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Coherent operation of gate-voltage-controlled hybrid transmon qubits (gatemons) based on semi-
conductor nanowires was recently demonstrated. Here we experimentally investigate the anhar-
monicity in epitaxial InAs-Al Josephson junctions, a key parameter for their use as a qubit. An-
harmonicity is found to be reduced by roughly a factor of two compared to conventional metallic
junctions, and dependent on gate voltage. Experimental results are consistent with a theoretical
model, indicating that Josephson coupling is mediated by a small number of highly transmitting
modes in the semiconductor junction.

The transmon qubit is an anharmonic oscillator where
the Josephson junction (JJ) provides a nonlinear in-
ductance that allows for the lowest two energy levels
to be selectivity addressed [1–3]. The anharmonicity
α = E12−E01, where Eij is the energy difference between
energy states j and i, is a critical qubit design parameter,
determining, for instance, the minimum pulse duration
∼ ~/|α| needed to avoid leakage into noncomputational
states. Transmons have recently demonstrated one and
two qubit gate fidelities exceeding 0.99 in multi-qubit de-
vices [4–6].

Almost without exception, transmons are based on
superconductor-insulator-superconductor (SIS) junctions
that use a thin insulating barrier (typically Al2O3) be-
tween metallic superconducting leads [7]. SIS junc-
tions are well described by a non-quadratic (cosine)
energy-phase relation, VSIS = −EJ cos(φ), where EJ
is the Josephson coupling energy and φ is the phase
difference across the junction [8]. The inverse in-
ductance correspondingly depends on phase, L−1

SIS =
(2e/~)2d2VSIS/dφ

2 = (2e/~)2EJcos(φ). Other types of
JJs, with weak links separating superconducting elec-
trodes made from narrow superconducting constrictions,
normal metal, or a semiconductor [9–11] have energy-
phase relations that differ from the cosine form. Co-
herent operation of one- and two-qubit circuits using
superconductor-semiconductor-superconductor (S-Sm-S)
junctions—called gatemons due to their gate-voltage con-
trolled EJ—was recently demonstrated using an InAs
nanowire (NW) with epitaxial Al [12, 13]. In those ex-
periments, it was noted that |α| was roughly a factor of
two smaller than what one would expect for an SIS junc-
tion with the same operating parameters, but the origin
and parameter dependence of this discrepancy was not
investigated.

Other experiments have investigated an S-Sm-S JJ in
a two-junction loop [14]. Near one-half flux quantum
through the loop, the anharmonic spectrum revealed sig-
natures of a noncosinusoidal energy-phase relation in the
S-Sm-S junction. More recently, nonsinusoidal current-

phase relations of nanowire S-Sm-S junctions were di-
rectly measured from the diamagnetic response of meso-
scopic rings interrupted by single S-Sm-S junctions [15].

In this Rapid Communication, we investigate anhar-
monicity as well as departure from the standard (SIS)
cosine energy-phase relation in a nanowire-based gate-
mon qubit. We observe that anharmonicity depends on
gate voltage and is lower than the corresponding SIS
junction with comparable EJ . Comparing anharmonic-
ity data to a model of Josephson junctions with few con-
duction channels, we find our data are consistent with
1–3 dominating conducting channels contributing to the
Josephson current. These results are broadly relevant to
superconducting qubits based on novel junction materi-
als.

The gatemon qubit consists of a superconducting is-
land with charging energy EC , connected to ground via
a single JJ made from a L ∼ 200 nm segment of bare InAs
NW, with superconducting leads proximitized by a full
shell of epitaxial Al [16, 17] (details below). We consider
transport in the so-called short-junction limit, L � ξ,
where ξ is the junction coherence length [9]. In the short-
junction regime, originally considered by Beenakker for
the case of a metal junction, multiple conduction chan-
nels are characterized by their transmission eigenvalues
{Ti} [18]. Within this model, charge transport across the
junction occurs via Andreev processes at each S-Sm inter-
face. For each transmission channel, multiple Andreev re-
flections between the two interfaces result in a pair of dis-
crete subgap states or Andreev bound states, each with

ground state energy −∆
√

1− Tisin2(φ/2), where ∆ is

the induced superconducting gap in the leads [10, 19, 20].
Summing over all conduction channels gives the Joseph-
son potential

V (φ̂) = −∆
∑
i

√
1− Ti sin2(φ̂/2),

where φ̂ is the superconducting phase-difference operator.
The gatemon qubit is operated in the transmon regime,
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EJ/EC � 1, where sensitivity to offset charge of the
island is exponentially suppressed [1]. Omitting the offset
charge, the effective Hamiltonian is given by

Ĥ = 4EC n̂
2 + V (φ̂),

where n̂ is the island Cooper pair number operator, con-
jugate to φ̂. The qubit transition frequency is given by
the Josephson plasma frequency, f01 ≈

√
8ECEJ/h.

To examine how anharmonicity, α, depends on the
channel transmission probabilities, we derive an expres-
sion for α by expanding V (φ̂) to 4th order in φ̂,

V (φ̂) ≈ ∆

4

∑
i

(
Ti
2
φ̂2 − Ti

24
(1− 3

4
Ti)φ̂

4

)

= EJ
φ̂2

2
− EJ

(
1− 3

∑
T 2
i

4
∑
Ti

)
φ̂4

24
,

where the constant term has been omitted and EJ =
∆
4

∑
Ti [1, 8, 21]. Here, the φ̂2-term has the same form

as the potential V0(φ̂) = EJ
φ̂2

2 in the harmonic oscillator
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FIG. 1. Qubit device and Josephson potential. (a) Optical
micrograph of one of the qubits, Q1, in the two qubit device.
Inset shows a zoom-in of the junction region. Each qubit con-
sists of a T-shaped island shunted to ground via an InAs/Al
NW JJ. The two qubits are designed to be nominally identi-
cal and are both coupled to individual readout resonators. (b)
Scanning electron micrograph of the S-Sm-S JJ for Q1. The
JJ features an InAs NW with high transparancy epitaxial Al
contacts. The voltage, V1, on the side gate modulates the
density of carriers in the NW, allowing the Josephson poten-
tial to be modified. (c) The normalized Josephson potential
V (φ) in the limits of Ti = 1 (blue solid curve) and Ti → 0
(red solid). For comparison, a harmonic potential V0 is also
shown (black dashed). (d) Sketch illustrating a NW S-Sm-S
JJ with a few highly transmitting channels in a quasiballistic
regime as expected in the NW. (e) Sketch of the conventional
SIS tunnel junction with many low transmitting channels.

Hamiltonian Ĥ0 = 4EC n̂
2 + V0(φ̂). Treating V ′(φ̂) =

−EJ
(

1− 3
∑
T 2
i

4
∑
Ti

)
φ̂4

24 as a perturbation to Ĥ0 allows us

to calculate the corrections to the harmonic transition
energies. Evaluating the perturbation matrix elements
〈i|V ′(φ̂) |i〉 for i = 0, 1, 2 leads to

α ≈ −EC
(

1− 3
∑
T 2
i

4
∑
Ti

)
.

In the limit of Ti → 0 for all i, α ≈ −EC as is the case
for transmons with SIS JJs [1]. For Ti = 1, α ≈ −EC/4,
giving a reduced qubit nonlinearity compared to the SIS
JJ case.

Measurements of InAs NWs give a typical mean free
path l ∼ 100 nm [22] and Fermi velocity vF ∼ 108

cm/s [23]. From measurements of similar NWs with epi-
taxial Al, ∆ ∼ 190 µeV [17], giving a superconducting
coherence length ξ0 = ~vF /π∆ ∼ 1100 nm for the prox-
imitized InAs leads. These estimates give a junction co-
herence length ξ =

√
ξ0l ∼ 300 nm, suggesting an in-

termediate regime, L ∼ ξ, that would give corrections
to the short junction model taken above [18]. Nonethe-
less, a number of recent experiments using very similar
nanowire S-Sm-S JJs have shown good agreement with
theory in the short junction limit and we assume this
model here [15, 20, 24].

Figure 1(c) illustrates the connection between chan-
nel transmissions and anharmonicity by comparing the
Josephson potential in two limiting cases, Ti = 1 and
Ti → 0, to a harmonic potential (α = 0). The case
Ti → 0 yields a −cos(φ) potential, corresponding to an
SIS tunnel barrier with many low-transmission channels
[Fig. 1(e)]. The ballistic case, Ti = 1, yields a −cos(φ/2)
potential, which more closely resembles a harmonic po-
tential. For NW S-Sm-S JJs with quasiballistic transport
dominated by a few channels [Fig. 1(d)], one expects and
observes behavior between these two limits.

Experiments were carried out using a two-qubit device,
fabricated in the same way as the device in Ref. [13]. Fig-
ures 1(a) and (b) show one of the qubits and its NW JJ.
Control lines and qubit islands are lithographically de-
fined on a 100 nm thick Al film evaporated on a high
resistivity Si substrate. The JJ is constructed from a
NW with a ∼75 nm diameter InAs core and a ∼30 nm
thick epitaxial Al shell [16], where a L ∼ 200 nm seg-
ment of the shell is removed by wet etching [12, 13]. EJ
of the JJ is voltage controlled with a side gate labelled
V1 in Figs. 1(a) and (b). The two qubits, denoted Q1

and Q2, are coupled with strength g/2π ∼ 80 MHz to in-
dividual superconducting λ/4 resonators with resonance
frequencies fC1 ≈ 7.66 GHz, fC2 ≈ 7.72 GHz. These
measurements were performed at 20 mK in a dilution re-
frigerator with a similar setup as in Ref. [13]. Multiplexed
dispersive readout is performed through a common trans-
mission line [25], using a superconducting travelling wave
parametric amplifier to improve the signal-to-noise and
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FIG. 2. Spectroscopy scans to probe the anharmonicity. (a)
The qubit is driven by a −103 dBm microwave pulse, which
excites the qubit at the transition frequency f01. By measur-
ing the qubit-state-dependent demodulated cavity response
|VH|, f01 can be determined. The data points (blue) are fit-
ted to a Gaussian (solid black curve) to locate f01. (b) After
identifying f01, the two photon |0〉 → |2〉 transition frequency
f02/2 is probed in a spectroscopy scan at −83 dBm. f01 is
extracted by fitting a Gaussian around the value found in (a)
and f02/2 is identified as the maximum value of the second
peak as labelled in red. α/2h = f02/2− f01 is indicated with
the horizontal arrow.

reduce the acquisition time [26]. Coherence measure-
ments show qubit lifetimes and inhomogeneous dephasing
times, T1, T

∗
2 ∼ 1–2 µs. Both quasi-two-dimensional and

fully three-dimensional electrostatic simulations [27, 28]
yield EC/h = 240 MHz, taking Si permittivity ε = 11.7.

Anharmonicity is measured by first locating the qubit
transition frequency f01 in a low-power scan (typically
∼−100 dBm at the sample). This is done by applying a
microwave excitation with a pulse length of 1 µs through
a control line capacitively coupled to the qubit island.
The microwave pulse excites the qubit into a mixed state
when applied at f01, directly detectable in the demod-
ulated cavity response |VH|, as shown in Fig. 2(a). Re-
peating the scan at higher power (∼−80 dBm) allows
both f01 and the two-photon |0〉 → |2〉 transition fre-
quency f02/2 to be measured simultaneously, as shown
in Fig. 2(b). Frequency f01 is extracted from a Gaus-
sian fit to the |0〉 → |1〉 transition peak, while f02/2 is
taken to be the maximum value of the |0〉 → |2〉 peak.
Anharmonicity is then given by α = 2h (f02/2− f01).

Tuneability of the junction allows f01 and α to be mea-
sured for different sets of channel transmissions, {Ti},
by performing spectroscopy at different gate voltages, as
shown in Fig. 3. The right axes in Figs. 3 (a,b) show∑
Ti = (hf01)2/2∆EC , taking EC from electrostatic

modelling and ∆ = 190 µeV [17]. Nonmonotonic gate
dependence presumably reflects standing waves in the
junction due to disorder, as discussed previously [12, 13].
Figure 3(c,d) shows anharmonicity α as a function of gate
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FIG. 3. Results of the spectroscopy and anharmonicity mea-
surements. (a) [(b)] Results of spectroscopy measurements of
f01 for varying gate voltage V1 (V2) on Q1 (Q2). The right
axis indicates the total transmission

∑
Ti as converted from

f01 (see text). (c) [(d)] Results for α/h measured for Q1 (Q2)
as a function of gate voltage, V1 (V2).

voltages. Both qubits show reduced anharmonicity com-
pared to the corresponding SIS value, |α| = EC = 240
MHz×h, with sizeable fluctuations with gate voltage.
Comparing Figs. 3 (a,b) and Figs. 3 (c,d), we observe that
fluctuations in α are more pronounced than those in f01.
The larger fluctuations in α may reflect that while f01

only depends on
∑
Ti, α is determined by both

∑
Ti and∑

T 2
i , that is, it depends on both the total transmission

and the variance of the transmission coefficients. Recent
work from Goffman et al. [24], has extracted transmis-
sion coefficients for similar semiconductor NW JJs by fit-
ting current-voltage characteristics to multiple Andreev
reflection theory. In this work, it was observed that indi-
vidual channel transmissions can show far more variation
compared to the total transmission, which may further
account for the pronounced fluctuations in α observed
here.

Spectroscopy data along with model calculations for
several different distributions for {Ti} are shown in Fig. 4,
as functions of both gate voltage and total transmission,∑
Ti, extracted from Figs. 3(a) and (b). Theoretical

plots show the model for three cases of equal transmission
probability, T , in each channel, α = −EC

(
1− 3

4T
)

=

−EC
(
1− 3EJ

∆N

)
for different number of participating

channels, N = 2, 3, and ∞. A fourth model (“Ideal
QPC”) assumes that the {Ti} are maximally packed for
a given total transmission, that is, channels are filled in a
staircase with at most one partially transmitting channel,
setting a lower bound on anharmonicity.

Anharmonicity data yield information about both the
number and transmission of participating modes. In par-
ticular, data above a given N-equal-distribution line in-
dicates that at least N+1 modes are participating, while
data below a given N-equal-distribution line places a
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FIG. 4. Comparison of the anharmonicity data (dark blue) to
our model with four different channel transmission distribu-
tions for the JJ. Three of the distributions assume N equally
distributed channels plotted for N = 2 (light blue), N = 3
(green) and N → ∞ (black). The fourth model data set
(red) is for an “Ideal QPC” distribution (see main text for
further details). (a) [(b)] α as a function of V1 (V2) compared
with the different models. (c) [(d)] α plotted parametrically
against

∑
Ti for Q1 (Q2), as determined from Fig. 3(a)[(b)].

The right axes are normalized to EC highlighting the depar-
ture from the conventional transmon result, α ≈ −EC .

lower bound, Tmin >
∑
Ti/N , on the most transmissive

of the participating modes. For example, for the data in
Fig. 4, we conclude that transport is dominated by 1-3
modes and Tmin is in the range 0.4 to 0.9, depending on
gate voltage.

Measured values of anharmonicity for the gatemon are
reduced by a factor of ∼2 compared to corresponding
transmons with SIS junctions. As a consequence, control
pulses must be a factor of ∼2 slower for the gatemon to
avoid state leakage. SIS-based transmons are typically
designed with EC/h = 200 − 300 MHz to allow for fast
control pulses, in the few-ns regime, while maintaining
EJ/EC � 1 to ensure dephasing due to charge noise and
quasiparticle poisoning is suppressed [29]. This regime
may not be optimal for the gatemon, however, and it
may be possible to increase EC to allow faster control
while remaining insensitive to charge fluctuations in the
island. This is because when any channel transmission
approaches unity, energy dispersion with charge is pre-
dicted to vanish [30]. Similarly, recent experiments with
a normal metal island have shown the quenching of charg-
ing quantization in the limit of a ballistic channel [31]. In
future work we will look to better understand and demon-
strate the optimal EJ/EC ratio for gatemons, potentially
exploiting this reduced (and in principle vanishing) dis-
persion.

In summary, we have measured anharmonicity of a

gatemon qubit, yielding information about the set of
transmissions of the few participating channels in the
semiconductor junction. Our results indicate that three
or fewer channels significantly participate in transport,
depending on gate voltage, consistent with a noncosi-
nusoidal energy-phase relation. We note that one may
further exploit higher harmonic terms in the noncosine
form of the energy-phase relations to create novel super-
conducting elements. For two NW JJs in parallel in a su-
perconducting loop, tuning the applied flux and junction
gate voltages should allow any cos(φ) term to be strongly
suppressed while still having a significant cos(2φ) cou-
pling [14]. Such cos(2φ) junction elements have been pro-
posed as the basis for new types of qubits that are intrin-
sically protected against sources of decoherence [32, 33].
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