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We introduce a local order metric (LOM) that measures the degree of order in the neighborhood
of an atomic or molecular site in a condensed medium. The LOM maximizes the overlap between
the spatial distribution of sites belonging to that neighborhood and the corresponding distribution
in a suitable reference system. The LOM takes a value tending to zero for completely disordered
environments and tending to one for environments that match perfectly the reference. The site
averaged LOM and its standard deviation define two scalar order parameters, S and δS, that
characterize with excellent resolution crystals, liquids, and amorphous materials. We show with
molecular dynamics simulations that S, δS and the LOM provide very insightful information in
the study of structural transformations, such as those occurring when ice spontaneously nucleates
from supercooled water or when a supercooled water sample becomes amorphous upon progressive
cooling.

I. INTRODUCTION

There is great interest in understanding the atomic
scale transformations in processes like crystallization,
melting, amorphisation and crystal phase transitions.
These processes occur via concerted motions of the
atoms, which are accessible, in principle, from molecu-
lar dynamics simulations but are often difficult to visual-
ize in view of their complexity. To gain physical insight
in these situations, it is common practice to map the
many-body transformations onto some space of reduced
dimensionality by means of functions of the atomic co-
ordinates called order parameters (OPs), which measure
the degree of order in a material.

Widely used OPs are the bond order parameters Ql
1

that measure the global orientational order of a mul-
tiatomic system from the sample average of the spher-
ical harmonics Ylm(r̂) associated to the bond directions
r̂ between neighboring atomic sites, typically the near-
est neighbors. The set of l spherical harmonics defines
an orthonormal basis spanning the (2l + 1)-dimensional
representation of the rotation group SO(3) relating the
irreducible representation of SO(3) and the symmetries
of crystalline structures. The average spherical har-
monics Ȳlm ≡ 〈Ylm (r̂)〉 depend on the choice of the
reference frame but the bond order parameters Ql ≡[

4π
2l+1

∑l
m=−l

∣∣Ȳlm∣∣2]1/2 are rotationally invariant and
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encode an intrinsic property of the medium. The Ql’s
take characteristic non zero values for crystalline struc-
tures, and distinguish unambiguously crystals from liq-
uids and glasses. In fact the Ql’s vanish in the ther-
modynamic limit for all liquids and glasses, i.e. sys-
tems that lack long-range order and are macroscopically
isotropic. Liquids and glasses, however, can differ among
themselves in the short- and/or intermediate-range or-
der. Some substances, like e.g. water, exhibit polyamor-
phism, which means that they can exist in different amor-
phous forms depending on the preparation protocol. In
these cases we would need either a measure of the local
order or a measure of the global order that could rec-
ognize different liquids and glasses. A good measure of
the local order is also crucial to analyze heterogeneous
systems, such as e.g. when different phases coexist in
a nucleation process. Specializing the definition of the
bond order parameters Ql to the local environment of
a site j is straightforward: it simply involves restricting
the calculation of the average spherical harmonics to the
environment of j, obtaining in this way local bond order
parameters called ql(j)

2. However, the ql(j)’s have lim-
ited resolution and liquid environments often possess a
high degree of local order that make them rather simi-
lar to disordered crystalline environments3. Several ap-
proaches have been devised to improve the resolution of
the measures of the local order2,4–9. For example, it has
been suggested using combinations of two or more local
OPs6,8,10–14, but these approaches may still have difficul-
ties in distinguishing crystalline polymorphs such as e.g.
cubic (Ic) and hexagonal (Ih) ices13. In these situations
additional analyses may be needed or one may resort to
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especially tailored OPs15. Examples of the latter in the
context of tetrahedral network forming systems are the
local structure index (LSI)16,17 and the tetrahedral order
parameter qth

18–20. The LSI provides the extent to which
the first and the second shells of neighbors of a tagged
particle j are well separated. The qth measures the an-
gles between four nearest neighbors of a tagged particle
j, and compare them with the angle of an ideal tetrahe-
dron, providing a measure of the distortion in the first
shell of neighbors.

Recently, an alternative approach to measure the lo-
cal order in materials has been discussed in the liter-
ature, inspired by computer science algorithms known
as ”shape matching”21. In these schemes the similar-
ity between an environment and a reference is gauged
by a similarity kernel, or similarity matrix22,23, which is
often represented in terms of spherical harmonic expan-
sions that measure angular correlations, in a way inde-
pendent of the reference frame. General theories of the
similarity kernel in the context of structure classification
in materials science have been presented in Refs23,24. Ap-
proaches based on similarity kernels have been applied
successfully to a number of problems, including studies of
the icosahedral order in polymer-tethered nanospheres22,
studies of the morphology of nanoparticles23, models
of self-assembly21, studies of quasi-crystalline and crys-
talline phases of densely packed tetrahedra25, and the
prediction of the atomization energies of small organic
molecules24,26.

The approach that we introduce here belongs to this
general class of methods and is based on a similarity ker-
nel of the Gaussian type24 to measure the overlap be-
tween a local structure and an ideal reference. In our
scheme, the similarity kernel is not represented in terms
of basis functions like the spherical harmonics, but is
globally maximized by rotating the local reference af-
ter finding an optimal correspondence between the site
indices of the environment and those of the reference.
Specifically, we consider the configurations, i.e. the site
coordinates, of a system of N identical atoms. The M
neighbors of each site define a set of local patterns. The
M corresponding sites of an ideal crystal lattice consti-
tute the local reference. Typically, we take M equal to
the number of the first and/or the second neighbors at
each site. Each pattern defines not only a set of direc-
tions, but also a set of inter-site distances. Under equi-
librium conditions the average nearest neighbor distance
takes the same value, d, throughout the sample and we
set the nearest neighbor distance in the reference equal to
d. The maximal overlap of pattern and reference at each
site j constitutes our local order metric (LOM) S(j).
Since the overlap is maximized with respect to both rota-
tions of the reference and permutations of the site indices,
the LOM is an intrinsic property of each local environ-
ment and is independent of the reference frame. The
LOM approaches its minimum value of zero for com-
pletely disordered environments and approaches its max-
imum value of one for environments that match perfectly

the reference. The LOM is an accurate measure of the
local order at each site. It allows us to grade the local
environments on a scale of ascending order defined by the
maximal overlap of each environment with the reference.
In terms of the LOM we define two novel global OPs:
the average score S, i.e. the site averaged LOM, and
its standard deviation δS. S and δS are scalar OPs that
characterize ordered and disordered phases with excellent
resolving power.

In the following, we give a quantitative definition of
the LOM and report an algorithm for calculating it. We
demonstrate that this algorithm maximizes the overlap
between pattern and reference in a number of impor-
tant test cases. Then, we illustrate how S and δS can
be used to characterize solid and liquid phases of pro-
totypical two- and three-dimensional Yukawa systems,
and of three-dimensional Lennard-Jones systems. Next,
we consider some more complex applications. In one
of them we monitor the structural fluctuations of su-
percooled water at different thermodynamic conditions
within the ST2 model for the intermolecular interac-
tions27. In another we report a molecular dynamics study
of the spontaneous crystallization of supercooled water
adopting the mW model potential for the intermolecular
interactions28, showing that the LOM and the two global
OPs S and δS provide a more accurate description of the
nucleation process than standard OPs. Finally, we report
a molecular dynamics study of the glass transition in su-
percooled water within the TIP4P/2005 model for the
intermolecular interactions29. This study shows that the
new OPs can detect the environmental signatures of the
freezing of the translational and of the rotational motions
of the molecules.

The paper is organized as follows. In section II we
present the method. Section III reports application to
solid-liquid phase transition. In Section IV we apply the
method to characterize the local order in water phases.
Crystallization and amorphisation of supercooled water
are discussed in Section V. Our conclusions and final re-
marks are presented in Section VI. In the Appendix VI we
show an extension of our method to a continuous form.

II. METHOD

The local environment of an atomic site j in a snap-
shot of a molecular dynamics or Monte Carlo simula-
tion defines a local pattern formed by M neighboring
sites. Typically these include the first and/or the sec-
ond neighbors of the site j. There are N local patterns,
one for each atomic site j in the system. Indicating by
Pji (i = 1,M) the position vectors in the laboratory frame
of the M neighbors of site j, their centroid is given by

Pjc ≡ 1
M

∑M
i=1 P

j
i . In the following we refer the posi-

tions of the sites of the pattern to their centroid, i.e.
Pji −Pjc → Pji . The local reference is the set of the same
M neighboring sites in an ideal lattice of choice, the spa-
tial scale of which is fixed by setting its nearest neighbor
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distance equal to d, the average equilibrium value in the
system of interest. For each atomic site j the centroid of
the reference is set to coincide with the centroid of the
pattern, but otherwise the reference’s orientation is arbi-
trary. The sites of the pattern and of the reference are
labeled by the indices i of the position vectors. While
the indices of the reference sites are fixed, any permu-
tation of the indices of the pattern sites is allowed. We
denote by iP the permuted indices of the pattern sites
corresponding to the permutation P (if P is the identical
permutation the pattern indices coincide with those of
the reference). For a given orientation of the reference
and a given permutation of the pattern indices we define
the overlap O(j) between pattern and reference in the j
neighborhood by:

O(j) [θ, φ, ψ;P] =

M∏
i=1

exp

−
∣∣∣PjiP −Rj

i

∣∣∣2
2σ2M

 (1)

Here θ, φ, ψ are Euler angles, and σ is a parameter that
controls the spread of the Gaussian functions. Intuitively,
σ should be of the order of, but smaller than, d for the
overlap function to be able of recognizing different en-
vironments. In our applications we adopted the choice
σ = d/4 , as we found, in several test cases, that the re-
sults are essentially independent of σ when this belongs
to the interval d/4 ≤ σ ≤ d/2 . The LOM S(j) at site j is
the maximum of the overlap function O(j) with respect
to the orientation of the reference and the permutation
of the pattern indices, i.e.:

S(j) = max
θ,φ,ψ;P

O(j) [θ, φ, ψ;P] (2)

The LOM is an intrinsic property of the local environ-
ment at variance with the overlap function O(j) that
depends on the orientation of the reference and on the
ordering of the sites in the pattern. The LOM satisfies
the inequalities 0 . S(j) ≤ 1. The two limits corre-
spond, respectively, to a completely disordered local pat-
tern (S(j)→ 0) and to an ordered local pattern matching
perfectly the reference (S(j)→ 1). The LOM grades each
local environment on an increasing scale of local order
from almost zero to one. As a consequence of the point
symmetry of the reference the overlap function defined
in Eq. 1 has multiple equivalent maxima. We present in
Sect II A an effective optimization algorithm to compute
S(j). We define two global order parameters based on
S(j). One is the average score S or site averaged LOM:

S =
1

N

N∑
j=1

S(j) (3)

The other is the standard deviation of the score that we
indicate by δS :

δS =

√√√√ 1

N

N∑
j=1

(S(j)− S)
2

(4)

In the following sections of the paper we show with nu-
merical examples that the score S has excellent resolu-
tion and is capable of characterizing with good accuracy
the global order of both crystalline and liquid/amorphous
samples. The standard deviation of the score, δS, pro-
vides useful complementary information and can enhance
the sensitivity of the measure of the global order in the
context of structural transformations.

A. Optimization algorithm

The overlap functionO(j) defined in Eq. 1 has L equiv-
alent maxima. Here L is the number of proper point sym-
metry operations of the reference. If a maximum corre-
sponds to the permutation P̄ of the pattern indices and to
the Euler angles (θ̄, φ̄, ψ̄), all the other distinct but equiv-
alent maxima can be obtained from the known maximum
by rotating the reference from the direction (θ̄, φ̄, ψ̄) with
the L − 1 point symmetry operations different from the
identity, and by updating correspondingly the permuta-
tions of the pattern indices. To compute S(j) (Eq. 2) it
is sufficient to locate only one of these maxima. In view
of the point symmetry of the reference, it is sufficient for
that to explore only a fraction 1/L of the Euler angle do-
main Ω, which we may call Ω/L , the irreducible domain
of the Euler angles. We also notice that O(j) in Eq. 1
decays rapidly to zero when the distance between any
one of the pattern sites and the corresponding reference
site is sufficiently larger than σ.

For a given reference site i, we define n(i) as the num-
ber of pattern sites whose distance to i is within d/2.
Since the pair distances between reference sites are at
least d, the spheres with radii d/2 centered at each ref-
erence site defines a disjoint set of domains. If n(i) = 1,
there exist only one pattern site k for which dki < d/2.
In this case, both i and k are labeled settled, otherwise
both are unsettled.
In order to optimize the overlap function O(j), we pro-
ceed with the following steps:

1. We pick at random with uniform probability a point
in the irreducible Euler domain α ∈ Ω/L. We ob-
tain a permutation P by the following resorting
process:

(a) Select a random index ordering for the pattern
sites for the resorting process.

(b) Follow the random index order generated in
(a) and assign the closest unassigned reference
site to each subsequent pattern site.
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(c) Use the stored correspondence between the
reference and pattern sites in (b) to construct
the overall permutation P.

We check for the number of settled sites MP in the
reference by computing the distances between refer-
ence and pattern sites. We then perform conjugate
gradient (CG) optimization to with permutation P
to obtain a maximum Sj(MP) with γ being the cor-
responding Euler angles. In case thatMP = M , the
permutation is optimized, and Sj(MP) from CG
optimization, therefore, gives the global maximum.
We store γ, P, and MP for further comparison.

2. We pick a new permutation P ′ with the resorting
algorithm and a new point in the irreducible Euler
domain α′ ∈ Ω/L. We check for the number of
settled sites MP′ in the reference.

• If MP′ < MP , we discard the choice of P ′ and
of α′ and repeat step 2.

• If MP′ > MP , we perform CG and optimize
the orientation at γ′ to reach maximum at
Sj(MP′). If Sj(MP′) < Sj(MP) we discard
the choice of P ′ and γ′. Otherwise, we update
them with the current values (P = P ′, γ = γ′,
and Sj(MP) = Sj(MP′)) and in both cases
repeat step 2.

• If MP′ = MP , we check if the set of MP′ set-
tled indices is the same as the set compos-
ing MP . If they are the same, convergence
is achieved. Otherwise, we perform CG and
evaluate Sj(MP′). If Sj(MP′) < Sj(MP) we
discard the choice of γ′, P ′, and Sj(MP′),
and go back to 2. Otherwise, we store them
(P = P ′ and γ = γ′) and go to 2.

In our applications involving crystalline phases, we found
that the convergence typically takes 5 iterations in the
random choice of initial Euler angles, while in liquid
cases, one typically need around 30 Euler angle choices.
On average, 8 CG steps are required to achieve conver-
gence in each angular optimization, and the execution
time is comparable with a classical MD timestep.

To check that the algorithm leads correctly to the max-
imum of O(j) we made several tests. In some of them
we considered a perfect crystalline environment (at zero
temperature) and chose a reference based on the same
crystalline structure. In this case S(j) should take the
value S(j) = 1. We found that this was always the case
when starting from random permutations of the pattern
sites and random orientations of the reference. In other
tests we calculated the global maximum for a two dimen-
sional liquid. We computed all possible permutations
and selected the one which gives the global maximum,
finding that S(j) converged always to the global max-
imum within the tolerance of the convergence criterion.
In other tests we considered disordered three dimensional

FIG. 1: Schematic representation of our approach in an ap-
plication to a 2D Yukawa crystal at kBT/V0 = 0.001. a):
The red spheres indicate the second shell of neighbors of site
j (yellow sphere). b): The 6 blue spheres are the vertices of
the reference hexagon. The green shaded areas represent the
Gaussian domains. c): Optimized overlay of reference and
local patterns.

crystalline and liquid environments at different temper-
atures. In these cases the exact values of S(j) are not
known a priori. However, in all the cases we found that
S(j) converged always to the same value within the tol-
erance of the convergence criterion, independently of the
initial random values chosen for the permutation of the
pattern indices and for the orientation of the reference.
In Fig. 1 a two-dimensional crystal with Yukawa pair in-
teractions is used to illustrate the method. The system
has been equilibrated at finite temperature. As refer-
ence we choose the 6 sites associated to the second shell
of neighbors in the ideal triangular lattice. The 6 sites
are the vertices of a regular hexagon. The picture shows
(a) a local environment, (b) the corresponding reference
with shaded areas representing the regions in the neigh-
borhood of the reference selected by σ, (c) the optimal
overlap between pattern and reference for the local envi-
ronment depicted in (a).
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III. APPLICATIONS TO SIMPLE SYSTEMS

As a first application we use the new OPs to analyze
simulations of simple condensed phase systems at vary-
ing temperature. Initially the temperature is low and
the systems are in the solid state. When the tempera-
ture exceeds a certain threshold, the solid looses mechan-
ical stability and the atomic dynamics becomes diffusive
signaling a transition to the liquid state. We have con-
sidered, in particular, the following systems: a 2D sys-
tem of identical particles with Yukawa pair interactions,
a 3D system of identical particles with Yukawa pair in-
teractions, and a 3D system of identical particles with
Lennard-Jones pair interactions. In all cases we find that
the new OPs signal the transition to the liquid state with
sensitivity equivalent to that of popular OPs, like Q6 and
its two-dimensional specialization Ψ6

30.

A. Yukawa system in 2D

Here we perform Brownian dynamics simulations of
particles with repulsive pair interactions given by the
Yukawa potential V (r) = V0 exp(−κr)/κr, where r de-
notes the inter-particle separation, and κ is the inverse
screening length. The strength of the interaction is set
by the amplitude V0. We consider a system of 9180 par-
ticles in the NV T ensemble with periodic boundary con-
ditions. We start the simulations from a perfect trian-
gular lattice. We analyse the degree of local order as a
function of kBT/V0 at the fixed reduced screening length
ρ/κ2 = 0.21, where ρ is the 2D number density. With-
out loss of generality we hereby use V0 = 1. Pattern
sites comprise the second shell of neighbors and are com-
pared with the reference in Fig. 1 for a representative
snapshot of the solid at kBT/V0 = 0.001. Panel (a) of
Fig. 2 compares the global OPs S (black dots) and Ψ6

(red squares). As expected, both S and Ψ6 for the perfect
crystal take the value of 1. As T increases, both S and Ψ6

decrease. In correspondence with the blue dashed lines,
signaling instability of the crystal, both OPs show a quick
drop. In the liquid phase, Ψ6 ' 0, as expected, while S
keeps a finite value of S ' 0.4, which slightly decreases as
the temperature is further increased. Therefore, both S
and Ψ6 identify the phase transition, but only S is able
to quantify the degree of order remaining in the liquid
phase.

The behavior of δS in panel (b) gives further insight
on the solid-liquid transition. δS takes the maximum
value in the crystal at the highest temperature and drops
substantially in the liquid phase. This behaviour follows
from the non linear nature of the LOM. The liquid phase
has more strongly disordered local patterns with sites
often belonging to the tails of the Gaussian domains in
Eq. 1. Site fluctuations in the liquid weight less than
fluctuations in the solid, where patterns sites are closer
to the centers of the Gaussian domains.

We have observed the same behavior of δS in all the

FIG. 2: a): 2D Yukawa system. Profile of S (black dots)
and of Ψ6 (red squares) as a function of kBT/V0. The blue
dashed lines delimit the region of instability of the solid phase
in the simulation. b): 2D Yukawa system. Profile of δS as a
function of kBT/V0.

solid-liquid transitions that we have investigated, namely
δS takes its maximum value in the hot crystal before
the occurrence of the dynamical instability that signals
melting. It is tempting to notice the similarity of this
behavior with Lindemann’s melting criterion31, accord-
ing to which melting occurs when the average atomic
displacement exceeds some fraction of the interatomic
distance. In our approach the dynamic instability is
associated to the largest fluctuation of S.

B. Yukawa and Lennard-Jones systems in 3D

In Fig. 3 we report S and Q6 as a function of the
temperature for a 3D system of identical particles with
Yukawa pair interactions (panels (a) and (b)) and for a
3D system of identical particles with Lennard-Jones pair
interactions (panels (c) and (d)). At low temperature the
Yukawa system is in the bcc crystalline phase whereas the
Lennard-Jones system is in the fcc crystalline phase. In
the Yukawa system we use the pairwise interactions in-
troduced in Section III A. We sample the NV T ensemble
with Brownian dynamics. The simulation cell contains
4394 particles with periodic boundary conditions. The
reference includes the first and the second shell of neigh-
bors of a perfect bcc lattice for a total of 14 sites. Panel
(a) shows S (black dots) andQ6 (red squares) versus tem-
perature. At very low temperatures, S ' 1 because refer-
ence and pattern overlap almost perfectly. Increasing the
temperature, both OPs show a quick drop in correspon-
dence with the phase transition with Q6 → 0 as expected
in the liquid phase, and S taking a value S ' 0.4. Like
in 2D, both order parameters are able to identify the
phase transition, but S provides quantitative informa-
tion on the order present in the liquid, whereas Q6 takes
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zero value in all liquids in the thermodynamic limit. It
is worth recalling that local OPs, such as the ql(j), have
difficulties in identifying the bcc symmetry of hot crys-
tals before melting32, because both bcc and fcc have the
same point group. Our approach uses a non-linear LOM,
which can unambiguously distinguish distorted local bcc
structures from distorted local fcc or hcp structures. To
illustrate this statement we report in the temperature
range of crystalline stability in Fig. 3 (a) the profile of S
(green diamonds) obtained by using as reference the first
shell of neighbors of the fcc lattice. We notice that S(bcc)
and S(fcc) are well separated in the solid phase even at
the highest temperatures. This result also shows that
an a priori knowledge of the crystalline symmetry is not
necessary in order to discern between different crystals.
Panel (b) shows δS. As in 2D, δS takes its maximum
value in the solid phase before the onset of crystalline
instability in the simulation.

In panels (c) and (d) we report the same data for
a 3D system of identical particles interacting with the
Lennard-Jones potential with parameters appropriate to
Argon33. In this case we perform Monte Carlo simula-
tions in the NpT ensemble with a periodic box containing
1372 particles. We choose as reference the anticuboctahe-
dron, which has 12 vertices, and corresponds to the first
shell of neighbors in the ideal fcc lattice. The tempera-
ture variation of S (black circles) and Q6 (red squares) is
shown in panel (c). At very low temperature, S ' 1 due
to the nearly perfect overlap of patterns and reference. S
and Q6 are able to distinguish the crystalline solid from
the liquid, and show a substantial drop in correspondence
with the dashed vertical blue lines. In the liquid, Q6 → 0
as expected, while S remains finite with a value close to
0.2. Similarly, δS in panel (d) takes its maximum value
in the crystal at the highest temperature.

Representative local environments at different temper-
atures around a site indicated by a yellow sphere are
shown in Fig. 4: the environment on the left corresponds
to a cold crystal (T = 0.2), the one in the middle to a
hot crystal (T = 0.6), and the one on the right to a liq-
uid (T = 1.0). One may notice the increasing deviation
with temperature of the pattern sites (red spheres) rel-
ative to the reference sites (blue spheres). In the liquid
state some of the pattern sites move in the tail region of
the Gaussian domains, causing a drop in both S and δS.

IV. LOCAL STRUCTURES IN WATER PHASES

Molecular systems like water exhibit a rich phase di-
agram, with two competitive crystalline phases, cubic
(Ic) and hexagonal (Ih) ice, respectively, at low pres-
sure. Moreover, metastable undercooled liquid water
transforms continuously with pressure from a low-density
form (LDL) to a high-density one (HDL)34. In the fol-
lowing we consider representative Ic and Ih solids, LDL
and HDL liquids at different thermodynamic conditions.

Water molecules bind together by hydrogen bonds

FIG. 3: a): S computed with ideal bcc crystal reference
(black dots), Q6 (red squares), and S computed with fcc ref-
erence (green diamonds), as a function of kBT/V0 for a 3D
Yukawa system. b): δS corresponding to S with bcc refer-
ence for the same Yukawa system. c): S (black dots) and Q6

(red squares) as a function of T for a Lennard-Jones system.
d): δS for the same Lennard-Jones system. The vertical blue
dashed lines delimit the regions of crystal instability in the
simulations.

FIG. 4: Local environments in solid and liquid Lennard-
Jonesium at different temperatures. The notation is the same
of Fig. 1. Neighboring reference sites have been connected by
thin lines to emphasize the structure of the anticuboctahe-
dron.
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forming a tetrahedral network connecting neighboring
molecules. To describe this network it is sufficient to
consider the molecules as rigid units centered on the oxy-
gens. The sites that define the local order are the oxy-
gen sites and application of the formalism is straight-
forward. Water structures are dominated by tetrahe-
dral hydrogen bonds and have similar short range order
(SRO). The intermediate range order (IRO) is signifi-
cantly more sensitive to structural changes than the SRO.
We choose therefore references associated to the second
shell of neighbors in crystalline ices. In particular, we
adopt either the cuboctahedron (C) or the anticuboc-
tahedron (C̄), both of which have 12 vertices and corre-
spond to the second shell of neighbors in cubic and hexag-
onal ices, respectively. In these simulations we used the
ST2 force field27 for water with periodic boundary con-
ditions and adopted the Ewald technique (with metallic
boundaries) to compute the electrostatic sums.

A. Hexagonal and cubic ice

The simulation box for Ic ice is cubic and contains
512 molecules, while that for Ih ice is orthorhombic and
contains 768 molecules. We thermally equilibrate both
solids via classical MD simulations in the NpT ensemble
at T = 250 K and p = 1 bar. In panel (a) of Fig. 5 we
report the distribution of S with reference C̄ indicated by
SC̄ for cubic (black) and hexagonal (red) ices. In panel
(b) of the same figure, we report the corresponding dis-
tributions of S with reference C indicated by SC . It is
clear from both panels that the distributions based on the
two different references for the same crystal are well sep-
arated. Moreover, the distributions corresponding to the
two different crystals are also well separated irrespective
of the reference we use.

One notices in Fig. 5 that the distribution of the or-
der parameter S is broad when the reference is based on
the same lattice of the pattern, i.e. C̄ for Ih ice and C
for Ic ice. The distribution is instead rather sharp when
the C̄ reference is used to measure Ic patterns or when
the C reference is used to measure Ih patterns. This be-
havior is a consequence of the non-linearity of the LOM.
When pattern and reference correspond to the same crys-
talline lattice the pattern sites are closer to the reference
sites and small fluctuations in the pattern cause relatively
large variations of the LOM. On the other hand, when
pattern and reference do not correspond to the same crys-
talline lattice, pattern sites deviate more from the ref-
erence sites and small fluctuations in the pattern cause
relatively small variations of the LOM.

B. Low-density and high-density liquid water

We performed MD simulations for water in the NpT
ensemble at T = 240 K and p = 1 bar and p = 3 kbar,
respectively. The case p = 1 bar is representative of a

FIG. 5: a): distribution of S for Ic ice (black) and for Ih ice
(red) with the C̄ reference. b): distribution of S for Ic ice
(black) and for Ih ice (red) with the C reference. The C̄ and
the C references are depicted in the upper and in the lower
panel, respectively. Spheres representing oxygen atoms are
connected by sticks to emphasize the cuboctahedron (green)
and the anticuboctahedron (blue).

LDL liquid, while the case with p = 3 kbar is representa-
tive of a HDL liquid. We use a cubic box containing 512
molecules with periodic boundary conditions.

Resolving the local order in disordered structures, like
HDL and LDL water, is difficult. Standard local OPs
such as q6(j) fail in this respect and ad hoc OPs like the
local structure index (LSI) have been devised for the task.
The LSI is sensitive to the order in the region between the
first two coordination shells of water. In this region the
LSI detects the presence of interstitial molecules, whose
population increases as the density or the pressure in-
creases. While the LSI is an OP especially tailored for
water, S is non specific to water but has resolving power
equivalent to that of the LSI in liquid water, as illus-
trated in Fig. 6. The two panels in this figure show the
distribution of SC̄ (panel (a)) and of SC (panel (b) for
HDL (black) and LDL (red). In both cases the distri-
butions are well separated, similarly to the LSI distri-
butions shown in the inset in panel (b). Independently
of the adopted reference, S has a higher value in LDL
than in HDL, reflecting the higher degree of order in the
former. By comparing the two panels in Fig. 6 we also
see that both liquids have higher C̄− than C−character.
Both LDL and HDL structures are well distinct from the
crystalline reference and the corresponding broadening of
the S distributions is approximately the same in the two
liquids.
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FIG. 6: a): distribution of S for HDL water (black) and for
LDL water (red) with the C̄ reference. b): distribution of S
for HDL water (black) and for LDL water (red) with the C
reference. The C̄ and the C references are depicted in Fig. 5.
The inset shows the distribution of LSI for HDL water (black)
and LDL water (red).

V. CRYSTALLIZATION AND
AMORPHISATION OF SUPERCOOLED WATER

To further illustrate the power of the LOM and of S
and δS we consider the complex structural rearrange-
ments occurring in supercooled water during crystalliza-
tion or when a liquid sample amorphizes under rapid
cooling.

To model crystallization, we consider rigid water
molecules interacting with the mW potential28. The mW
potential describes the tetrahedrality of the molecular
arrangements, but does not have charges associated to
it missing the donor/acceptor character of the hydrogen
bonds. For that reason crystallization occurs much faster
with mW than with more realistic potentials that de-
scribe more accurately the hydrogen bonds. At deeply
supercooled conditions mW water crystallizes sponta-
neously on the time scale of our molecular dynamics sim-
ulations. In spite of the simplified intermolecular inter-
actions in mW water, ice nucleation is a very complex
process and access to good order parameters is essential
to interpret the simulations.

To model amorphisation we adopt the more realis-
tic TIP4P/2005 potential29 for the intermolecular inter-
actions. This potential applies to rigid molecules but
takes into account the charges associated to the hydrogen
bonds. This level of description is important to model
the relaxation processes that occur in a liquid sample un-
dergoing amorphisation. The processes that lead to the
freezing of translational and rotational degrees of freedom
in the glass transition are captured well by our OPs.

FIG. 7: Comparison of SC (black), SC̄ (red), Q6 (green) as a
function of time in the crystallization of 1000 water molecule
interacting via the mW potential. The blue vertical dashed
lines indicate three time frames F1, F2, and F3, respectively.

FIG. 8: Time evolution during crystallization of mW water of
the relative population of the sites with crystalline Ic charac-
ter (orange line) and of the sites with crystalline Ih character,
as determined from the LOM (a) and from q6/w4 (b). See text
for a detailed explanation.

A. Crystallization of supercooled water

To study crystallization we performed classical MD
simulations in the NV T ensemble, using 1000 molecules
with interactions described by the mW potential28 in a
parallelepipedic box with side lengths ratios Lz/Lx =
4, Ly/Lx = 1, and periodic boundary conditions. We set
the temperature to T = 200 K and the volume of the box
to a mass density of ρ = 0.98g/cm3. At these thermody-
namic conditions spontaneous crystal nucleation occurs
rapidly in the mW fluid28. The evolution of the water
sample starting from an equilibrated liquid is illustrated
in Fig. 7, where we report the evolution with time of
three OPs: Q6 (green line), SC (black line) and SC̄ (red
line), respectively. In this figure we recognize three time
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frames separated by the dashed vertical blue lines and
indicated by F1, F2, and F3, respectively. In F1 the
system is liquid but becomes increasingly structured as
indicated by the growth of the three OPs. Microcystal-
lites keep forming and disappearing. SC and SC̄ are more
sensitive than Q6 to the fluctuations of the local order,
as indicated by the greater fluctuations of the black and
red lines relative to the green line in F1. Interestingly,
the liquid has stronger C̄− than C−character, in accord
with Fig. 6. The relative weight of the C̄- and C- char-
acters reverses as crystallization proceeds. F2 marks the
appearance of a stable crystallite that further grows in
the initial stage of F3. This complex kinetics is not cap-
tured by Q6 (green line) which shows only a continuous
growth with time. Instead, both SC and SC̄ identify a
plateau in F2, in correspondence with the formation of a
stable crystallite.

The nucleating ice is a mixture of cubic and hexagonal
ices, with a prevalence of the former, as indicated by the
larger overall growth of SC in the simulation. Indeed,
during the entire evolution shown in Fig. 7, SC varies
more than SC̄ . Due to NV T sampling with periodic
boundary conditions, liquid water is always present in the
sample and does not disappear even when the nucleation
process is completed in F3. The residual liquid water has
more C̄− than C-character and, therefore, the SC and
the SC̄ profiles should be considered merely as qualitative
site-averaged contours.

More quantitative insight can be extracted from Fig. 8,
where we report the time evolution of the fraction of cu-
bic and hexagonal sites. This analysis is based on the
LOM and is independent of the reference choice since
distributions of the competing ice and liquid structures
in Figs. 5 and 6 do not overlap. Thus, in the remain-
ing part of this section and in Sect. VB as well, we use
the C reference and omit from S the corresponding sub-
script. We introduce two cutoff values, S1 = 0.6 and
S2 = 0.75, to distinguish the local environments. If at
site j the LOM satisfies Sj < S1 the local environment
is liquid-like, if S1 < Sj < S2 the local environment is
ice hexagonal-like, and if Sj > S2 the local environment
is ice cubic-like. Notice that the results do not depend
on the actual values of the cutoffs S1 and S2 as long
as they fall inside regions where the S distribution has
negligible weight. The time evolution of the fraction of
sites with cubic and hexagonal character resulting from
the LOM is reported in panel (a) of Fig. 8. In the F1
frame both cubic and hexagonal fractions grow with a
slight dominance of the former. This growth is asso-
ciated to crystallites that keep forming and disappear-
ing. In correspondence with the first dashed vertical line
the growth becomes faster for both environments, sig-
naling the formation of a stable crystalline nucleus with
mixed character, in which Ic and Ih sites are separated
by a stacking fault. At this point hexagonal growth al-
most entirely stops while cubic ice continues to grow at
a slower pace by incorporating nearby crystallites with
the same character. The stable nucleus contains approx-

imately 300 out of 1000 sites and takes the form of a
large ice cluster embedded in a dominant liquid environ-
ment. Towards the end of the F2 frame, cubic ice growth
accelerates and, in the early stage of the F3 frame, the
size of the crystalline cluster rapidly reaches the size of
the box. At this point no further growth is possible. In
the early stage of F3 hexagonal growth is significantly
less pronounced than cubic growth and is mainly associ-
ated to a visible hump shortly after the onset of F3. The
hump is due to small clusters with hexagonal character
that form on the surface of the large cubic crystallite,
and then rapidly convert to cubic character. The nucle-
ation ends with the formation of a large crystallite that
spans the size of the box and includes ∼ 50% percent of
the available sites. Of the crystalline sites ∼ 80% percent
have cubic and ∼ 20% percent hexagonal character. The
quantitative details of the nucleation process depend on
the MD trajectory. For instance the relative fraction of
cubic and hexagonal sites changes from one trajectory to
another. Qualitatively, however, the process is the same
in all the 10 trajectories that we have generated. Our
results are quantitatively very similar to a previous anal-
ysis in which cubic and hexagonal sites were identified in
terms of eclipsed and staggered local configurations35–37.
We report in panel (b) of Fig. 8 an analysis of the same
MD trajectory of panel (a) using a combination of the two
orientational OPs q6(j) and w4(j)15. In this approach,
q6(j) is extracted from the nearest neighbors of a site
j and serves to determine the liquid or the crystalline
character of the site. If the site j is crystalline one as-
signs to it cubic or hexagonal character depending on the
value of w4(j), whose computation requires the first and
second neighbors of the site j. The w4(j) is sensitive to
the symmetries at the IRO of Ic and Ih (fcc and hcp, re-
spectively) but is not sensitive to the IRO in supercooled
water showing large histogram overlaps13. In place of
w4(j) other spherical harmonics based OPs can be uti-
lized, like the ql(j)’s with odd l’s, but they suffer of the
same limitation of w4(j) in separating supercooled water
from the solid phases. There are important quantitative
differences between panel (a) and panel (b) of Fig. 8. A
major difference is already apparent in the time frame
F1: in panel (b) a significant fraction of the sites that
are considered liquid in panel (a) are classified as crys-
talline sites since the very beginning of the trajectory.
This is due to the fact that liquid- and crystal-like con-
figurations overlap in the q6 distribution. Similarly, the
relative fractions of cubic and hexagonal sites of panel
(a) at the end of the trajectory is not reproduced well
in panel (b), again because of the overlap of cubic and
hexagonal configurations in the w4 distribution.

B. Amorphisation of supercooled water

To study amorphisation, we have performed classical
MD simulations for a system composed of 216 molecules
interacting via the TIP4P/2005 potential29 in a cubic



10

FIG. 9: Evolution of S (panel (a)) and δS (panel (b)) dur-
ing the water cooling protocol (see text). Inset: evolution of
the tetrahedral order parameter qth during the water cooling
protocol. Panel (c) reports the corresponding evolution of
the standard molecular displacement in a ns time in units of
the bond length. The dashed vertical lines delimit the glass
transition temperature (Tg) of the simulation. At T = Tg the
translational motions freeze.

simulation box with periodic boundary conditions. Start-
ing from an equilibrated liquid at 240 K and p = 1 bar, we
performed isobaric cooling with a rate of 5 K/ns to gener-
ate an amorphous ice structure. Given the adopted pro-
tocol this structure should have similarity to experimen-
tally prepared low density amorphous (LDA) ice struc-
tures38. Our cooling rate is slightly higher then the one
recently adopted in molecular dynamics simulations for
the same water model39. However, our goal is not to gen-
erate a high quality amorphous structure, but rather to
test whether our approach can be used to study the glass
transition in water. In Fig. 9 we report the evolution of
S (panel (a)) and δS (panel (b)) along the cooling pro-
tocol. Both OPs show a sudden, albeit small, change in
correspondence with the vertical dashed blue lines. The
sudden increase of S indicates a sudden increase of the
local order relative to that of the supercooled liquid. At
the same time the sudden drop of δS indicates reduced
fluctuations of the local order relative to the supercooled
liquid. The sharp variation of S and δS is associated to

freezing of the translational motions in the system. This
is illustrated in panel (c) of the same figure in which we
report the standard displacement, i.e. the square root of
the mean square displacement, of the molecules in a ns
time, measured in units of the bond length (the nearest
neighbor distance between the oxygen sites). While for
T ≥ 205 K the standard displacement is greater than 1,
indicating that each molecule on average moves by more
than one bond length on a ns timescale, for T ≤ 200 K
the standard displacement drops well below 1, indicating
translational localization of the molecules. The freezing
of the translational degrees of freedom marks the onset of
the glass transition. The corresponding transition tem-
perature, Tg, is located, in our simulation, in the interval
bounded by the two dashed vertical lines. It is quite
remarkable that a phenomenon usually associated with
dynamics (viz. the freezing of translational diffusion)
has a clear static counterpart, well captured by the two
OPs based on the LOM. The static signature of the glass
transition is also detected by the average tetrahedral or-
der parameter q̄th shown in the inset of Fig. 9, but in this
case the effect is weaker as the transition is only signaled
by a change of slope in the temperature variation of q̄th.
Given that q̄th weighs the tetrahedral order of the first
shell of neighbors while the LOM focuses on the second
shell of neighbors, we conclude that the second shell of
neighbors provides a more sensitive gauge of the local
order.

By further cooling the system below Tg there is an
evident change of slope in the increase of S with temper-
ature when T is near 175 K. No corresponding effect can
be detected from the behavior of δS, which takes so small
values to have lost sensitivity. This behavior is associated
to the freezing of molecular rotations, as demonstrated
in Fig. 10, which reports the time evolution over 1 ns
of C(t) = 〈µ(0) · µ(t)〉, the time autocorrelation function
of the molecular dipole µ, averaged over every 10 snap-
shots. The time decay of C(t) is associated to rotational
relaxation. In panel (a) of Fig. 10 one sees that C(t) de-
cays on the ns timescale when T ≥ 180 K, whereas for
T ≤ 170 K no apparent relaxation can be detected. We
infer that freezing of the rotational degrees of freedom
occurs when T is near 175 K in our simulation. Simi-
lar rotational freezing effects have been inferred in recent
experiments40.

To get further insight on the relaxation processes as-
sociated to the rotational and translational motions of
the molecules, we analyzed the changes of the hydrogen
bond network occurring upon cooling by monitoring the
corresponding changes in the distribution P (n) of the
n−member rings in the network. Here n indicates the
number of hydrogen bonds in a ring. We define hydro-
gen bonds with the Luzar-Chandler criterion41 and fol-
low King’s approach42 for the ring statistics. We report
P (n) at different temperatures in Fig. 11. We see that
P (n) changes with temperature in the supercooled liquid
(panel (a)) and also in the glass in the range of tempera-
tures between Tg and the temperature of rotational freez-
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FIG. 10: Time variation of the dipole autocorrelation func-
tion C(t) in the temperature range T ∈ [200, 180] K (panel
(a)) and in the temperature range T ∈ [170, 140] K (panel
(b)). Each C(t) curve is obtained by averaging 10 trajecto-
ries initiating at times separated by intervals of 100 ps.

ing (panel (b)), but below the latter no further changes
in the topology of the network occur (panel (c)). As the
temperature is lowered in the supercooled liquid longer
member rings with n ≥ 8 systematically disappear while
the population of 6− and 7−member rings increases, with
a prevalence of the former. Longer member rings are
associated to more disordered local environments with
interstitial molecules populating the region between the
first and the second shell of neighbors43. Such configura-
tions are typical of molecular environments with higher
number density. As the temperature is lowered in the
supercooled liquid at ambient pressure, this continuously
transforms into a liquid with lower density. In the glass,
at temperatures above rotational freezing, network relax-
ation still occurs, again with a reduction in the popula-
tion of rings with n ≥ 8, but this time this is accompanied
by a reduction of the population of the 6−fold rings and
an increase of the population of the 7−fold rings. This
is because the only processes that can change the net-
work topology in absence of diffusion are bond switches
of the kind described in Ref.44. In water these processes
can be generated by rotations of the molecules. For in-
stance, we found that in a frequent process of this kind
two adjacent rings, a 6−fold and an 8−fold ring sharing a
bond, transform into two adjacent 7−fold rings sharing a
bond. Finally, at temperatures below rotational freezing
the network topology does not change in the timescale of
the simulation. At these temperatures only local vibra-
tional relaxation occurs. In a classical system vibrational
disorder diminishes with temperature as reflected in the
increase of S at low temperature in Fig. 9 (a).

VI. CONCLUSIONS

We have introduced a local order metric (LOM) based
on a simple measure of the optimal overlap between local

FIG. 11: Ring distribution P(n) in the temperature range
T ∈ [240, 210] K (panel (a)), in the temperature range T ∈
[200, 180] K (panel (b)), and in the temperature range T ∈
[170, 140] K (panel (c)).

configurations and reference patterns. In systems made
of a repeated unit (atom or molecule) the LOM leads to
the definition of two global order parameters, S and its
spread δS, which have high resolving power and are very
useful to analyze structural changes in computer simula-
tions, as shown by the examples in Section III, Section IV
and Section V. The water examples show that the LOM
can be used to measure the local order not only at atomic
but also at molecular sites. Systems made by molecular
units more complex than water could also be analyzed
with this technique, while further generalizations could
be envisioned for binary and multinary systems.

As defined, S and δS are not differentiable func-
tions of the atomic (molecular) coordinates. This
non-differentiability stems from two reasons: (1) the M
neighbors of a site may change abruptly in a simulation,
and (2) the LOM depends on the permutations of
pattern indices, which is a discrete variable. Thus S
and δS could not be used as such to drive structural
transformations in constrained molecular dynamics
simulations. However, they could be used as collective
variables in Monte Carlo simulations adopting enhanced
sampling techniques, such as umbrella sampling45, meta-
dynamics46, replica exchange47 etc.. A generalization
which makes our approach continuous is presented in
the Appendix VI.
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Appendix: A Continuous Generalization for Free
Energy Sampling and Constrained Dynamics

In this Appendix, we introduce a generalized version
of our method which makes S suitable for free energy
sampling and to drive structural transformations in con-
strained simulations. We have successfully employed
this version to sample the free energy landscape of the
Lennard-Jones system reported in Section III B48, and to
drive the transformation of Boron-Nitrate nanotubes in
ab initio simulations49

We add to the M reference sites, Mb sites of the next

shell of neighbors in the crystalline reference structure,
and which serve as a buffer. In order to preserve the one-
to-one assignement between reference and pattern sites,
we select the same number M+Mb of sites surrounding a
target particle in the pattern. We then employ a smooth
switching function ωσ(dij) to weight the pattern neigh-
bor site i with respect to the center site j via its radial
distance dij . The switching function takes the form:

ωσ(dij) =
1

2
erfc

(
dij − rc

δ

)
, (5)

where rc is a radial distance that lies between the shell
defined by the M sites and the shell defined by the Mb

sites, and δ is the width of the switching function. In our
tests on Lennard-Jonesium, we have employed δ = σ/2.
The switching function defined in Eq. 5, brings the
weights of the pattern sites to smoothly vanish as they
move beyond the outer shell defined by the Mb sites.
The generalized LOM at a site j can be expressed in
terms of the following weighted geometric mean:

S(j) = max
[θ,φ,ψ;P]

exp

−
∑
i=1,M+Mb

ωσ(dij)
∣∣∣PjiP −Rj

i

∣∣∣2
2σ2

∑
i=1,M+Mb

ωσ(dij)


 . (6)

The order parameter S is defined as the site average
LOM, S = 1

N

∑
j S(j).

With respect to the original formulation, the introduc-
tion of a buffer layer allows more flexibility in the opti-
mization of the permutation, which results in a slightly
higher score in the case of liquids, while still preserving
excellent resolving power.

This procedure removes the discontinuous behavior in
the original formulation caused by the changes in the list
of the M pattern sites occurring at short time intervals.

When such changes occur in the buffer layer, the leaving
particles and the incoming ones weight very little with
respect to the others.On the other hand, the permuta-
tions of pattern indices is a discrete variable which in-
troduces an intrinsic discontinuity in the first derivative.
Such problem is partially overcomed by our optimization
procedure, which makes S(j) a continuous and piecewise
smooth function. Therefore, this generalized version can
be employed to drive structural transformations in con-
strained molecular dynamics simulations.
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