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We study the dynamics of a waveguide made of coupled resonators with a sinusoidal modulation of
the resonance frequencies. We present a modulation scheme that achieves complete dynamic local-
ization and is experimentally suitable for optical cavities. Furthermore, we highlight the importance
of the way the modulation is turned on and off. One striking consequence is that, while a state
returns to its starting amplitude at the end of every cycle, it can also be fully time-reversed if the
modulation is turned off mid-cycle. Finally, we show that localization is always achieved when the
modulation envelope is adiabatic with respect to the oscillation frequency. The results are exper-
imentally feasible using existing integrated photonic technologies, and are relevant to applications
like tunable delay lines, dispersion compensation, and imaging.

The localization of classical and quantum waves has
been extensively researched since it was first studied by
Anderson in disordered systems1,2. Localization can also
occur in regular but time-dependent potentials – for ex-
ample when a suitably-designed, time-periodic electric
field is driving a charged particle on a lattice3. This
dynamic localization effect, in which the wave-function
returns to its starting value at the end of every cycle, has
been the object of a number of theoretical studies4–6, and
has also been experimentally demonstrated using cold
atom gases7,8. An analogous effect has also been stud-
ied for photons in a lattice of coupled waveguides9–13, in
which the role of time is taken by the spatial coordinate
in the propagation direction, and the localization ana-
logue is the suppression of diffraction of a propagating
beam.

True dynamic localization of light (i.e. in time as op-
posed to space) is the ultimate realization of slow light,
as it corresponds to zero group velocity – and is thus in-
teresting for applications such as optical buffering14,15.
Here, we discuss how dynamic localization can be imple-
mented in a coupled-cavity waveguide (CCW)16 using a
sinusoidal temporal modulation of the resonance frequen-
cies of the constituent cavities. Unlike the only previous
demonstration of localization in a CCW17, which requires
a modulation of the intra-cavity coupling constants, our
approach is straightforward to implement using standard
electro-optic modulators18,19. In addition, we also dis-
cuss the significance of the micromotion associated to
the dynamic localization, i.e. the evolution of the state
at times that are not integer multiples of the modulation
period. This has been largely ignored in previous works,
but can in fact produce significant effects. A striking
illustration is the fact that a wave-packet can be fully
time-reversed if the localizing modulation is stopped at a
precise moment. Such a time-reversal operation is impor-
tant for dispersion compensation20 and imaging through
complex media21.

We start our discussion with the CCW illustrated in
Fig. 1(a). Following Refs.22,23, we write the coupled-
mode theory equation of the system in terms of the elec-
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FIG. 1. (a): Schematic of the system of coupled resonators
with a coupling constant J and a time-dependent resonance
frequency ω0 +ωn(t). We set the distance between resonators
to 1, and furthermore consider a spatially periodic modulation
with period a = 2. (b): Band diagram of the Floquet quasi-
energies for ωn(t) = A0 cos(Ωt + nπ), for J = 0.1Ω and for
several different values of A0. (c): Same as (b), for J = 0.4Ω.
The dashed lines illustrate the A0 = 0 dispersion folded into
the temporal Brillouin zone.

tric field amplitude αn in each resonator,

∂αn
∂t

= i(ω0 + ωn(t))αn + i
∑
m

Jnmαm, (1)

where Jnm = J for m = n ± 1, and 0 otherwise.
We focus specifically on a modulation of the form
ωn(t) = An cos(Ωt + ϕn). Under the gauge transfor-

mation βn(t) = αn(t)× exp
(
−iω0t− i

∫ t
0
ωn(t′)dt′

)
, the

time-dependence of ωn(t) translates into a gauge field,
appearing as a complex time-dependence of the coupling
coefficients. We derive this explicitly in the Supplemen-
tary Information24, and we study perturbatively the dy-
namics of βn(t) in the high-frequency limit of J � Ω. In
this limit of small modulation period T = 2π/Ω, the ef-
fective time-independent equations of motion governing
the stroboscopic time evolution at times qT , q ∈ Z have
the form:

∂βn
∂t

= i
∑
m

(
J (1)
nm + J (2)

nm

)
βm, (2)
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The first- and second-order effective coupling constants
are given by

J (1)
nm = JnmJ0 (ρnm) , (3)

J (2)
nm = −2i

∑
p

JnpJpm× (4)

∑
k>0

(−1)k

kΩ
Jk(ρnp)Jk(ρpm) sin(k(ϕnp − ϕpm)),

where

ρnpe
iϕnp ≡

(
An
Ω
eiϕn − Ap

Ω
eiϕp

)
, (5)

for arbitrary integer n, p, and Jn(x) is the n-th or-
der Bessel functions of the first kind. This result can
also be derived from the high-frequency approximation of
the time-dependent Hamiltonian formalism used in cold-

atom systems25–28. Note that the second-order term J
(2)
nm

is purely imaginary, and hence non-reciprocal, and can be
used for applications such as optical isolation29, or as a
basis for a photonic topological insulator30. This is how-
ever beyond the scope of the current work – our interest
is instead light localization, for which the requirement is
simply that the effective couplings go to zero. We note
that the original system of Ref.3 is straightforward to
replicate with a modulation of the form An cos(Ωt) =
nA0 cos(Ωt). However, this choice requires a spatial gra-
dient in the amplitude, which is difficult for optical res-
onators. In our scheme, by setting ωn = A0 cos(Ωt+nπ),
the resulting effective couplings are J (1) = JJ0(2A0/Ω),
J (2) = 0, and so localization occurs when 2A0/Ω is a
root of J0(x). This constant-amplitude scheme is much
more feasible for optical cavities, but, interestingly, it is
difficult for electronic systems, as it corresponds to an
electric field with microscopic spatial periodicity.

The modulation A0 cos(Ωt + nπ) is periodic both in
space and in time, with a spatial period a = 2 (Fig.
1(a)). The Floquet-Bloch theorem thus guarantees that
any solution is a superposition of states of the form

αk,j(x, t) = eikxe−iω0t−iεj(k)tuk,j(x, t), (6)

where k ∈ [−π/a, π/a] is the Bloch momentum, εj(k) ∈
[−Ω/2,Ω/2] is the quasi-energy, j labels different Floquet
bands, and uk,j(x, t) is periodic both in space and time,
with spatial period a and temporal period T . For our
constant-amplitude modulation scheme, we compute the
quasi-energy band structure εj(k), for various parame-
ters J and A0. In Fig. 1(b), this is shown for J = 0.1Ω.
With no modulation, the dispersion is simply given by
εj(k) = ±2J cos(ka/2), as for a regular CCW with two
cavities included in the elementary cell. Furthermore,
since J/Ω� 1, in the presence of modulation the bands
are well-described by the perturbative prediction, namely
εj(k) = ±2J (1) cos(ka/2). For A0 = 1.2Ω in particu-

lar, J (1) ≈ 0, and the corresponding band appears flat,
as expected for dynamic localization. This observation
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FIG. 2. Wave-packet propagation |ψ(x, t)|2 inside the CCW
with J = 0.1Ω, with a modulation ωn = A0 sin(Ωt+nπ), A0 =
1.2Ω, turned on and off at times 10T and 20T , respectively.
(a): Real-space propagation. (b): Resonance frequency vs.
time for the cavities at positions x = 0 and x = 1. (c): Field
intensity in the cavity at x = 0, for a pulse propagating in an
unmodulated (red) and a modulated (blue) chain.

is related to the light-stopping scheme of Ref.31, where
the actual photonic dispersion (as opposed to the Flo-
quet quasi-energy band) is adiabatically flattened. The
difference here is that the modulation is generally non-
adiabatic – in fact the modulation frequency Ω is larger
than the starting CCW badwidth 4J . However, the time-
averaged group velocity is proportional to ∂ε(k)/∂k, and
so approximately zero for all values of k. In Fig. 1(c), we
present the Floquet band structure for J = 0.4Ω. This
value of the coupling constant J is large enough to break
the perturbative analysis, and the bands no longer fol-
low the simple form prescribed by the effective coupling.
Furthermore, they are never flat inside the entire k-space
for any value of A0 when the limit J � Ω is not fulfilled.

In Fig. 2 we provide an illustration of the localiza-
tion process by simulating the propagation inside the
CCW, starting with a Gaussian wave-packet given by
ψ(x, 0) = exp(−(x−x0)2/(2σ2

x) + ik0(x−x0)). This cor-
responds, in k-space, to a wave-packet centered at k0,
with a standard deviation σk = 1/σx. We set k0 = π/2
and σx = 2, so as to have a broad k-space distribution.
The chain is unmodulated in the beginning and in the end
(A0 = 0), while a modulation of the form A0 sin(Ωt+nπ)
is applied for 10T < t < 20T . The evolution of the
state, computed by numerically solving eq. (1) using the
Runge-Kutta method, is shown in Fig. 2(a). Initially, the
wave packet propagates with a group velocity given by
2J cos(k0) = 0.2Ω. The starting position is x0 = −4π,
such that at time t = 10T the wave-packet is centered
around x = 0. Then, during the modulation interval,
the state stays perfectly localized around this position.
Afterwards, the wave-packet continues its propagation
without any distortion caused by the localization. The
broadening of the pulse is only due to its broad k-space



3

0 5 10 15 20 25 30

tΩ/2π

-1

-0.5

0

0.5

1

k
,
[π
]

0

max

0 5 10

tΩ/2π

0

0.5

1

k
,
[π
]

0 5 10

tΩ/2π

0

0.5

1

k
,
[π
]

(a)

(b) (c)

FIG. 3. (a): Fourier-space time evolution |ψ(k, t)|2 for the
wave-packet and modulation scheme of Fig. 2. (b): Time evo-
lution of a starting state ψ(k, 0) = 1 for k = [0, π], ψ(k, 0) = 0
otherwise, under the modulation ωn(t) = A0 sin(Ωt+ nπ) for
2A0/Ω = 2.4. (c): Same as (b), for 2A0/Ω = 4.

distribution, i.e. the group-velocity dispersion is non-
negligible. This is also illustrated in Fig. 2(c), where we
show the amplitude of the cavity at x = 0 vs. time, and
compare it versus the case of no modulation (red). As
can be seen, the effect of the modulation is only to delay,
but not to distort, the evolution of the field amplitude.
We stress that Fig. 2 illustrates the exact time-evolution
of the wave-packet, i.e. the approximation of eqs. (2)-(5)
was not assumed.

The dynamic simulation shown in Fig. 2 perfectly con-
firms the localization expected from the perturbative re-
sult above. It is important to note that the latter only
holds true for time periods that are an integer multiple
of T . Specifically, when the effective coupling constant
is J (1) = 0, the state ψ(x, t) at t = T has to return to
its starting value at t = 0, but there is no particular
constraint on its evolution for intermediate times, which
is sometimes referred to as the micromotion of a modu-
lated system26. The small oscillations of the blue curve
of Fig. 2(c) are thus expected, and the effect of this mi-
cromotion is illustrated further in Fig. 3(a), where we
plot the k-space distribution of the state of Fig. 2 as a
function of time. During the time intervals with no mod-
ulation, the Bloch momentum is conserved, and |ψ(k, t)|2
stays constant. The modulation, however, has spatial
periodicity a = 2, and thus conserves k only modulo π.
Consequently, we observe complete, oscillating transfer
of energy between the k and k + π components of the
state during the modulation, with the state returning to
its starting value for every t that is integer multiple of T .

Note that in Fig. 3, we show the full Brillouin zone of
width 2π corresponding to the unmodulated waveguide.
In the presence of modulation, the spatial period is a = 2,
and the Brillouin zone is thus twice smaller. However,
plotting with respect to the Brillouin zone of the unmod-
ulated system allows us to clearly exhibit the oscillations
between the k and the k + π components for the modes

in the underlying waveguide. These oscillations can be
accounted for analytically. Calling αk =

∑
n e

iknαn and
αk = (αk, αk+π), the equations of motion in reciprocal
space are iα̇k = H(k)αk, with

H(k) =

(
2J cos(k) A0 sin(Ωt)
A0 sin(Ωt) −2J cos(k)

)
, (7)

as we show in the Supplementary Information24. This
expression is exact. The Hamiltonian of eq. (7) can be
identified with that of a two-level system driven by an ex-
ternal sinusoidal electric field of the form E0 sin(Ωt)eiωf t.
The diagonal terms in this analogy define the detuning
between ωf and the transition frequency ωr of the two-
level system. On resonance, i.e. for k = π/2, the dynam-
ics of eq. (7) can be solved analytically by defining the
Rabi angle (see e.g.32)

A(t) =

∫ t

0

A0 sin(Ωt′)dt′ =
2A0

Ω
sin2

(
Ωt

2

)
. (8)

For a starting state ψ(π/2, t = 0) = 1, ψ(−π/2, t =
0) = 0, the time evolution is given by ψ(k = π/2, t) =
cos(A(t)), ψ(k = −π/2, t) = −i sin(A(t)). At the end
of a modulation cycle, we always have A(t) = 0, which
means that the k = π/2 components of the pulse return
to their starting amplitude for every modulation ampli-
tude A0. The importance of the choice J (2A0/Ω) = 0
for localization can however be revealed by studying the
remaining k-components. There is no analytic solution
to the differential equations corresponding to eq. (7) for
non-zero diagonal elements, but in Fig. 3(b)-(c) we show
the numerical solution for two values of A0, computed
again with the Runge-Kutta method. The starting state
is ψ(k, 0) = 1 for all k ∈ [0, 1], and ψ(k, 0) = 0 otherwise.
In panel (b), where 2A0/Ω = 2.4, the oscillations are in-
dependent of k. Thus, after one cycle, all of the Fourier
components return to their starting values, as must be
the case for dynamic localization. This is not the case
for other modulation amplitudes: an example is shown
in panel (c), where 2A0/Ω = 4. Similarly, non-trivial
k-dependence is observed for all amplitudes for which
J (2A0/Ω) = 0 does not hold.

Interestingly, the complete transfer between k and k+
π components results in complete time-reversal of any
arbitrary wave-packet, in the sense that

|ψ(x,−t)|2 = |ψ̄(x, t)|2, (9)

where ψ̄(k, t) = ψ(k + π, t), and evolution in an un-
modulated CCW is assumed (see the Supplementary
Information24). Thus, it is possible to start with a light
pulse in a static CCW, apply a specific modulation for a
finite amount of time, and return to a static system con-
taining a time-reversed copy of the starting pulse. This
is illustrated in Fig. 4. In panel (a), we plot the prop-
agation of the same starting pulse as in Fig. 2(a), but
now we turn on the modulation at t = 20T and then
turn it off at t = 25.3T . The time-reversal after the
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FIG. 4. (a): Propagation of the same starting wave packet
as in Fig. 2, but with the modulation applied in the interval
20T < t < 25.3T as shown in (b). (c): Light from a Gaussian
source at x = 0 under a localizing modulation that is adia-
batically turned on and off, as shown in (d), where the black
line is the envelope function A(t). (e)-(f): Same as (c)-(d),
but the width tw of eq. (10) is ten times shorter.

modulation is evident: the pulse reverses direction and
re-focuses back into its starting form. This time-reversal
paradigm is related to the ones discussed in Ref.33,34,
and, compared to previous works demonstrating time-
reversal in a chain of coupled cavities35,36, has the ad-
vantage that the final structure is the same as the start-
ing one – the static underlying CCW. Beyond revealing
the possibility for complete time reversal, another im-
plication of eq. (7) is that the requirement J/Ω � 1,
which we have thus far assumed, can be relaxed for some
practical applications. This condition is needed for com-
plete localization, in which any arbitrary state returns
to its starting amplitude after a full modulation cycle.
However, if the starting state is a pulse centered around
k = π/2 of width ∆k, the condition can be modified to
J cos(π/2+∆k/2)� Ω. This is further illustrated in the
Supplementary Information24.

Finally, we turn our attention to the way the modula-
tion is switched on and off. The modulation schemes of
Fig. 4(b) and Fig. 2(b) have a discontinuity in ωn(t) and
in dωn(t)/dt, respectively, which is not realistic. Thus,
in the modulation scheme ωn(t) = A(t) sin(Ωt+ nπ), we
study the effect when A(t) is smoothly turned on and off.
In this case, the solution above for k = π/2 is still valid,
provided that the Rabi Angle of eq. (8) is computed
including the envelope function A(t). In the Supplemen-
tary Information24 we show that, for an adiabatic switch-
ing of the modulation with respect to Ω, the Rabi angle
A(t) always goes to zero at the end of the modulation,
when the amplitude A(t) goes to zero. This means that
the state at k = π/2 returns to its starting amplitude

regardless of the shape of the envelope. Furthermore, as
discussed earlier, for a fixed-amplitude modulation with
2A0/Ω = 2.4, the oscillations of the k-components do
not depend on k. This altogether means that complete
dynamic localization with a tunable delay time can be
achieved by adiabatically turning on the amplitude from
zero to 1.2Ω and back. This is illustrated in Fig. 4(c)-(f),
where we use a modulation envelope of the form

A(t) =


A0 exp

(
−(t− t1)2/t2w

)
t ≤ t1

A0 t1 < t ≤ t2
A0 exp

(
−(t− t2)2/t2w

)
t2 < t

(10)

This time, the starting state ψ(x, 0) is zero everywhere,
and we have placed a source with frequency ωs = ω0

and a Gaussian pulse-shape S(t) = exp(−(t − 2T )2/T 2)
in the cavity at x = 0. In Fig. 4(c)-(d), we show the
propagation and localization of the emitted light, with
t1 = 10T , t2 = 20.25T , tw = 2π/Ω. Because the enve-
lope is adiabatic for this value of tw, the state returns to
its starting form for any arbitrary interval determined by
t1 and t2. This shows that precise timing control of the
modulation is not needed for an optical delay line. On
the other hand, this also means that, in order to achieve
the time-reversal scheme of Fig. 4(a), the envelope must
be non-adiabatic, and so precise control is needed. The
general condition, as per eq. (9), is that after the modu-
lation, all the k-components of the state are transferred
to k + π. Thus, the precise parameters for a particular
system have to be tuned by solving the time evolution as
prescribed by eq. (7). An example is illustrated in Fig.
4(e)-(f), where t1 and t2 are the same as in panels (a)-
(b), but the temporal on/off width is ten times smaller,
tw = 0.2π/Ω. Complete time reversal is achieved for this
particular set of t1 and t2, and the light is re-focused at
the original source position.

In conclusion, we have shown a scheme for dynamic lo-
calization that is particularly relevant to optical systems,
and we have revealed its connection to a time-reversal op-
eration, achieved when the modulation is switched off in
a well-controlled way. We focused on a coupled-cavity
waveguide for simplicity, which can be implemented ex-
perimentally for example through fibre-based or inte-
grated cavities and electro-optic modulators18,19,24,37,38.
Furthermore, we expect that an expression similar to eq.
(7) – and all the subsequent results – can also be derived
for a standard, continuous waveguide. We discuss this
further in the Supplementary Information24, and suggest
an experimental realization in a waveguide modulated
using the schemes of e.g.39,40 or41,42. In short, our pro-
posal falls within the state-of-the-art feasibility of several
experimental paradigms, and has an array of possible ap-
plications in photonic technologies.
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