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We study numerically and analytically the quench dynamics of isolated many-body quantum systems. Using

full random matrices from the Gaussian orthogonal ensemble, we obtain analytical expressions for the evolution

of the survival probability, density imbalance, and out-of-time-ordered correlator. They are compared with

numerical results for a one-dimensional disordered model with two-body interactions and shown to bound the

decay rate of this realistic system. Power-law decays are seen at intermediate times and dips below the infinite

time averages (correlation holes) occur at long times for all three quantities when the system exhibits level

repulsion. The fact that these features are shared by both the random matrix and the realistic disordered model

indicates that they are generic to nonintegrable interacting quantum systems out of equilibrium. Assisted by

the random matrix analytical results, we propose expressions that describe extremely well the dynamics of the

realistic chaotic system at different time scales.

Nonequilibrium dynamics of isolated many-body quantum

systems is a highly interdisciplinary subject covering a broad

range of physics scales, from string theory and black holes

to condensed matter and atomic physics. The connection

between black hole physics and unitary quantum dynamics

emerges from holographic dualities [1]. On the experimen-

tal side, unitary quantum dynamics is investigated with cold

atoms [2–5], ion traps [6, 7], and nuclear magnetic resonance

platforms [8, 9].

Driven by different purposes, studies of black hole infor-

mation loss [10–12], quantum chaos [13, 14], thermalization

in isolated quantum systems [2, 5, 15], many-body localiza-

tion [3, 9, 16], quantum correlations [8], and quantum speed

limits [17–19] consider similar dynamical quantities. They in-

clude the survival probability, density imbalance, and out-of-

time-ordered correlator (OTOC). Our goal is to characterize

the evolution of these quantities at different time scales.

Given the complexity of out-of-equilibrium many-body

quantum systems, we take the same approach as Wigner when

studying heavy nuclei and use full random matrices (FRM)

from the Gaussian orthogonal ensemble (GOE). These are

matrices filled with random real numbers and constrained by

time-reversal symmetry. The model is unrealistic, as it as-

sumes simultaneous and infinite-range interactions among all

particles. But it allows for the derivation of analytical expres-

sions for the observables of interest.

The analysis of the FRM model assists in the identification

of general features and bounds for the evolution of realistic

systems. The analytical expressions obtained with FRM re-

veal different behaviors at different time scales. After deter-

mining the generic causes of these behaviors, one can propose

expressions for the dynamics of realistic chaotic many-body

quantum systems.

We compare the analytical expressions for FRM with nu-

merical results for the one-dimensional (1D) Heisenberg spin-

1/2 model with onsite disorder. This system has been exten-

sively studied in the context of many-body localization [20–

22]. It shows a chaotic regime for small disorder [23, 24],

which justifies the comparison with FRM. The rate of the evo-

lution is faster in the FRM case, but the overall dynamical

behavior is similar for both models.

The basis of our analysis is the survival probability. It gives

the probability of finding the initial state later in time and has

been investigated since the early days of quantum mechan-

ics [25]. It is a main quantity in the studies of quantum speed

limits [19] and decay processes of unstable systems [26].

More recently, it became central to the analysis of localization

in noninteracting [27, 28] and interacting [29, 30] systems.

The survival probability is also related [31] to the analytic

continuation of the partition function used to study conformal

field theories with holographic duals [32] and to describe the

time behavior of large anti-de Sitter black holes [11, 12, 33].

Our analytical expression for the survival probability for the

FRM model covers the entire evolution at all different time

scales. Following the same steps for its derivation, we find

analytical expressions for the density imbalance and OTOC.

The density imbalance is measured in experiments with cold

atoms [3, 4]. The OTOC [14, 34] quantifies the degree of

non-commutativity in time between two Hermitian operators

that commute at time t = 0 and has been studied experimen-

tally [8]. Guided by the derivations of the FRM results, we

propose expressions that match very well the numerical evo-

lution of the realistic spin model.

The short-time dynamics of the survival probability is con-

trolled by the Fourier transform of the envelope of the energy

distribution of the initial state, the so-called local density of

states (LDOS). When the perturbation that takes the system

out of equilibrium is strong, the LDOS is similar to the den-

sity of states (DOS). The DOS for the FRM has a semicircle

shape, which leads to a decay ∝ J 2
1 (t)/t

2, where J1(t) is the

Bessel function of first kind [35–38]. The initial decay of the

density imbalance follows the same behavior, while the OTOC

goes as J 4
1 (t)/t

4. For the spin system, where only two-body

interactions exist, the decay is slower. In this case, maximally

spread-out LDOS reach Gaussian shapes [35–40], resulting in

Gaussian decays.

The envelope of the oscillations of the term involving the

Bessel function decays as 1/t3 for the survival probabil-
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ity [41–43] and imbalance, and as 1/t6 for the OTOC. These

behaviors emerge when the tails of the DOS fall with the

square root of the energy [42, 43]. In the spin model, the tails

of the DOS decay slowly to its energy bounds, which yields

smaller power-law exponents.

For long times, but still shorter than the inverse of the mean

level spacing (Heisenberg time), the survival probability for

both the FRM and the spin model shows a dip below its sat-

uration value, known as correlation hole [44–48]. This is an

explicit dynamical manifestation of level repulsion in systems

with discrete spectra [30, 49]. For yet longer times, the sur-

vival probability eventually saturates. Its increase from the

bottom of the hole to saturation is nearly linear. We show that

the correlation hole appears also for the imbalance and OTOC.

Hamiltonians and Dynamical Quantities.– We consider

Hamiltonians H = H0 + JV that have an unperturbed part

H0 and a perturbation V of strength J . We set J = 1 and

~ = 1.

For the 1D spin-1/2 model with onsite disorder, L sites,

and periodic boundary conditions, H0 =
∑L

k=1 hkS
z
k and

V =
∑L

k=1
~Sk
~Sk+1, where ~Sk are the spin operators on site

k. The amplitudes hk of the static magnetic fields are ran-

dom numbers from a uniform distribution [−h, h]. The to-

tal spin in the z-direction, Sz =
∑

k S
z
k , is conserved. We

study the largest subspace, Sz = 0, which has dimension

N = L!/(L/2)!2.

When h = 0 or h > hc, where hc is the critical point for

spatial localization, the eigenvalues can cross and the level

spacing distribution is Poisson, as typical of integrable mod-

els. For 0 < h < hc, the eigenvalues become correlated and

repel each other. The level spacing distribution is intermedi-

ate between Wigner-Dyson and Poisson. The best agreement

with the Wigner-Dyson for N = 12870 occurs at h ∼ 0.5
[30].

In the FRM model, H0 is the diagonal part of the matrix

and V consists of the off-diagonal elements. In FRM from the

GOE, the matrix elements Hnm are random numbers from

a Gaussian distribution with mean zero. The variance of the

elements of V is σ2 and forH0, it is 2σ2. Due to the rotational

symmetry, Hnm = Hmn = H∗
mn [50]. As in the spin model,

N is the size of the matrix.

The system is initially in one of the eigenstates |φn〉 of H0.

The dynamics starts by switching on the perturbation abruptly.

The evolution of the initial state |Ψ(0)〉 = |φn0
〉 is dictated by

H , |Ψ(t)〉 = e−iHt|Ψ(0)〉. The eigenstates and eigenvalues

of H are denoted by |ψα〉 and Eα. The dynamical quantities

investigated are listed below.

(i) The survival probability is given by

Wn0
(t) = |〈Ψ(0)|Ψ(t)〉|2 =

∣
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, (1)

where C
(α)
n0

= 〈ψα|Ψ(0)〉.
(ii) The imbalance of the spin density for all sites is com-

puted as in [51, 52],

I(t) =
4

L

L
∑

k=1

〈Ψ(0)|Sz
k(0)S

z
k(t)|Ψ(0)〉. (2)

(iii) In terms of spin operators, the OTOC that we calculate

is similar to the one in [16],

Otoc(t)=
32(L− 2)!

L!N

∑

n,k,k′

〈φn|S
z
k′(t)Sz

k(0)S
z
k′(t)Sz

k(0)|φn〉,

(3)

where we average over all pairs of sites k′ > k. In the ther-

mal ensemble average, all states |φn〉 of the subspace N are

assumed to contribute equally.

Survival Probability.– We can write Eq. (1) in terms of

the Fourier transform of the spectral autocorrelation func-

tion as Wn0
(t) =

∫

G(E)e−iEtdE +Wn0
, where G(E) =

∑

α1 6=α2
|C

(α1)
n0

|2|C
(α2)
n0

|2δ(E − Eα1
+ Eα2

) and Wn0
=

∑

α |C
(α)
n0

|4 is the infinite time average.

In the GOE FRM model, the eigenstates are random

vectors, so 〈Wn0
〉FRM = W

FRM

n0
= 3/(N + 2), where

〈.〉FRM represents the ensemble average. Since the eigen-

values and eigenstates are statistically independent, G(E)

can be separated into 〈
∑

α1 6=α2
|C

(α1)
n0

|2|C
(α2)
n0

|2〉FRM =

1 − W
FRM

n0
and 〈δ(E − Eα1

+ Eα2
)〉FRM =

∫

δ(E −
Eα1

+ Eα2
)R2(Eα1

, Eα2
)dEα1

dEα2
/[N (N − 1)], where

R2(Eα1
, Eα2

) is the 2-point correlation function. R2 splits in

the 1-point correlation function, which is simply the DOS, and

the 2-level cluster function [53]. As N → ∞, the DOS con-

verges to the Wigner semicircle law, ρ(E) = 2N
πε

√

1−
(

E
ε

)2
,

where 2ε is the length of the spectrum.

The Fourier transform of the semicircle leads to a term ∝
J1(εt)/t [35]. The Fourier transform of the 2-level cluster

function gives the 2-level form factor b2(Dt/2π), where D is

the mean level spacing [50, 53]. In the large N limit, D ≈
1/ρ(0). Therefore,

W FRM
n0

(t)=
1−W

FRM

n0

N − 1

[

4N
J 2
1 (εt)

(εt)2
− b2

(

εt

4N

)]

+W
FRM

n0
,

(4)

where b2(t) = [1−2t+t ln(1+2t)]Θ(1−t)+{−1+t ln[(2t+
1)/(2t− 1)]}Θ(t− 1) and Θ is the Heaviside step function.

In Fig. 1 (a), we compare Eq. (4) with the numerical results

for the GOE FRM. The agreement is excellent, the two curves

can hardly be distinguished.

The initial evolution of W FRM
n0

(t) is controlled by the term

with the Bessel function, which leads to oscillations that decay

as 1/t3, as indicated by the dashed line in Fig. 1 (a). The

correlation hole, corresponding to the full time interval where

W FRM
n0

(t) is belowW
FRM

n0
, is caused by b2(t). As we approach

the Heisenberg time, the hole fades aways and the dynamics

eventually saturates at W
FRM

n0
.

The correlation hole is a direct probe of the long-range cor-

relations in the eigenvalues. For level statistics given by the

Poisson distribution, b2(t) = 0 and the hole is nonexistent.

In Fig. 1 (b), we compare Eq. (4) (dotted line) with nu-

merical results for the analytic continuation of the parti-

tion function, |Z(β + it)|2 =
∑

α exp[−(β + it)Eα]/Z(β)
(solid lines). As discussed in Ref. [31], |Z(β + it)|2 is

analogous to the survival probability if one considers as

initial state, a thermofield-double state, that is |Ψ(0)〉 =
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FIG. 1: Survival probability and |Z(β+it)|2. In (a): GOE FRM. Nu-

merical results and Eq. (4) are superposed; 1/t3 decay (dashed), sat-

uration value (dot-dashed). In (b), solid lines from bottom to top give

|Z(β + it)|2 with β = 0, 0.01, 0.05, 0.1, 0.2, 0.5, 1; dotted curve is

Eq. (4). In (c), solid lines from bottom to top are: Eq. (4) and nu-

merical results for the spin model with h = 0.5, 1, 1.5, 2. Squares

correspond to the fitting curve for h = 0.5. The FRM is rescaled, so

the DOS of both models have the same width. Inset of (c): Eq. (4)

(bottom) and time average for h = 0.5 (top). In (a,b): averages over

200 disorder realizations, N = 16 384, σ2 = 2. In (c): average over

105 data, N = 12 870.

∑

α exp(−βEα/2)|ψα〉/
√

Z(β). As illustrated in Fig. 1 (b),

the results for |Z(β + it)|2 for GOE FRM show qualita-

tive agreement with W FRM
n0

(t). The survival probability and

|Z(β + it)|2 for β = 0 decay initially as J 2
1 (εt)/(εt)

2 and

all curves in Fig. 1 (b) show a correlation hole. However, this

comparison has limitations, since in quench dynamics C
(α)
n0

cannot be chosen independently of H0 and H as done for the

thermofield state. Contrary to |Z(β + it)|2, Wn0
(t) depends

on the quench protocol.

Figure 1 (c) depicts the survival probability for the spin

model with different disorder strengths. The curves are av-

erages over disorder realizations and 0.1N initial states with

energy in the middle of the spectrum. Even deep in the chaotic

regime (h = 0.5), the decay of 〈Wn0
(t)〉 is slower than that

for the FRM model, being bounded by Eq. (4). This is caused

by two related factors typical of realistic systems with two-

body interactions: the Gaussian shape of the DOS [54] and

the lack of full ergodicity of the eigenstates.

Using as a reference the steps for the analytical deriva-

tion of G(E) for FRM, namely that the R2 function splits

into the DOS and the two-level cluster function, we look

for an expression that can reproduce the evolution of the

chaotic spin model. We take into account the following fea-

tures of the realistic system: (i) the Fourier transform of

a Gaussian LDOS gives a Gaussian decay at short times,

e−w2t2 , where w is the width of the energy distribution [35–

37, 39, 40], (ii) this distribution is bounded in energy [42, 43]

and nearly constant at the edges, which causes a power-

law behavior ∝ 1/t2; (iii) the presence of level repulsion

induces the correlation hole at long times. These aspects,

together with the saturation of 〈Wn0
(t)〉, motivate the ex-

pression 〈Wn0
(t)〉=

1−〈Wn0
〉

N−1

[

N g(t)
g(0) − b2

(

wt
N

)

]

+ 〈Wn0
〉,

where g(t) = e−w2t2 + A(1 − e−w2t2)/(w2t2) and A is a

fitting constant. Apart from the first term, which depends on

the shape and tails of the energy distribution, this equation is

equal to Eq.(4). It is impressive that with a single fitting con-

stant, our expression captures so well the entire evolution of

〈Wn0
(t)〉 for h = 0.5, as seen in Fig. 1 (c).

The inset of Fig. 1 (c) confirms that b2 is the appropriate

function to describe the correlation hole also for the chaotic

spin system. The h = 0.5 curve follows closely the FRM an-

alytical expression. This indicates that the long-time behavior

of realistic chaotic many-body systems (before saturation) de-

pends only on the correlations in the eigenvalues, not on de-

tails of the model, such as shape of the DOS and structure of

the eigenstates.

The origin of the 1/t3 decay for the FRM model is the

square-root edge of the DOS. This power-law exponent is ob-

served also for the Sachdev-Ye-Kitaev (SYK) model [12, 55],

where the DOS is also semicircle at the edges [56, 57] and

for 1 + 1 dimensional conformal field theories with a gravity-

dual [32]. Since field theories with holographic dual set

bounds to certain dynamical coefficients [58], one may specu-

late whether the 1/t3 behavior is a general bound to the decay

of the survival probability and related quantities of generic lat-

tice many-body quantum systems. If we replace the Gaussian

distribution of the random entries of the FRM by distributions

involving higher even powers, it is possible to achieve DOS

whose tails go as |E − E0|ξ where ξ = 3/2, 5/2, . . . and E0

is the edge of the spectrum [59], which would lead to decays

faster than 1/t3. Whether there may be realistic systems with

such DOS is an open question.

Density Imbalance.– Level repulsion manifests itself not

only as the correlation hole of the survival probability. It is

revealed also in the long-time evolution of experimental ob-

servables such as the spin density imbalance.

The curves for the density imbalance for the FRM model

and for the disordered spin system with different values of h
show a dip below the saturation value, as illustrated in Fig. 2

(a). As h increases above 0.5 and the system moves away from

the chaotic region, the hole gets less deep, its time interval

shrinks, and the moment when it first appears gets deferred

to longer times. This is consistent with the fact that the long-

range correlations in the eigenvalues diminish as the realistic

system moves away from the chaotic region.

To obtain an analytical expression for the den-

sity imbalance, we refer to the equation O(t) =
∫

K(E)e−iEtdE + O for a general observable O, where

K(E) =
∑

α1 6=α2
C

(α1)
n0

C
(α2)
n0

Oα1α2
δ(E − Eα1

+ Eα2
)

with Oα1α2
= 〈ψα1

|O|ψα2
〉, and O =

∑

α |C
(α)
n0

|2Oαα

is the infinite time average. In the FRM model,

where the eigenvalues, eigenstates, and Oα1α2
are

statistically independent, we can separate K(E) into

〈
∑

α1 6=α2
C

(α1)
n0

C
(α2)
n0

Oα1α2
〉FRM = O(0) − O

FRM
and

〈δ(E − Eα1
+ Eα2

)〉FRM, already computed for Eq. (4).
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FIG. 2: Density imbalance for FRM and spin model. In (a) from

bottom to top: FRM (numerical and analytical curves) and disorder

strength h = 0.5, 1, 1.5, 2, 2.5; 1/t3 (dashed). In (b) and (c): numer-

ical result (solid) and fitting (squares) for h = 0.5. In (b): short-time

dynamics with Gaussian behavior. In (c): long-time evolution fitted

with a power-law decay and the b2(t) function. Averages over 104

random realizations, N = 12 870.

Using the reasoning above, we obtain the following expres-

sion for the density imbalance,

IFRM(t)=
I(0)− I

FRM

N − 1

[

4N
J 2
1 (εt)

(εt)2
− b2

(

εt

4N

)]

+ I
FRM

,

(5)

where I
FRM

= 2I(0)/(N + 2). The result is very similar to

that for the survival probability, leading also to the 1/t3 decay

of the oscillations, as seen in Fig. 2 (a).

The decay of the density imbalance for the spin model is

bounded by Eq. (5). It shows a power-law behavior also in

the chaotic domain. This shows that algebraic decays are not

exclusive to systems in the vicinity of a localized phase.

The relaxation of I(t) for the disordered spin model was

investigated in [51]. There, a fitting function with 9 free pa-

rameters was proposed for the intermediate times, where the

power-law behavior is observed. We add to this picture the

description of the short- and long-time dynamics.

The imbalance for the spin system follows closely what

happens for the survival probability. The initial decay, up to

wt ∼ 2, is Gaussian, as shown in Fig. 2 (b).

The correlation hole emerges at long times and is shown

in Fig. 2 (c). The numerical curve for h = 0.5 is fitted with

the function At−B − Cb2
(

wt
N

)

, where A, B, and C are fit-

ting constants. We use the same b2(t) from the fitting for the

survival probability in Fig. 1 (c). The agreement is extremely

good, covering a large time interval all the way to saturation.

Out-of-time-ordered correlator.– Analogously to what hap-

pens for the density imbalance, the evolution of the OTOC for

the FRM model is initially very fast and later shows oscilla-

tions that decay as 1/t6. The OTOC involves the 4-point cor-

relation function R4(Eα1
, Eα2

, Eα3
, Eα4

) derived from the

ensemble average 〈δ(E−Eα1
+Eα2

−Eα3
+Eα4

)〉FRM. R4

can be expressed as the determinant of a single spectral ker-

nel which is known explicitly [53]. For short and intermediate

times, the leading contribution to the Fourier transform of R4

is proportional to J 4
1 (εt)/(εt)

4, which causes the 1/t6 decay.

At long times, b22(Dt/2π) becomes dominant and causes the

correlation hole.

The 1/t6 behavior of the OTOC is shown in Fig. 3 (a). The

agreement between the numerical data and the analytical pre-

diction from FRM is very good. In Fig. 3 (b), the analytical

curve for the FRM model is compared with the decay for the

disordered spin system with h = 0.5. The decay of the latter

is slower and exhibits a Gaussian behavior for short times.
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FIG. 3: OTOC for FRM (a) and compared with the disordered model

for h = 0.5 (b). In (a): J 4

1 (εt)/(εt)
4 (solid), numerical results

(circles), 1/t6 (dashed). In (b): FRM (bottom) and h = 0.5 (top);

numerical curve (solid) and Gaussian fit (squares). Averages over

340 (FRM) and 100 (spin model) disorder realizations; N = 3432.

The survival probability, and therefore also I(t) and

Otoc(t), are not self-averaging [60]. The size of the ensemble

of random matrices needed to reasonably expose the correla-

tion hole for the density imbalance and OTOC is significantly

larger than for 〈Wn0
(t)〉.

Conclusion.– We have found analytical expressions for the

evolution of the survival probability, density imbalance, and

OTOC for a FRM model. These observables are central to

theoretical and experimental studies of quantum systems out

of equilibrium. The analytical findings were compared with

numerical results for a 1D disordered spin-1/2 system. The

power-law decays, for intermediate times, and dips below

the saturation values, for longer times, revealed by the FRM

model appeared also for the chaotic spin model. The identi-

fication of these generic properties helped us finding and jus-

tifying functions that describe very well the numerical evo-

lution of the spin model at different time scales. This ap-

proach can be used also for describing equivalent realistic lat-

tice many-body quantum systems with level repulsion.
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