factor of NFΓt = O(1), as we
have all other numerical prefactors. We thus reproduce
the result of Ref. 36:

1

τsp
∝ (Tλ/T1)×

{
e−T0/T for T . T0

ln(T/T0) for T0 . T . T1 .

(3.2)
The corresponding result for 1/τtr is T 2λ/T 2

1 for T0 .
T . T1, and an exponentially small expression for T .
T0.36 Now consider weak disorder, characterized by λτ �
1. As explained in Sec. II C 3, the integrand in Eq. (3.1)
acquires, in the region vFk � λ, an additional factor
of vFk/λ2τ , and the step function disappears. Ballistic
disorder thus leads to an additional contribution to the
single-particle rate

δ(1/τsp) ∝ 1

λτNF

1

V

∑
k

1

sinh(Dk2/T )
Θ(λ− kvF)

∝ 1

τ

εF
λ

(
T

T1

)3/2 ∫ T0/T

0

dx

√
x

sinhx
. (3.3a)

For T � T0 this gives a small correction to the clean rate,
Eq. (3.2), but for T . T0 it provides the leading contri-
bution, which is proportional to T 3/2. The result for the
transport rate is the same, as explained in Sec. II C 3,
and we obtain

δ(1/τtr) ∝ δ(1/τsp) ∝ 1

τ

εF
λ

(
T

T1

)3/2

(T . T0) .

(3.3b)
This is equivalent to Eq. (1.2), which holds for both the
electrical resistivity, which is given by 1/τtr, and the ther-
mal resistivity, which is given by 1/τsp.

These results are summarized in Table I.

B. Mechanism 2: Skyrmionic columnar
fluctuations in helimagnets with weak disorder

Columnar fluctuations of any kind have a resonance
frequency of the form given in Eq. (2.3a). If the columns
are formed by skyrmionic spin textures that result from a
superposition of three helices with pitch wave number q,
as was proposed in Ref. 26, then the resonance frequency
is given by Eq. (2.3b) in the sizable frequency window
Tq q

2/k2
F . ω . Tq, and by Eq. (2.3c) for asymptoti-

cally small frequencies or wave numbers. The relevant
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susceptibility in these two regimes is given by Eq. (2.4c).
Repeating the calculation from Sec. III A we then obtain
for the single-particle rate due to interband scattering in
clean systems

1

τsp
∝ Tλ

T1

∫ √T1/T

√
T0/T

dz

z

∫ ∞
0

dx
1√

z4 + x

1

sinh
√
z4 + x

∝

{
(T 2λ/T0T1)e−T0/T for T . T0

(Tλ/T1) ln2(T/T0) for T0 . T . Tq .
(3.4)

The second temperature window may or may not exist,
depending on the relative values of T0 and Tq. For T & Tq
the result crosses over to the FM one. The correspond-
ing result for 1/τtr is exponentially small and T 2λ/T 2

1 ,
respectively, in the two temperature regions. In the pres-
ence of ballistic disorder both rates go as T 3/2 by the
same arguments as in the FM case, and we obtain

δ (1/τtr) ∝ δ (1/τsp) ∝ 1

τ

εF
λ

(
T

T1

)3/2

(
Max(Tball, Tq q

2/k2
F
)
. T . Tq) .(3.5)

This result is equivalent to Eq. (1.3). For T & Tq
it crosses over to the FM result, so ignoring the nu-
merical prefactor it effectively is valid for temperatures
T . Max(Tq, T0).

For asymptotically small frequencies or wave numbers
the resonance frequency and the phase susceptibility are
given by Eq. (2.3c) and the second expression in (2.4c),
respectively. Repeating the calculation for this case we
find

δ (1/τtr) ∝ δ (1/τsp) ∝ 1

τ

εF
λ

q

kF

(
T

T1

)5/4

(T̃ball . T . Tq q
2/k2

F) . (3.6)

Here T̃ball = Tball (kF/q)
4/(εFτ)2. We note that in HMs

such as MnSi, q/kF tends to be on the order of 10−2.
The temperature Tq q2/k2

F where this asymptotic behav-
ior sets in therefore tends to be extremely low, and not
necessarily larger than either Tball or T̃ball, so the tem-
perature window where Eq. (3.6) is valid may not exist.

For intraband scattering in clean systems, analogous
considerations using Eq. (2.11) readily show that the
single-particle and transport rates scale as T 2 and T 3,
respectively, in the pre-asymptotic region Tq q

2/k2
F .

T . Tq, which crosses over to T 3/2 and T 2, respectively
in the asymptotic region Tball . T . Tq q

2/k2
F. The

disorder correction to either rate scales as T 3/2 in the
pre-asymptotic region, but it always is a small correc-
tion to the clean contribution, as explained in Sec. II C 3.
Asymptotically this crosses over to a T 5/4 correction.

All of these results are summarize in Table I.

C. Mechanism 3: Helimagnon-mediated scattering
in clean helimagnets

In clean HMs, the leading helimagnon contribution to
the relaxation rates at asymptotically low temperatures
comes from interband scattering. Using Eqs. (2.2b) and
(2.4b) in Eq. (2.11) we reproduce the result of Ref. 30 for
the single-particle rate:

1

τsp
∝ λ

(
q

kF

)6(
εF
T1

)2(
T

Tq

)3/2

. (3.7)

The transport rate is given by the same expression with
an additional factor of T/T1. Ballistic disorder leads to
corrections to both rates that are proportional to T and
always small compared to the clean contribution.28,29
As explained in the Appendix, the arguments given in
Sec. II C 3 give the correct temperature scaling of the
disorder corrections, but not the correct sign.

The interband contribution is exponentially small at
asymptotically low temperatures, and therefore was not
considered in Ref. 30. However, for values of the pitch
wave number that are not too small it may dominate in a
temperature window, as we now show. Using Eq. (2.11)
instead of (2.10) we obtain for the single-particle rate due
to interband scattering

1

τsp
∝ λ

q

kF

(
T

T1

)1/2 ∫ T1/T

T0/T

dx√
x

∫ ∞
0

dz
1√

z2 + x2

× 1

sinh
√
z2 + x2

. (3.8a)

The dimensionless integral provides an additional factor
of
√
T/T0, and we obtain

1

τsp
∝ λ q

kF
×

{√
T/T1 e

−T0/T for T . T0

T/
√
T0T1 for T0 . T . Tq .

(3.8b)
In the case of the transport rate the backscattering factor
renders the dimensionless integral a constant, and we find

1

τtr
∝ λ

(
q

kF

)4(
T

Tq

)3/2

×

{
e−T0/T for T . T0

1 for T0 . T . Tq .

(3.9)
For the electrical resistivity, this implies Eq. (1.4). These
results are valid for T . Tq = Dq2; for higher temper-
atures they cross over to the FM results. The temper-
ature window where the resistivity scales as T 3/2 thus
may or may not exist, depending on the value of the ra-
tio εFq/λkF.

As an alternative to the above derivation one can re-
peat the HM calculation of Ref. 30 or 29 and take into ac-
count the interband scattering terms that were neglected
in these references. The result is the same. We also note
that, while the resistivity in a HM is anisotropic, the two
independent components of the resistivity tensor differ
only by a numerical factor.29
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In the presence of disorder the dimensionless integral
is only logarithmically divergent in the infrared, rather
than power-law divergent as in Eq. (3.8a). At the same
time, the lower cutoff T0/T disappears and is replaced
by TL/T , where TL = D/L2 with L the linear system
size. We then obtain a disorder correction to the rates,
to leading logarithmic accuracy,

δ(1/τsp) ∝ δ(1/τtr) ∝
1

τ

(
q

kF

)3
εF
λ

T

Tq
ln(T/TL)

(Tball . T . Tq) . (3.10)

This may or may not dominate over the clean contri-
bution, depending on the parameter values. We note,
however, that this result, and in particular its remark-
able logarithmic dependence on the system size, depend
on the convergence properties of the dimensional integral.
A more detailed investigation of where the power-law di-
vergence crosses over to a logarithmic one is therefore
warranted in order to determine the range of validity and
the prefactor of the T lnT behavior.42 However, any such
analysis will be highly model dependent, and for the pur-
poses of the current general discussion we therefore defer
to a future investigation.

IV. SUMMARY, AND DISCUSSION

Before we give a discussion of our results, we present a
summary in the form of Table I. It lists the three process
we have identified that lead to a T 3/2 behavior of the
electrical resistivity, as well as the other seven scattering
processes we have discussed, and also summarizes our
results for the thermal resistivity.

We now discuss various aspects of our results. We first
make some purely theoretical remarks, and then discuss
issues relevant for comparing with experiments.

A. Theoretical remarks

Let us make contact with previous theoretical work
on columnar fluctuations in Refs. 44 and 25. In order
to relate to the former, we note that the wave-number-
resolved quasiparticle rate, which is given by Eq. (2.10)
or (2.11) without the sum over k, for special directions of
k, scales asymptotically as T 5/4 in clean systems, with a
disorder correction that scales as T . This behavior does
not show in the rate that determines the thermal resistiv-
ity, which gets averaged over the Fermi surface. Similarly,
a wave-number-resolved “transport rate” (i.e., the wave-
number-resolved single-particle rate with an additional
momentum squared in the integrand) scales asymptoti-
cally as T 7/4 in clean systems, in agreement with Ref. 44.
Again, this behavior does not show in the electrical resis-
tivity, which is determined by the true transport rate that
involves an average over the Fermi surface. Reference 25

considered intraband scattering due to columnar fluctua-
tions in general, and pointed out that in conjunction with
ballistic disorder they lead to a T 3/2 contribution to the
resistivity. While this is generally valid, the particular
realization of columnar fluctuations in terms of a super-
position of helices proposed for MnSi in Ref. 26 leads to a
contribution that is negative and always small compared
to the clean T 3 contribution, see Sec. III B and Table I.
By contrast, the corresponding interband scattering pro-
cess considered in Sec. III B comes with a positive pref-
actor that is much larger, and thus a better candidate
for explaining the observations in MnSi. We will give
a more detailed comparison with experimental observa-
tions in Sec. IVB.

The last remark raises the question of why ballistic dis-
order does not always just lead to a small correction to
the clean scattering rate. The answer is that in general
it does. However, interband scattering provides a way
to avoid this conclusion: Since the clean rate is expo-
nentially small for T . T0, and since disorder eliminates
the energy threshold that leads to this suppression, the
disorder “correction” is actually the leading term in the
temperature region Tball . T . T0.

We note that in Dzyaloshinksii-Moriya helimagnets,
the helimagnon scattering mechanisms are always sup-
pressed compared to the skyrmion mechanism, or the
FM mechanism at larger wave numbers, due to the small
value of q/kF, which in turn is a consequence of the small
spin-orbit coupling. This would be different in systems
with a modulated spin order whose wave number is not
small compared to kF. In this context we mention that
our general expressions (2.10, 2.11), do apply to antifer-
romagnets. In this case q ≈ kF, the resonance frequency
is linear in k, and the relevant susceptibility is given by
the same expression as for HMs, Eq. (2.4b). However, an-
tiferromagnetic magnons are not soft enough to lead to
NFL effects. It is interesting to note, though, that elec-
tronic stripe phases have Goldstone modes that have the
same form as in HMs, but with much larger values of q.45
Such systems would therefore be of interest to investigate
systematically with respect to transport anomalies.

An important aspect of Eqs. (2.10) and (2.11) is that
the rate for interband scattering is lacking the gradient-
squared factor that is present in the intraband expres-
sion. The reason is that electrons within a given sub-
band cannot couple directly to the phase of the magnetic
order parameter, since that phase has no physical sig-
nificance. Rather, the coupling is to the gradient of the
phase. For electrons within two different subbands, on
the other hand, the coupling is to a phase difference,
which does have a physical meaning. This was noted be-
fore in Ref. 36 in the context of FMs. It is equally impor-
tant for the HM cases discussed here, and it is the reason
why the clean interband scattering rates have a stronger
temperature dependence than the intraband ones, see Ta-
ble I.

It may not be obvious why the phase susceptibility in
the skyrmionic case, Eq. (2.4c), has qualitatively differ-
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Table I: Summary of temperature dependences of the single-particle scattering rate, or the thermal resistivity contribution
δρth, and the transport rate, or the electrical resistivity contribution δρel, for different magnets and scattering mechanisms with
or without ballistic disorder. Also shown is the prefactor A3/2 for the electrical resistivity, δρel(T ) = A3/2T

3/2, if applicable.
ρ0 = me/ne

2τ is the residual resistivity, and ρλ = meλ/ne
2. See the text for additional information.

System Soft Modes Scattering Ballistic Single-particle Transport Prefactor References
Disorder Rate / δρth Rate / δρel A3/2

FM
interband No a) T ln(T0/T ) T 2 36,43

magnons Yes b) T 3/2 T 3/2 ρ0/T1T
1/2
0 This work

intraband N/A

HM skyrmions

interband No a),c) T ln2(T/T0)→ T T 2 → T 3/2 This work

Yes b),c) T 3/2 → T 5/4 T 3/2 → T 5/4 ρ0/T1T
1/2
0 This work

intraband No c) T 2 → T 3/2 T 3 → T 2 This work

Yes d) (T 3/2 → T 5/4) (T 3/2 → T 5/4) This work, 25

HM

interband No a) T e) T 3/2 ρλ(q/kF)/T
3/2
1 This work

heli- Yes b) T ln(T/TL) T ln(T/TL) This work

magnons
intraband f)

No T 3/2 T 5/2 30

Yes g) (T ) (T ) 28,29

a) Valid for T & T0; crossover to exponentially small rates for lower T due to exchange gap.
b) Valid for T � Tball; crossover to diffusive dynamics for lower T .
c) Arrows indicate crossover at asymptotically low T due to different dynamics, see Ref. 35 and the discussion in Sec. III B.
d) Corrections to rates due to ballistic disorder are negative and always small compared to the clean contributions.
e) This should properly be interpreted as T 1/2 × T 1/2, as explained in the text.
f) Valid for systems on a cubic lattice.
g) Corrections to rates due to ballistic disorder are positive and always small compared to the clean contributions.

ent forms in the preasymptotic and asymptotic regions,
respectively. The reason is that the static susceptibility,
χ(k) =

∫
(dω/π)Imχ(k, iΩ → ω + i0), must be equal

to the Goldstone mode in both regimes. The latter is
known from Ref. 34, and the requirement that both the
preasymptotic resonance frequency, Eq. (2.3b), and the
asymptotic one, Eq. (2.3c), yield the same result for the
static suscepbility dictates the form of χ(k, iΩ) in the
second line in Eq. (2.4c).

We finally give an argument for the 3/2 exponent in
the FM case to be exact, rather than a perturbative re-
sult that could change at higher orders in the effective
interaction. Consider Eq. (3.2) in Ref. 46, which gives
a general homogeneity law for the scaling part of the
electrical conductivity of a FM. Ballistic disorder elimi-
nates the backscattering factor that enters the scale di-
mension of the conductivity, so in our present context
the latter is equal to (d − 2) − 2(d − 1) = −d instead of
(d − 4) − 2(d − 1) = −(d + 2). The relevant dynamical
exponent for magnon scattering is z = 2, which leads to
T−3/2 for the scaling part of σ in d = 3, or T 3/2 for the
scaling part of ρ.

B. Comparison with experiments

In order to compare our results with experiments,
we first need to keep in mind that we ignored all nu-
merical prefactors, which in any case are model depen-
dent. We therefore can aim only for very rough, order-
of-magnitude comparisons with experimental results.

We start by discussing the energy scales defined in
Sec. II B for low-temperature magnets such as MnSi,
ZrZn2, or Ni3Al. The spin-stiffness coefficient is di-
rectly measurable, and typically on the order of D ≈
25 − 50meVÅ2.47,48 For T1 this implies values on the
order of 100s of K. The pitch wave number in helimag-
nets is directly measurable. In MnSi, q ≈ 0.035Å−1.49
This implies that Tq is on the order of 100s of mK. For
reasonably clean materials (ρ0 . 1µΩcm), the mean-free
path is large compared to any reasonable value atomic
scale, so Tball will me on the order of 1 mK or less, and
can be ignored in the context of all existing experimen-
tal results. This leaves the value of T0, which depends on
the ratio λ/εF, which is much harder to determine. From
band structure calculations, λ is typically on the order of
thousands of K.50–52 This is consistent with Stoner the-
ory, where λ = 6T1, although λ can be highly anisotropic
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in wave-number space.52 If one takes λ = 5, 000K, and
εF = 105K, a typical value for a simple good metal,
then one has λ/εF ≈ 0.05 at most, or T0 ≈ 1K. How-
ever, this is likely misleading for most real materials.
The band structures of low-temperature ferromagnets are
fairly complicated, and the exchange splitting has been
suggested to be as large as 0.4 times the relevant effective
Fermi energy.53 This suggests values of T0 on the order of
10s of K. Based on this discussion, we conclude that rea-
sonable effective values are, very roughly, Tball ≈ 1mK,
Tq ≈ 250mK, T0 ≈ 10K, T1 ≈ 250K, λ/εF ≈ 0.1, and
q/kF ≈ 0.03, with T0 the most uncertain.

Given these estimates, the range of validity of Mecha-
nisms 1 and 2 is the same as the temperature range for
which a T 3/2 behavior, or something close to it, is ob-
served in ZrZn2 and other low-temperature FMs, and in
the disordered phase of the HM MnSi, viz., a few mK to
several K. Let us now consider the prefactor of the T 3/2

law

δρ(T ) = A3/2T
3/2 . (4.1)

If we ignore all numerical prefactors, as we did in Sec. III,
we obtain Eqs. (1.2) and (1.3) with γ1 = γ2 = 1. With
the temperature scales as estimated above, this yields
A3/2 ≈ 0.001µΩcm/K3/2, which is a factor of 10 smaller
than what is observed in ZrZn2, and a factor of 100
smaller than what is observed in MnSi. If we take the
numerical factors seriously, we have, after various can-
cellations, a factor of π from the spectrum of the sus-
ceptibility, and a factor of about 3 from the dimensional
integral in Eq. (3.3a), or a factor of about 6 from the
one that enters Eq. (3.5). This leads to γ1 ≈ 10, and
γ2 ≈ 20. While these estimates should not be taken
too seriously, they indicate that Mechanism 1 produces
a prefactor A3/2 that is very close to what is observed in
ZrZn2, and Mechanism 2 produces a A3/2 that is within
a factor of 5 of what is observed in the disordered phase
of MnSi. For the latter, we assume that columnar fluc-
tuations exist in this phase, as was proposed in Ref. 25.
There is strong experimental evidence,15 as well as the-
oretical arguments,16 for this phase to be a strongly cor-
related liquid-like phase. The associated strong fluctua-
tions are expected to enhance the prefactor compared to
our simple relaxation-rate considerations and may well
account for the remaining factor of 5.

Let us now briefly discuss the ordered phase of MnSi,
where the observed resistivity behavior is T 2, see Fig. 2.
In this context it is important to remember that there
are many contributions to the electron scattering rate,
e.g., due to the Coulomb interaction, phonons, and other
excitations, that lead to contributions that go as T s with
s ≥ 2. We have focused on the contributions due to
magnetic Goldstone modes, which have the remarkable
property that they lead to a T 3/2 behavior. In addi-
tion to whatever scattering mechanism is producing the
T 2 behavior in the helically ordered phase of MnSi, we
therefore expect a T 3/2 contribution for T > Tq, where
MnSi effectively behaves like a FM and Mechanism 1

applies, and a T lnT contribution for T < Tq, where
Eq. (3.10) applies (note, however, the caveats mentioned
after Eq. (3.10), which requires a thorougher investiga-
tion). Consider the former regime, and write the resis-
tivity as

δρ = A3/2T
3/2 +A2T

2 (T & Tq) . (4.2a)

For A2 we take the observed value A2 ≈ 0.03µΩcm/K2.14
For A3/2 we expect a value comparable to that ob-
served in ZrZn2 and other low-temperature FMs, A3/2 ≈
0.01µΩcm/K3/2. The T 3/2 term will then dominate for
T . (A3/2/A2)2 ≈ 100mK, which is less than Tq. The
T 3/2 contribution will therefore be a small correction
to the dominant T 2 behavior at all temperature where
Eq. (3.3b), or equivalently Eq. (1.2), applies to MnSi.
In the latter regime, the helical nature of the Goldstone
modes will be apparent, and various nonanalytic contri-
butions to δρ must be present. The T 5/2 contribution
from clean intraband HM scattering is too weak to be
observable, and the disorder contribution due to inter-
band scattering comes with the caveats mentioned after
Eq. (3.10) and requires a more detailed investigation. Ig-
noring these caveats, and ignoring the logarithm, we ex-
pect

δρ = A1T +A2T
2 (T . Tq) . (4.2b)

With the same parameters as used above one finds A1 ≈
10−3µΩcm/K. The T lnT term will thus dominate over
the T 2 term only for temperatures small compared to
about 30mK, although the logarithm, and a more thor-
ough determination of the prefactor, might change this
estimate. We conclude that any nonanalytic contribu-
tion to δρ in the helically ordered phase would require
a precision experiment at temperatures smaller than at
least 100mK.

The T s behavior with 1.5 . s < 2 observed in ZrZn2

is most likely the result of a T 3/2 behavior due to Mech-
anism 1 in addition to a T 2 contribution from other
scattering mechanisms. If one takes Eq. (4.2a) with
A3/2/A2 ≈ 1K1/2, then between about 100mK and 10K
the behavior is well represented by a single T 1.7 law.
Another question is why the transport anomaly is ob-
served in the magnetically disordered phase as well as
in the ordered one. A plausible answer lies in the fact
that the magnetic transition is first order. As has been
discussed in Ref. 31, even very weak quenched disorder
leads to static islands or droplets of the ordered phase
within the disordered one, which explains the commonly
observed phase separation in the vicinity of first-order
transitions (see Refs. 22–24 for examples). It also ex-
plains why the Goldstone modes of the ordered phase,
i.e., the FM magnons, can still contribute to the scat-
tering of electrons even in the magnetically disordered
phase.

We have focused on MnSi and ZrZn2 in this discus-
sion since these are the experimentally best studied sys-
tems. There are, however, many other examples of low-
temperature ferromagnets where NFL behavior has been
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observed: Off-stoichiometric NiGa3 is a FM for Ni-rich
concentrations and displays a NFL T 3/2 behavior with
a coefficient of A3/2 ≈ 0.04µΩcm/K3/2.14,18 For smaller
Ni concentrations the material is paramagnetic and δρ
is Fermi-liquid-like. The stoichiometric compound has
the smallest residual resistivity, ρ0 ≈ 1µΩcm. In Ni3Al
under pressure, for samples with ρ0 ≈ 1µΩcm, a T 3/2

dependence, or a power law close to that, is observed on
either side of the ferromagnetic transition with a coeffi-
cient A3/2 ≈ 0.02µΩcm/K3/2, see Ref. 8. Similar obser-
vations in more disordered systems include Nb1−xFe2+x,
for which a T 3/2 behavior has been observed on the non-
magnetic side of a magnetic transition.17 In this case,
ρ0 ≈ 5µΩcm. In (Ni1−xPdx)3Al, with ρ0 ≈ 10µΩcm,
a T 3/2 behavior was found on both sides of the FM
transition.7 All of these observations can be understood
at a semi-quantitative level by a discussion analogous to
the one given above, which slightly different parameter
values.

Finally, our results suggest a number of possible ex-
periments. One interesting question is whether or not
there is a small NFL contribution to the resistivity in
the ordered phase of MnSi. As discussed above, this
would require a precise determination of the resistivity at
very low temperatures, probably lower than 100mK. This
would entail subtracting the T 2 contribution to reveal
any underlying NFL behavior. Of particular interest is
the logarithmic dependence on the sample size predicted
by Eq. (3.10). It suggests that, in systems small enough
for the spin-orbit coupling not to intervene, the resistivity
(not just the resistance) will change with changing sam-
ple size, which reflects the soft helimagnon excitations
in a HM phase. Additional theoretical investigations are
also called for to make this prediction more precise.42
Another interesting question is the magnetic-field depen-
dence of the NFL resistivity. For the FM mechanism,
Eq. (1.2), the theory predicts that in a field H such that
µBH > T the magnon-induced resistivity contribution
becomes δρFM ∝ T 2/H1/2. A study of the magnetoresis-
tance of ZrZn2 would be very interesting in that respect.
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Appendix: Disordered helimagnets in the ballistic
limit

In this appendix we discuss the relation between the
simple arguments given in Sec. II C 3 about the effects of
disorder in the ballistic regime and a detailed calculation.
This also sheds light on the confusing issue of the sign of

the disorder correction to the relaxation rates, which is
different for the case of helimagnon interband scattering
from all of the other cases.

To make the salient point it suffices to consider the
single-particle rate, which is given as the imaginary part
of the electronic self energy. In the presence of weak dis-
order, the leading correction to the clean result is given
by the diagram shown in Fig. 5. Analytically, this con-
tribution is (see Eq. (3.11) in Ref. 29)

1

τsp
∝ 1

τ

Dε2Fq
2

NF

1

V

∑
k

ImL++,−(k)

×
∫ ∞
−∞

du

π
nF(u/T )χ′′(k, u) . (A.1a)

Here nF = 1/(ex + 1) is the Fermi distribution function,
and

L++,−(k) =
1

V

∑
p

γ(k,p) γ(k,p−k) G2
R(p)GA(p−k) ,

(A.1b)
and we have kept only terms that contribute to the lead-
ing temperature dependence of 1/τsp. GR and GA are
the retarded and advanced Green function, respectively.
In the case of intraband scattering all three Green func-
tions belong to the same Fermi surface. The couplings
γ depend in general on both the transferred momentum
and the momentum of the incoming or outgoing electron.
In the case of interband scattering, they are constants.
In the case of interband scattering, they are gradients
that in Eq. (2.11) we have represented by the transferred
momentum, γ(k,p) ∝ k. This is qualitatively correct
in the case of skyrmionic fluctuations, where kz provides
the leading temperature scaling, see Eqs. (2.3), and the
angular part of the integral in Eq. (A.1a) is∫ 1

−1

dη
1

(vFkη − i0)2
=
−2

(vFk)2
. (A.2a)

However, in the case of helimagnon scattering, where the
leading scaling is provided by k⊥, the dependence of γ
on k⊥ comes in the form (k⊥ · p⊥)pz, see Eq. (2.18c) in
Ref. 28. This introduces an angular dependence of the
integrand that is not present in the schematic represen-
tation in Eq. (2.11). The relevant angular integral then
is ∫ 2π

0

dϕ
cos2 ϕ

(vFk⊥ cosϕ− i0)2
=

1

(vFk⊥)2
. (A.2b)

The sign of the disorder correction is thus different in the
two cases. For the case of helimagnon interband scatter-
ing, where Eq. (A.2b) applies, we recover the result of
Ref. 28, viz.

δ (1/τsp) ∝ 1

τ

(
q

kF

)5
εF
λ

[
−Λ

Tq
+ ln 2

T

Tq

]
. (A.3)

Here Λ is a UV energy cutoff. The cutoff-dependent con-
stant contribution to the rate is negative, so the effect is
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antilocalizing, and the universal temperature-dependent
contribution is accordingly positive. For the interband
skyrmion case, on the other hand, Eq. (A.2a) applies.
The effect then has the opposite sign and is localizing,
i.e., the temperature-dependent disorder correction to
the rate is negative.

Now compare these results with the simple argument
given in Sec. II C 3, which replaces ImL++,−(k) with

L(k) =

∫ 1

−1

dη
1/τ

(vFkη)2 + 1/τ2
=

1

vFk

[
π

2
− 1

vFkτ
+ . . .

]
.

(A.4)
The simple argument thus yields the correct momentum
or temperature scaling in both cases, but produces the
wrong sign in the helimagnon case.

Finally, consider the case of interband scattering,
where GR belong to one subband, and GA to the other.
The relevant angular integral then is∫ 1

−1

dη
1

(vFkη − 2λ− i0)2
=

1

2λ2
(A.5a)

for k → 0. The simple smearing argument replaces this
by

∫ 1

−1

dη
1

(vFkη − 2λ)2 + 1/τ2
=

1

2λ2

(vFk � λ , λ� 1/τ) , (A.5b)

and thus produces the correct result.

In conclusion, the simple δ-function smearing argu-
ment from Sec. II C 3 yields the correct temperature scal-
ing for all of the cases considered, and the correct sign
of the disorder correction except in the case of intraband
helimagnon scattering.
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