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Using a realistic ten-orbital tight-binding model Hamiltonian fitted to the angle-resolved photoemission
(ARPES) data on LiFeAs, we analyze the temperature, frequency, and momentum dependencies of quasiparticle
interference (QPI) to identify gap sign changes in a qualitative way, following our original proposal [Phys. Rev.
B 92, 184513 (2015)]. We show that all features present for the simple two-band model for the sign-changing
s+−-wave superconducting gap employed previously are still present in the realistic tight-binding approxima-
tion and gap values observed experimentally. We discuss various superconducting gap structures proposed for
LiFeAs, and identify various features of these superconducting gaps functions in the quasiparticle interference
patterns. On the other hand, we show that it will be difficult to identify the more complicated possible sign
structures of the hole pocket gaps in LiFeAs, due to the smallness of the pockets and the near proximity of two
of the gap energies.

I. INTRODUCTION

In the iron-based superconductors, the origin of the Cooper-
pairing and the overall phase structure of the superconducting
order parameter is still under debate. Nevertheless, taking into
account the Fermi surface topology of iron based supercon-
ductors, there is a general consensus that the superconducting
state in most of these materials belongs to the A1g symmetry
representation as long as both the electron and the hole Fermi
surface pockets are present in the system1,2. At the same time,
due to the multiplicity of the Fermi surface sheets and multi-
orbital character of the electron states near the Fermi level, the
actual phase structure of the superconducting gap distributed
between various Fermi surface and orbitals is less clear. While
orbital fluctuations together with the electron-phonon interac-
tion favor the conventional “s++” wave superconducting gap
without internal phase shifts3, spin fluctuations and enhanced
interband repulsion originating from the proximity to the an-
tiferromagnetic phase favor the so-called s+−-wave structure
in which the sign of the order parameter changes between the
hole and electron bands.4–6. Furthermore, the situation can
be even richer if the magnetic fluctuations are not so strong
as it is the case in LiFeAs7–9, or when fluctuations at more
than one wavevector compete, as in FeSe10,11. In particu-
lar, it was argued that in FeSe the electronic renormaliza-
tion effects for different orbitals result in orbital selectivity for
the Cooper-pairing11,12, which in turn also affects the overall
magnitude and the phase structure of the superconducting gap.
In LiFeAs, orbital selective renormalization was also recently
observed12,13. Flavours of the s+− pairing symmetry where
the phase of the order parameter is additionally changing be-
tween different hole or electron Fermi pockets have been pro-
posed for this or other Fe-based superconductors8,9,14–16.

One rapidly developing technique to determine the phase
structure of the order parameter makes use of quasiparticle
interference as measured by Fourier transform scanning tun-
neling microscopy (FT-STM). This probe measures the wave-
lengths of Friedel oscillations caused by disorder present in a
metallic or superconducting system, which in turn contains in-

formation on the electronic structure of the pure system. The
subset of the scattering wave vectors q can be enhanced or
not according to the type of disorder and the phase structure
of the superconducting gap, as noted by several groups17,18

and experimentally verified in the cuprate superconductor,
Ca2−xNaxCuO2Cl219,20, where it was shown that QPI inten-
sity at certain q was selectively enhanced or suppressed by
the external magnetic field, consistent with dx2−y2 -wave pair-
ing. Later the same experiment was also performed for the
FeSe0.4Te0.6

21, although the interpretation of the results was
less obvious due to the absence of observable vortices in this
particular experiment.21–25 This methodology is very efficient
if an isolated set of features can be separated and monitored,
as in the nodal d-wave symmetry. However, in multiband sys-
tems with complicated momentum dependence of the order
parameter, it boils down to comparing multiple theoretically-
generated complex patterns with the, usually noisy, experi-
mental picture.

Recently, we proposed a novel method of analyzing the QPI
data from non-magnetic impurities, which does not rely on the
momentum dependence of individual features, but rather upon
integrated indicators, averaged, formally over the entire mo-
mentum space. This method utilizes valuable phase informa-
tion, discarded in usual treatments (see, however, Refs. 26 and
27. It was shown that some integrated indicators, specifically
the antisymmetrized combination of the conductance, behave
qualitatively differently for scattering events accompanied or
not by a change in the order parameter sign. This method
does not require manipulating scattering by magnetic field24,
whose role as creator of artificial vortex “disorder” is unclear.
The derivation in Ref. 24 does not call for any assumption
about the structure of the order parameter in the momentum
space, as long as it either has or does not have regions with
the opposite gap signs. While this derivation was completely
general, it was also confirmed by extensive numerical simula-
tions with finite disorder28. Using this method, the authors of
Ref. 11 were able to identify a sign changing order parameter
in FeSe, and similar conclusions were recently drawn for Li
hydroxide intercalated FeSe as well29.
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In this connection, a question arises whether a more de-
tailed analysis of the same characteristic, namely the antisym-
metrized conductance, can be used to extract more informa-
tion than just an overall sign change. LiFeAs, for which in-
teresting possibilities, such as sign-flipping between the hole
Fermi surfaces, have been suggested9, is therefore a natural
candidate. With this goal in mind, we have extended our pre-
vious analysis to a realistic multiorbital model of LiFeAs. The
electronic structure of LiFeAs was previously measured by
ARPES and fitted to a 10 orbital tight-binding Hamiltonian7.
This provides rather comprehensive information on the orbital
and band structure of this material in the low-energy regime.
Furthermore, the superconducting gap values for each of the
Fermi surface sheets were also measured both by ARPES30,31

and previous STM measurements32–35. This provides an ideal
testing ground for our earlier proposal given the high-quality
STM data available for LiFeAs36–38. Note that for this mate-
rial, the problem of the sign change of the gap between elec-
tron and hole pockets was studied earlier by Chi et al.32 using
ad hoc expressions for the LDOS based on BCS coherence
factors, which were shown in Ref. 24 to be incorrect; never-
theless similar conclusions to [24] were reached. In addition,
an attempt was made to provide a quantitative calculation of
the STM spectra for various impurities such as Mn, Ni or Co
and different gap symmetries39. In this manuscript, we present
a qualitative analysis for realistic band structure, using the cor-
rect observable sensitive to gap sign change, but independent
of the details of impurity wave functions.

As expected, we find that despite the complications intro-
duced by the multiple Fermi surfaces, the distinction between
the s++and s+− can de readily made based on the integrated
antisymmetrized conductance. We further investigate how
various symmetries, discussed in the literature, can be identi-
fied via characteristic q-behavior of the antisymmetrized con-
ductance and could be used for a finer elucidation of the gap
sign structure in iron based materials up to detailed identi-
fication of the gap sign corresponding to different pockets.
Specifically, it is tempting to separates electron-hole and hole-
hole scattering features, and investigate the latter for potential
signature of the sign change. As we show below, while such
a separation is possible, proximity of the two gaps in the two
main hole bands precludes a firm conclusion about possible
sign change between them.

II. NORMAL STATE BAND STRUCTURE AND QPI

We employ the ten-orbital tight-binding model Hamiltonian
fitted to the ARPES measured band structure of LiFeAs sam-
ples by Wang et al.7, where each 5 orbitals correspond to one
of the two Fe-atoms within the unit cell. The doping level
of the system corresponds to n = 6 e−/Fe and the resulting
Fermi surface is shown in Fig. 1(a) and (b) for two values of
kz = 0 and kz = π. Due to the smallness of the Fermi en-
ergies for the small hole pockets of the xz, yz-character they
appear to have stronger kz dependence and close around the
Z point of the Brillouin zone.
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FIG. 1. Cuts of constant energy in LiFeAs for (a) kz = 0, and (b)
kz = π, plotted in the 1-Fe Brillouin zone. Some potential scattering
vectors qiare indicated by the arrows. Chemical potential chosen to
(a) µ = 3 meV and (b) µ = 1 meV corresponding to n = 6 electrons
in the system.

The bare non-interacting Green’s function is given by

Ĝ0(k, ω) =
(
iωn − Ĥ0

)−1

. (1)

where ωn refers to the Matsubara frequency. All quantities
may be considered to be matrices in band or orbital space,
but the unperturbed Green’s function is diagonal in band
space. The local density of state (LDOS) is then found as
ρ(ω) = − 1

π Tr Im
∑

k Ĝ
0(k, ω) where the Tr runs over the

orbital or band index. In the presence of impurities the equa-
tion determining the full Green’s function reads

Ĝ(k,k′, ω) = Ĝ0(k, ω) + Ĝ0(k, ω)t̂(k,k′, ω)Ĝ0(k′, ω),
(2)

where the last term describes multiple scattering on im-
purities. In the following we consider multiple scattering
from a single pointlike spherically symmetric non-magnetic
impurity40,41, i.e. the impurity potential Û is taken to be well-
localized and independent of spin. The t-matrix is then no
longer momentum dependent, and is related to the impurity
potential by t̂ = Û + ÛĜ0t̂.

In such a case the solution for the t-matrix may be written,

t̂(ω) = [1− Û
∑
k

Ĝ(k, ω)]
−1

Û . (3)

Thus the position dependent correction to the LDOS reads
may be written ρ(q, ω) = ρ(ω) + δρ(q, ω) with

δρ(q, ω) = − 1

π
Tr Im

∑
k

Ĝ0(k, ω)t̂(ω)Ĝ0(k + q, ω) (4)

where in the last equation we employ the analytic continuation
to the advanced (retarded) Green’s functions.

We have not yet specified the form of the impurity poten-
tial in band or orbital space. Intuition suggests and density
functional theory calculations confirm to a very good approx-
imation that Û is diagonal in orbital space42. In the follow-
ing, until specified otherwise we assume the impurity poten-
tial to be diagonal in the orbital space with equal amplitudes
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FIG. 2. (a) Schematic representation of possible scattering events
in a one electron and one hole pocket system. (b),(c) Quasipar-
ticle interference (momentum dependent correction to the LDOS)
δρ(q, ω = 0) maps shown in the full Brillouin zone for Born limit
scattering in the orbital space U = 1 meV. Cuts (b) for kz = 0 and
(c) kz = π. The sign of the correction to the density of states for the
intraband scattering reflects whether the band is hole-like (positive)
or electron-like (negative)

for each orbital. The resulting normal state quasiparticle inter-
ference (momentum-dependent correction to the local density
of states) map is shown at zero frequency in Fig. 2 for the
two characteristic kz cuts and employing the Born approxi-
mation with a weak scattering potential U = 1 meV. Com-
paring the patterns to the ones found in experiment in Ref.
35, it appears that figure 2(b) is in closest agreement, with
well defined intraband (q ≈ 0) and interband (q ≈ (π, 0))
peaks.43 The structure of the Fermi surface and the character
of the carriers can be easily deduced from the patterns. Once
the sign of the impurity potential is fixed (we assume it to be
positive for clarity), the scattering within hole or within elec-
tron pockets are clearly separable. While the scattering within
hole pockets at q = 2kF is positive, it is negative for the elec-
tron ones. This is determined by the initial sign of electronic
dispersion with respect to the chemical potential. The inter-
band scattering between electron and hole pockets contains
both positive and negative contributions to δρ. In particular,
there are two processes of opposite signs, see Fig. 2 (a). The
first one is hole-like (positive) and another one is electron-like
(negative). Observe that if the hole pocket is larger than the
electron one, the hole-like scattering can appear in the second
BZ, while the electron-like is in the first BZ, and vice versa
if the pocket sizes are reversed. Thus the interband peaks in
Fig.2(b),(c) can be either positive or negative depending on
the relative size and ellipticity of the pockets.

We first examine the QPI peaks that occur due to the com-
plicated Fermi surface in the normal state. The strongest con-
tribution to the LDOS is given by scattering between like or-
bitals within the large hole pocket (of xy-character), as well
as within the small hole pocket (xz, yz-character). The in-
terband scattering between electron and hole pockets, again
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FIG. 3. Cuts taken from figure 2. δρ(q, ω = 0) calculated along the
symmetry routes Γ → X (left panel) and Γ → M (right panel) in
the first Brillouin zone for kz = 0 (a),(b) and kz = π (c),(d). The
corresponding scattering wavevectors at the Fermi surface cuts are
shown in figure 1.

of xz,yz-character (Fig. 1), is also significant. To visualize
the corresponding structure of the scattering peaks we present
in Fig. 3 the δρ(q, ω) along the Γ → X and Γ → M high
symmetry paths of the first BZ for two different kz cuts. Ob-
serve that all the scattering events can be clearly identified
with processes corresponding to either intraorbital intraband
and interband scattering. In particular, as shown in Fig. 1,
scattering vectors q1 till q4 refer to the intra pocket scattering
and the amplitude of intra hole and intra electron pocket scat-
tering peaks differs in sign. While the correction to the LDOS
from the scattering on the electronic band has a negative sign,
the intrapocket scattering for the hole-like bands is positive
(for assumed Vimp > 0; all signs reverse for the opposite case
in the weak scattering limit). This difference is related to the
overall sign of the electron and hole dispersion. This infor-
mation can be used to identify interpocket scattering vectors
between the pockets of the same character. For example, q5

refers to the scattering between the small hole pockets, while
q8 is the scattering between two electron pockets located at
X and Y point of the BZ. For interband scattering we iden-
tify the scatterings between an electron pocket and the large
hole pocket which are labeled as q6 and q7 by examining the
corresponding energy cuts in the first BZ.

Once the scattering events in the Born limit are understood,
we should mention that by increasing the impurity scattering
strength we find within T-matrix that there are also interorbital
scattering components introduced for example between larger
and smaller hole pockets, which are however still weaker than
the intraorbital ones. In the following, however, we proceed
directly to the superconducting state.
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III. SUPERCONDUCTING STATE

Superconducting gap magnitudes and their angular varia-
tions on the electron and hole pockets are known for LiFeAs
from ARPES7,30,31 and STM34 measurements yet their relative
phases are unknown. In particular, the magnitude of the su-
perconducting gap for the small hole pockets is ∆h = 5 meV,
for the large hole pocket ∆H = 2.5 meV and for the elec-
tron pockets ∆e ≈ 3 meV. These measurements do not fix
the gap structure completely, however, because the relative
phases are unknown. There have been a number of theoret-
ical proposals regarding the phase structure of the supercon-
ducting gap in LiFeAs. In the original analysis using spin-
fluctuation mediated Cooper-pairing performed by Wang et al.
7 using the tight-binding band structure discussed above, the
usual s+−-wave symmetry of the superconducting gap with
an overall change of sign between electron and hole pock-
ets was found. On the other hand, the calculated gaps on the
small Z-centered pockets were too small compared to exper-
iment. Several subsequent works explored ways to cure this
discrepancy9,13,14. In Ref.9, it was pointed out that once the
spin fluctuations are relatively weak, which seems to be the
case in LiFeAs44, there are several s-wave channels which
are nearly degenerate9. Most importantly, these s-wave states
may involve sign changing gap on the two hole pockets9 as
well as orbital-antiphase s−wave gap13, which is stabilized
when the pairing interaction is closer to being diagonal in or-
bital space than band space8.

Note that all of these works claim to be roughly consis-
tent with existing ARPES experiments, but find different sign
structures of the gaps on the various Fermi surface sheets. In
the following, we compute the QPI signatures of each of the
s−wave states, which should help to identify the particular
symmetry of the order parameter in LiFeAs. In real STM mea-
surements, electrons from a range of kz states are involved in
the tunneling process, so no meaningful choice of a single kz-
cut is possible. In 2D systems like cuprates, the influence of
the third momentum dimension is negligible, but in LiFeAs
this is not the case (Fig. 1). While electron and large hole
pockets correspond to bands that are barely dispersing in the
kz-direction, the same is not true for he small hole pockets.
Nevertheless, empirically the QPI data on LiFeAs seem to
contain large scattering vectors that connect the small hole
pockets with the electron pockets, suggesting that the kz = π
states play an essential role. With this in mind, we continue
our calculation with kz = π where all pockets are visible on
the Fermi surface.45

In the superconducting state, Eq. 4 is generalized to

ρ(ω) = − 1

2π
Tr Im

∑
k

(τ0 + τ3)Ĝ0(k, ω) , (5)

where τ0 and τ1 are Pauli matrices in Nambu (particle-hole)
space. We show the total density of states in Fig. 4 for the
gap structure (∆h,∆H ,∆e) as determined by ARPES. A typ-
ical U -shaped spectrum is found with all three gaps visible.
All the gaps are well pronounced in the spectrum. At ener-
gies above the coherence peaks, normal state properties are

0
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FIG. 4. Density of states in the superconducting phase ρ(ω). In-
tegrated over the full Brillouin zone and in presence of all three
hole pockets at kz = π. Vertical dashed lines indicating gap val-
ues ∆h = 5 meV, ∆H = 2.5 meV and ∆e = 3 meV.

recovered, showing a weak particle hole asymmetry. Hence,
the antisymmetric part of the correction to the LDOS can be
found as

δρ−(q, ω) = Tr Im
∑
k

τ3Ĝ
0(k, ω)t̂(ω)Ĝ0(k + q, ω), (6)

where the t-matrix in the Nambu space is given by

t̂(ω) = [1− τ3Û
∑
k

Ĝ(k, ω)]
−1
τ3Û (7)

and τ3 is the corresponding component of the Pauli matrix.
In the following we will consider various representation of
the phases of the superconducting gap on the Fermi surface
pockets. However, we will also study the role of the im-
purity potential in changing the characteristic features of the
δρ−(q, ω).

We remind the reader of the basic finding of our previous
analysis. The peculiar behavior of the antisymmetrized cor-
rection to the local density of states due to non-magnetic im-
purity was evaluated by us previously for the simple model
of two parabolic bands (one hole-like and one electron-like)
crossing the Fermi level within the T-matrix approximation.24

It turns out that this quantity contains the term

δρ−(ω) ∝ Im
∆e∆h√

ω2 −∆2
e

√
ω2 −∆2

h

(8)

which is either negative in the frequency interval between ∆e

and ∆h if the electron and the hole gaps are out of phase (s+−)
or is a sign changing function between ∆e and ∆h if the elec-
tron and the hole gaps are in phase (s++). This correction is
the strongest for the large q scattering between electron and
hole pockets. Therefore, our original proposal in Ref.24 was
based on plotting the interband contribution to the local den-
sity of states at large momentum transfer. However, this term
also remains clearly observable even if one sums all contri-
butions and for the realistic model system. In particular, we
demonstrate below that for the different magnitude supercon-
ducting gaps on the hole and the electron pockets, the charac-
teristic behavior of the sign changing gap is also visible in the
total δρ−(ω) as is the case for LiFeAs.
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A. s+−-wave gap: impurity potential in orbital and band
bases

Before we start our analysis by studying the different possi-
ble gap structures, we need to point out the importance of the
actual model used for the impurity. First, we consider an im-
purity which is diagonal in orbital space, V `1`2imp = Uδ`1`2 , and
consider the effect of the potential strength U on our ability to
identify sign-changing gaps. For simplicity, we first consider
the usual s±-wave superconducting gap i.e., the overall phase
of the gap changes from 0 to π between electron and hole
pockets. In Fig.5 we show the bias dependence of the full mo-
mentum space integrated correction to the LDOS in the Born,
intermediate and strong scattering limit in the presence of all
three hole pockets obtained by

δρ−(ω) =
∑
q∈Ω

δρ−(q, ω), (9)

where the integration is over the entire momentum space, or,
in practical application, over a well defined area Ω around the
scattering peaks24.

The peculiar behavior of the total δρ−(ω) summed over all
q wave vectors provides valuable information on whether the
gap is a sign changing function itself without addressing the
actual symmetry or detailed structure of the gap. This is es-
sentially because the contributions arising from wave vectors
that connect bands with order parameters of the same sign
have negligible amplitude compared to those involving sign
changes24. This knowledge is important, especially if it turns
out to be difficult experimentally to address the actual symme-
try of the gap within QPI, since the sign-changing gap func-
tion is usually a strong hint in favor of unconventional super-
conductivity. Thus, even the general statement on the sign-
changing gap signatures observed from the antisymmetrized
correction to the local density is of general interest.

Comparing the Born limit with U = 1 meV shown in
Fig.5(b) to the result of the intermediate strength scattering
U = 10 meV shown in Fig. reffig:Fullqint(a), we find them in
close agreement with each other. The clear “even” behavior
of δρ−(ω) for the sign changing s-wave state and the “odd”
one for the s++ state are expected.24 Here we use the impre-
cise terms ”even” and ”odd” behavior of the antisymmetrized
LDOS to refer, respectively, to single-sign, resonant behavior
of δρ− as a function of bias between the gap energies for the
s+− state and the weaker response with a zero-crossing for
the s++ state.24

The characteristic signal changes as soon as we introduce
stronger scattering amplitudes U = 0.2eV in Fig. 5(c). An in-
gap bound state develops for s+− symmetry, moving from the
gap edge toward smaller energies with increasing scattering
strength. The occurrence of in-gap bound states is of course
itself a strong hint toward a sign change of the order param-
eter; nevertheless the distinction between even and odd δρ−

signals in the bias region between the two gap energies re-
mains unambiguous, so the antisymmetrized LDOS analysis
may also be used as a test of gap sign change after subtracting
any bound states24,29.
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FIG. 5. Antisymmetrized q integrated correction to the LDOS
δρ−(ω) for non-magnetic impurity scattering diagonal in orbital
space. (a) intermediate limit full t-matrix calculation U = 10 meV,
(b) Born approximation U = 1 meV and (c) unitary limit full t-
matrix calculation U = 0.2eV integrated over the full Brillouin zone
and in presence of all three hole pockets at kz = π. Vertical dashed
lines indicating gap values. Result is shown with solid lines for con-
ventional s+−, dashes lines for s++.

While for a general statement of the sign change this is suf-
ficient, the distribution of signs over the different pockets is
not determined by this procedure. LiFeAs, with its well stud-
ied Fermi surface, is a promising material for addressing pos-
sible scattering events separately. In order to use the known
fermiology to restrict our integration range to a well defined
area of q-space and study the response in an experimentally
relevant case, we consider scattering in band space, where we
can select scattering events simply by including or excluding
specific pockets in the scattering and allowing all intra and
interband scattering with similar magnitudes. This form of
impurity, when transformed to orbital space, corresponds to
a non-local impurity with strong interorbital scattering. Most
importantly, an inclusion of the non-local corrections to the
impurity potential results in new scattering wave vectors (e.g.,
the one between inner and outer hole pockets, absent for the
purely local impurity defined in orbital space) and different
distribution of the intensity among them.

In particular, in Fig.6(a) the q integrated scattering is shown
in the Born limit. ChoosingUinter = Uintra = 1 meV, we find
a similar behavior for the s++ and s+− case to those shown
previously in Fig.5 for the impurity potential defined in orbital
space. This indicates that the behavior is universal and does
not depend on the way the impurity potential is introduced.

In realistic STM experiments, the measurements are done
at finite yet very low temperatures. As we have shown previ-
ously in Ref. 24, a thermal broadening smears out the clear
peak structure with increase of temperature. Nevertheless, as
we show in Fig. 7, the characteristic features of the s+− and
s++-states remains still visible up to T = 0.6Tc. Here, the
temperature dependence is introduced using BCS-type behav-
ior of the gap magnitudes on each Fermi surface pocket and
thermally averaging the antisymmetrized correction to the lo-
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FIG. 6. Antisymmetrized q integrated correction to the LDOS
δρ−(ω) for non-magnetic impurity scattering potential diagonal in
the band space and in the Born limit Uinter = Uintra = 1 meV. (a)
sum of all inter and intraband scatterings, (b) integrated q area con-
taining large hole and electron pocket scattering, (c) integrated q area
containing large hole and small hole pocket scattering and (d) small
hole and electron pockets scattering. Dashed vertical lines indicate
the magnitudes of the corresponding gaps. Solid black curves re-
fer to the conventional s+−-state, with all hole pocket gap signs the
same, and opposite to that on the electron pockets (Fig. 8(B)). The
dashed black curves correspond to s++, the solid red line refer to
the state containing a sign change of the gap on the large hole pocket
Fig. 8(C), while the dashed red one corresponds to the sign change
on small hole pockets (Fig. 8(D)).

cal density of states

〈δρ−(Ω)〉 ≡
∫ ∞
−∞

dωδρ−(ω)

[
−∂f
∂ω

(ω + Ω)− −∂f
∂ω

(ω − Ω)

]

B. Other possible A1g-symmetry states with sign-change gap
between hole pockets

Due to the relative weakness of the spin fluctuations at the
wave vector corresponding to the scattering between electron
and hole pockets in LiFeas46, it has been proposed9 that the
distribution of the phases of the superconducting gap magni-
tudes on the Fermi surface sheets could be different than it
is in the conventional s+−-wave scenario. Overall the gap
would still possesses the global A1g-symmetry, yet the phase
structure could be richer. Some such states are depicted in
Fig.8.

The natural question arises whether QPI could be used to
determine these additional phase shifts. We first note that the
A-state has an additional sign change between two tiny hole
pockets, located near the Γ-point. For the QPI it would mean
to search for the characteristic features in δρ−(ω) for small
scattering wavevectors (q4 and q5), which is in general diffi-
cult for the QPI experiments as it requires a Fourier transform

2 4 6
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FIG. 7. Thermally averaged antisymmetrized full-q integrated
LDOS change 〈δρ−(ω)〉 for nonmagnetic scattering in the inter-
mediate limit U = 10 meV (the δρ−(ω) is shown in Fig.5(a))
and kz = π. The black and red curves refer to T = 0.2Tc and
T = 0.6Tc, respective. Solid curves refer to the s+− state, while the
dashed ones for conventional s++ state.
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FIG. 8. Possible sign-changing states within A1g-symmetry repre-
sentation found previously in Ref.9. The conventional s+−-state is
referred as B-state. Red and grey indicate different signs of the gap
function on the Fermi surface. Note we do not discuss the interesting
further possibility that there might be complex phases among the gap
functions on the different Fermi sheets, as predicted in some cases15.
This question has been addressed in Ref. 47, where it was found that
such complex states did not yield clear qualitative signatures in δρ−.

of Friedel oscillations from an isolated impurity recorded in a
large field of view in the real space. In addition these small
pockets exist only near kz = π and have much smaller densi-
ties of states, which represents an additional problem. There-
fore, we first address the question of whether some less subtle
possible sign changes beyond the usual s+− picture can be
still detected. We plot in Fig.6(a) the results for the two other
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FIG. 9. Antisymmetrized q integrated correction to the LDOS
δρ−(ω) for the C and D-states, depicted in Fig.8, using the non-
magnetic impurity diagonal in orbital space using t-matrix calcula-
tion forU = 10 meV in presence of all three hole pockets at kz = π .
(a) refers to full q integration of the QPI map as also shown Fig.5(a).
(b) shows q-selected scattering around q7. Solid curves refer to the
C-state (sign change on the large hole pocket), while the dashed
curves refer to the D-state.

candidate states for LiFeAs, namely for the superconducting
state where the large hole pocket of mostly xy-character has
opposite sign to all other electron and hole pockets (C-state)
and the one where the tiny inner hole pockets have opposite
sign to the large hole and electron pockets (D−state). We
find an even response for the total integrated δρ−(ω), for each
sign-changing gap structure, when the impurity scattering po-
tential is written in the band basis. Thus, it appears that the
magnitude of the response at the different gap values provides
direct information regarding the pockets in which the sign
change occurs. To specify this further we show in Fig.6 (c)-(d)
the integrated responses around each corresponding q vector
i. e. large hole to electron, small hole to electron and hole
to hole scattering, respectively. All three possible scattering
events show indeed the expected even or odd symmetry when
the change of the sign of the gap occurs. Here, we point out
that the interpocket scattering between inner and outer hole
pockets is not always present, which is related to the struc-
ture of the impurity potential in the orbital and band basis and
the fact that inner and outer pocket have different orbital char-
acter (xz/yz for the inner one and mostly xy for the outer
one). These scattering wave vectors, if observed, could play
an important role in determining the overall structure of the
superconducting gap in LiFeAs.

In this regard, to see whether C and D states can be iden-
tified, we now return to a more realistic situation, when the
impurity potential is nearly diagonal in the orbital basis. This
seems to agree better with ab-initio calculations39,42. The
problem is further complicated by the fact that beyond the
weak scattering (Born) limit, the t-matrix introduces addi-
tional interorbital scattering terms. Here we study the effects
of such terms by considering an intermediate strength scat-
terer U = 10 meV that does not create bound states in the gap.
In Fig.9 (a) we show the antisymmetrized response integrated
over the full q space for theC and theD-states. We remind the
reader that for the s++ and the conventional s+− states, the
results are clearly separable independent of the way the im-
purity potential is written. Regarding the more complicated
C- and the D-states, we note that the relative sign change (C-
state) or its absence (D-state) between large hole and electron

pockets, i.e. between ∆H = 2.5 meV and ∆e = 3 meV is
clearly visible. At the same time, the variation of δρ− between
smaller gaps, ∆e and the large gap, ∆h = 5 meV, on the small
pockets is trickier due to a more complex phase structure of
the overall gap. While for the D-state the clear sign-changing
behavior is indeed observed, as expected, the behavior of δρ−

cannot be clearly assigned for the C-state. In the latter state,
∆e has opposite sign to ∆H , but the same as on ∆h, so the
behavior of δρ−(ω) loses its characteristic behavior between
∆e and ∆H . The situation does not really improve if one se-
lects some specific q-scattering wavevector such as q7, which
is responsible for the scattering between small hole pockets
and electron pockets. The results in Fig. 9 (b) again show
a clear signature of the phase structure between ∆H and ∆e,
but cannot be unambiguously assigned for frequency region
between ∆e and ∆h.

The result of this exercise shows that the determination of
the superconducting gap structure on the multiple Fermi sur-
face sheets may be a challenging task if gaps change sign more
than once (i.e., a frustrated case), or if some gaps are close in
magnitude. For this situation, δρ−(ω) can be still helpful to
identify whether the gap is generally sign changing at least
on some of the pockets, however, the overall phase structure
distribution over the mutiple sheets cannot be unambiguously
determined.

C. Orbital antiphase superconductivity

Another very interesting proposal put forward for LiFeAs
is the so-called orbital-antiphase superconducting gap8, orig-
inally proposed for the iron-based superconductors within
an effective model48. In this essentially strong-coupling ap-
proach, the phase structure of the superconducting gap is de-
fined not on the Fermi surfaces but on the orbitals. This sce-
nario appears plausible for LiFeAs due to the strong orbital
differentiation of the Fermi surface sheets. In particular, we
present the Fermi surface cuts for kz = π with orbitally-
resolved matrix elements in Fig. 10. For example, the C-
state discussed in the previous subsection can also be regarded
as a type of orbital antiphase state because the superconduct-
ing gap on the large hole pocket, which has mostly xy-orbital
character, has opposite sign to the other pockets, which mostly
consist of the hybridized xz, yz- and also xy-orbitals. Never-
theless, the C−state still appears within the solution of the
BCS-type of equations in the band basis, assuming the super-
conductivity arises as an instability of the electron gas with
respect to the actual Fermi surface. Therefore, assuming a
sign-changing but otherwise constant gap on the orbitals must
result in a rather strong angular dependence of the supercon-
ducting gap on the Fermi surface. The question to ask then
is whether such a sign change between orbitals can be iden-
tified in QPI experiments. To do so, we adopted the scheme
in which we introduce the superconducting gaps in the orbital
representation before the unitary transformation from the or-
bital to the band space is performed. For the sake of simplicity
we took the orbital analog of theC−state and assumed that the
sign of the gap on the xy-orbital is either opposite or the same
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FIG. 10. Orbitally-resolved Fermi surface cuts for kz = π. The
contribution of the three dominant orbitals dxy , dxz , dyz is shown.

to the signs of the gaps on the xz, yz orbitals. As the other
two orbitals x2 − y2 a 3z2 − r2 do not contribute strongly to
the states at the Fermi level, we assumed their gaps to be small
and their phase structure irrelevant. In particular, we choose
∆xy = 3.2 meV and ∆xz = ∆yz = 5 meV, which produce
the sizes of the superconducting gaps on the actual Fermi sur-
faces sheets roughly consistent with ARPES experiments.

In particular, in Fig. 11 we show the resulting gap struc-
ture on the Fermi surface for the kz = π cuts for the orbital
in-phase (a) and antiphase (b) superconducting gap. We find
clearly anisotropic gaps on each Fermi surface sheet in both
cases. Nevertheless, the anistropy is much stronger for the
s+−-wave case. In particular, the strongest anisotropy occurs
on the electron pockets, with maximum gap values on the tips
of the elliptical pockets and deep minima or accidental nodes
near the intersection regions. Also consistent with the ARPES
experiments,30 the largest gap occurs on the tiny hole pockets.
The smallest gaps occur on the inner part of the elliptic elec-
tron pockets and on the large hole pocket. Overall, the gap
structure and its anisotropy on the Fermi surface pockets is
roughly consistent with experimental data7,30,31,34, except for
the existence of nodes or deep minima near the intersections
of the two electron pockets.

In a microscopic spin fluctuation theory assuming an
LDA+DMFT electronic structure and self-energy, a pair-
ing interaction very close to the phenomenological orbital-
diagonal pairing vertex assumed here was calculated.8 How-
ever in that work the Fermi surface did not agree with ARPES,
and although the electron pockets were found to be fully
gapped, they were still considerably more anisotropic than
found in experiment. Furthermore, the electronic structure
used in that work was not consistent with the glide plane
symmetry of the LiFeAs crystal; when some of the same au-
thors redid the calculation incorporating this symmetry49, they
found sizeable interorbital pairing matrix elements, and a con-
ventional B-type ground state as in Ref. 7.

In Fig.12, we also show the calculated density of states for
the orbital antiphase and in-phase order parameter, respec-
tively. Observe that the angular dependence of the gap mag-
nitudes on the Fermi surface is reflected in the low-energy

(a) (b)

4

2

0

−2

FIG. 11. The resulting gap structure on the Fermi surface for the
kz = π cuts for the orbital in-phase (a) and antiphase (b) super-
conducting gap, depicted for the LiFeAs Fermi surface for kz = π.
The superconducting gaps ∆ in orbital space are projected by uni-
tary transformation onto the band gaps on the corresponding Fermi
surface sheets. Here, the effect of the interband gaps is neglected as
it appears to be negligibly small on the Fermi surface even near the
crossing points of the two electron pockets. The resulting gap resem-
bles the so-calledC-phase, except for the nodes and the sign changes
in the electron pockets.

behavior of the density of states. While the s++ orbital in-
phase gap shows nodeless behavior at low energies, the or-
bital antiphase s+− results in a near-nodal power-law behav-
ior of the density of states. Next we study this more complex

-10 10-5 50
0

25

50
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100

FIG. 12. Calculated density of states for the orbital-antiphase (s+−-
solid curve) and orbital in-phase (s++-dashed curve) superconduct-
ing gap, ρ(ω), using gap values ∆xy = 3.2 meV, ∆xz = ∆yz =
5 meV.

gap structure in terms of the correction to the LDOS due to a
non-magnetic impurity diagonal in orbital space. As we men-
tioned earlier, the determination of the phase structure of the
superconducting gap on the Fermi surface appears to be a non-
trivial task due to both non-zero intra- and interband gaps and
strong orbital mixing on some Fermi surface sheets. There-
fore, to determine whether or not the gap changes sign on var-
ious orbitals and not necessarily between the bands is a chal-
lenging task. We show in Fig.13 the momentum integrated
antisymmetrzed correction to the density of states, δρ−(ω),
in the intermediate impurity scattering limit, U = 10 meV,
for the orbital in-phase s++-state, and orbital antiphase s+−-
state, respectively. Not surprisingly, we still find a clear sig-
nature of the sign-changing gap despite the fact that the gaps
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FIG. 13. Momentum is integrated bias-dependence of the antisym-
metrized correction to the LDOS, δρ−(ω) for LiFeAs at kz = π.
Here, we use ∆xy = ±3.2 meV and ∆xz = ∆yz = 5 meV. The
solid curve refers to the orbital antiphase s+−, while the dashed
curve is for orbital-in-phase gap, s++.

reside on the orbitals rather than on bands, but their phase
structure, especially on the electron pockets, cannot be clearly
defined. Nevertheless, the behavior of the δρ−(ω) within the
energy region of interest (i.e. between 3 and 5 meV) is still
very characteristic. At the same time, the position of the peaks
is less informative in this case as it refers to the maximum of
the gaps on the bands. As a result, using QPI in this case
again only allows one to determine the presence of the sign
change in the gap structure, but not the precise distribution of
it among the various bands.

IV. CONCLUSION

We have investigated an extension of the phase-sensitive
method of analyzing QPI data from non-magnetic impuri-
ties, proposed by us previously24 in the context of a simpli-
fied model, for a realistic 10-orbital tight-binding Hamilto-
nian and t-matrix approximation for the impurity potential.
We have concentrated on studying the LiFeAs compound due
to a rather detailed experimental knowledge of the electronic
structure of this system7 and the measured superconducting
gap values for each of the Fermi surface sheets30,31. In par-
ticular, we have shown that despite the complex Fermi sur-
face topology, the Friedel oscillations originating from vari-
ous intraband and interband impurity-ı́nduced scattering can
be clearly separated in LiFeAs. Furthermore, the scattering
within hole or electron pockets as well as between the electron
and hole Fermi surface pockets show some characteristic fea-
tures, which should help to identify them experimentally. Fur-
thermore, the behavior of the phase-sensitive antisymmetrized
correction to the local density of states, δρ(ω), in the super-
conducting state allows one to discriminate between the sign-
changing and sign-preserving superconducting gaps indepen-

dent of the structure and the strength of the impurity potential.
In particular, we showed that the relative phase difference of
the gap between large hole pocket and electron pockets can be
easily addressed within QPI experiments.

At the same time, the determination of the relative phase of
the gap on the tiny Z-centered hole pockets with respect to
the other electron and hole bands appears to be a much more
subtle issue. It is still possible to distinguish between a con-
ventional constant sign gap and the usual s+− scenario where
the gap is one sign on all hole pockets and another on the elec-
tron pockets. However, once the sign structure of the gap is
more complex and involve further sign changes between large
hole and small hole pockets, the behavior of δρ−(q, ω) can-
not be clearly assigned, primarily due to the near proximity of
two gap energies in this system. We discussed the same point
for the so-called orbital-antiphase superconducting gap struc-
ture, where the gap is diagonal in orbital space, raised in the
context of the LiFeAs system8.

We emphasize again that our primary goal was to obtain
qualitative statements about sign change in the superconduct-
ing gap structure. It is interesting to note that the momen-
tum dependence of the effective impurity potential appears
to be irrelevant for the simplest weak scattering calculation
of the antisymmetric fully q-integrated QPI signal, as can
be seen by an expansion of the T-matrix in harmonics. Al-
though this is only approximately true for a realistic system
with anisotropic gaps, etc., and it does not hold for restricted
q-integrated QPI intensities, we expect that our basic conclu-
sions are only weakly affected by any momentum dependence
induced by the unitary transformation of the bare potential or,
for example, by antiferromagnetic correlations.

In summary, the method we proposed seems to allow one
to answer the question whether the gap has a sign change,
but cannot be used, at least in LiFeAs, for a more detailed
determination of the phase structure of the order parameter.

Note added. In the final stages of writing, two papers ap-
peared that discussed detailed analysis of quasiparticle inter-
ference measurements on LiFeAs, including a new qualita-
tive phase-sensitive method based on interference of impurity
bound states26,27. In Ref. 27, the authors explicitly perform an
analysis of the antisymmetrized q-integrated differential con-
ductance according to the prescription presented in Ref. 24
and here. While they point out a substantial quantitative de-
pendence on the area in q space over which one chooses to
integrate, the qualitative result is of the “even” type between
the two gap energies, in the nomenclature of the current pa-
per. Thus their results using our method are entirely consistent
with the results they obtain using their bound state approach,
and with the claim already made in Ref. 24, namely that there
is a sign change between hole and electron pockets in LiFeAs.
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B. Büchner, and A. V. Chubukov, Phys. Rev. B 89, 144513
(2014).

10 J. K. Glasbrenner, I. I. Mazin, H. O. Jeschke, P. J. Hirschfeld,
R. M. Fernandes, and R. Valenti, Nat. Phys. 11, 953 (2015), arti-
cle.

11 P. O. Sprau, A. Kostin, A. Kreisel, A. E. Böhmer, V. Taufour,
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