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We study the interplay between superconductivity and non-Fermi liquid behavior of a Fermi
surface coupled to a massless SU(N) matrix boson near the quantum critical point. The presence of
thermal infrared singularities in both the fermionic self-energy and the gap equation invalidates the
Eliashberg approximation, and makes the quantum-critical pairing problem qualitatively different
from that at zero temperature. Taking the large N limit, we solve the gap equation beyond the
Eliashberg approximation, and obtain the superconducting temperature Tc as a function of N . Our
results show an anomalous scaling between the zero-temperature gap and Tc. For N greater than
a critical value, we find that Tc vanishes with a Berezinskii-Kosterlitz-Thouless scaling behavior,
and the system retains non-Fermi liquid behavior down to zero temperature. This confirms and
extends previous renormalization-group analyses done at T = 0, and provides a controlled example
of a naked quantum critical point. We discuss the crucial role of thermal fluctuations in relating
our results with earlier work where superconductivity always develops due to the special role of the
first Matsubara frequency.

I. INTRODUCTION

One of the key open problems in modern condensed
matter physics is the relation between superconductivity
(SC) and non-Fermi liquid (NFL) behavior. The inter-
play between these phenomena may be partly responsible
for the existence of high temperature superconductivity,
and could also describe some striking transport proper-
ties of strongly correlated materials. This is strongly sup-
ported by recent experimental [1–5] and numerical [6–10]
measurements of NFL signatures, and the astonishing ev-
idence of quantum critical points hidden behind super-
conducting domes [11–16].

Systems near quantum criticality are expected to have
a field theory description in terms of a Fermi surface
interacting with additional soft bosons, which typically
arise e.g. from order parameter fluctuations. The ex-
change of virtual bosons has a dual effect: it enhances
the fermionic pairing interaction, and it also gives rise to
NFL behavior (a fermionic anomalous dimension) that
tends to make SC irrelevant. If the enhancement of pair-
ing dominates, it will lead to a parametric increase in the
SC critical temperature Tc [17]. However, if the anoma-
lous dimension effect can be made large enough, it may
produce a NFL-like superconductor (with pairing formed
by incoherent fermions), or even the possibility of a naked
quantum critical point (i.e., a quantum critical point not
preempted by a SC order) down to zero temperature.

While very appealing, this idea faces a basic problem:
in most field-theoretical models, NFL effects do not set
in before the SC instability. Instead, a common out-
come in models that are under perturbative control is
that ∆ � ΛNFL, where ∆ is the scale of the SC gap,
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and ΛNFL is the crossover scale at which NFL effects
become important. A paradigmatic example of this sit-
uation is the large-N -component fermion limit [18, 19].
See Ref. [20] for an analysis of some of the possibilities.
On the other hand, a recent renormalization group anal-
ysis at T = 0 shows [21] (see also [22] for an earlier
related work) that superconductivity can be completely
suppressed compared to the NFL behavior in the class
of models with an N ×N matrix boson studied by [23–
25]. However, at finite temperature, the recent work [26]
emphasized unique low-energy effects beyond previous
renormalization group (RG) approaches, and argued that
as a result, pairing always wins over NFL behavior. As
it turns out, new thermal NFL effects arise for N > 1
that were not included in [26], and these could (and will)
change the dynamics in important ways. For these rea-
sons, it becomes necessary to reconsider quantum criti-
cal pairing at finite temperature within the framework of
field theory.

In this work we study the interplay between pairing
and quantum criticality at finite temperature. For this,
we focus on the aforementioned class of models developed
in [21, 23–25], which feature an SU(N) global symme-
try (a generalization of the spin symmetry group). The
fermion has N components but, unlike vector models
[18, 19] where the boson is a singlet, here the boson is an
N ×N matrix (adjoint representation). This is a central
point in order to allow for NFL effects to dominate. At
zero temperature, increasing N tends to make NFL ef-
fects stronger, and it is possible to obtain critical pairing
interactions [21, 27]. Building on the recent normal-state
analysis [28], we develop analytic and numerical meth-
ods to explore the SC and quantum critical regimes, and
obtain the phase diagram as a function of (T,N).

For conventional BCS superconductivity, the pairing
problems at finite T and T = 0 are qualitatively the
same, with Tc of the order of the pairing gap ∆ at
T = 0. However, in our case the situation is funda-
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mentally different. At finite T , the frequency integral in
the gap equation is replaced by a Matsubara sum. Since
the pairing interaction is mediated by a massless boson,
the standard Eliashberg approximation (briefly reviewed
in Sec. III A) leads to an infrared divergence from the
term with bosonic frequency Ωm = 0 (i.e., the ther-
mal piece). This issue actually afflicts many quantum-
critical pairing problems, but has not attracted much
attention for two reasons. First, it is known that for s-
wave pairing with fermion flavor N = 1, this divergence
is canceled by a similar divergence in the fermionic self-
energy [26, 29], via an analog of Anderson’s theorem for
impurities [29, 30]. Second, even for cases without exact
cancellation, the issue is generally ignored as the usual
approach is to simply replace the Matsubara sum by an
integral, T

∑
→
∫
dω/2π. Indeed, the integral of the

divergence at Ωm = 0 is convergent and there appears
to be no IR problem. We will show, however, that for
our case the infrared singularities invalidate the Eliash-
berg approximation and the replacement of the sum by
an integral. One of our key results is to go beyond the
Eliashberg approximation at Ωm = 0, showing how the
apparent IR divergences are resolved at large N . We
then solve the linear gap equation to obtain the transition
temperature Tc. For the cases where Tc 6= 0, we find an
anomalous scaling relation between the zero-temperature
SC gap and Tc,

∆(T = 0)

Tc
∼ T−2ε/3

c � 1 , (1)

where ε is the difference from the upper critical dimension
d = 3− ε. This is distinct from the standard BCS result
that ∆/Tc ≈ 1.76 = O(1). Such an anomalous relation
has its roots in the qualitative difference between the
pairing problems at finite and zero T .

Our finite T analysis shows that for low Nε SC is para-
metrically enhanced by soft boson exchange, in agree-
ment with [17]. However, as N is increased the NFL
effects tend to destroy the SC order. Above a critical
value Nc = 12/ε, Tc → 0, SC is completely extinguished
via an infinite order transition (at which all derivatives
of observables are smooth), and a naked quantum criti-
cal region ensues. This extends the findings of [21, 27] to
finite temperature. We will see that the nonperturbative
resolution of IR divergences plays a central role here.

The result the SC can be avoided near the quantum
critical region is in apparent contradiction with [26]. The
key ingredient there is the special role of first Matsubara
frequency (ωm = ±πT ) in calculations of superconduc-
tivity at which the fermionic self-energy vanishes. The
resolution of the contradiction lies in the fact that in our
model, as shown recently in [28], thermal fluctuations
dominate the fermionic self-energy at lowest frequencies
(for any N 6= 1), and this eliminates the special role of
the first Matsubara frequency. To clarify the connec-
tion with [26], we show how the first-Matsubara effect
re-emerges if the thermal contribution to the self-energy
is reduced. While at this stage it is not clear how to real-

ize this limit in a controlled fashion, if this does happen
we will find that the interplay between first Matsubara
physics and NFL thermal effects gives rise to an intrigu-
ing reentrance behavior, whereby the system enters and
exits the SC phase to return to the NFL normal state at
the lowest temperatures.

Our results provide a theoretical proof to the effect
that quantum criticality can dominate over pairing in-
stabilities down to zero temperature. We also emphasize
the crucial role of the large N limit for NFLs; as has been
the case in other areas of physics (such as quantum chro-
modynamics), it is likely that large N will also capture
qualitative aspects of the physics with a small number
of degrees of freedom. Finally, we hope that our proof
of principle stimulates the search for related field theory
mechanisms, and the construction of phenomenologically
realistic models.

The rest of this paper is structured as follows. In Sec.
II we review the framework of our model and the treat-
ment of the normal state fermionic self-energy. In partic-
ular, due to the breakdown of the Eliashberg approxima-
tion at frequency transfer Ωm = ωm − ω′m = 0, the self-
energy contains a new thermal contribution. In Sec. III,
we study the the pairing problem. As in the normal state
analysis, the thermal term with Ωm = 0 requires a spe-
cial treatment beyond the Eliashberg approximation. We
obtain the correct form of the finite-T gap equation and
solve it both numerically and analytically. Our finite-T
analysis confirms and extends previous findings of metal-
lic NFL behavior at T = 0. In Sec. C we investigate the
role of the first Matsubara frequency within our large-
N model. We further show that by reducing the thermal
contribution in the self-energy, the special role of the first
Matsubara frequency emerges and its interplay between
the thermal effects discussed above can lead to an inter-
esting re-entrant superconducting behavior. Finally, in
Sec. IV we summarize the phase diagram that obtains
from our analysis, and discuss future directions. Some
explicit calculations are presented in the Appendix.

II. QUANTUM CRITICAL DYNAMICS IN THE
NORMAL STATE

We begin by reviewing the class of non-Fermi liquids
that we will study, and its main properties near quan-
tum criticality. We consider a Fermi surface of fermions
ψ interacting with a nearly massless boson φ (e.g. an
order parameter fluctuation). The system is generalized
to introduce an SU(N) global symmetry under which ψ
is a fundamental and φ transforms in the adjoint. We
consider N � 1 as a formal limit for solving exactly the
quantum dynamics of the model. Furthermore, we per-
form an ε-expansion for d = 3−ε spatial dimensions. The
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euclidean Lagrangian is

L =
1

2
tr
(

(∂τφ)2 + (~∇φ)2
)

+ ψ†i

(
∂τ + ε(i~∇)− µF

)
ψi

+
g√
N
φijψ

†
iψ

j − λBCS ψ†iψ
jψ†jψ

i . (2)

For simplicity, the dispersion relation ε(~k) is taken to be
spherically symmetric; kF will denote the Fermi momen-
tum, and v = ε′(kF ) the Fermi velocity. The third term is
the boson-fermion scattering, with g fixed at large N . At
long distance, the dynamics near a Fermi surface patch is
that of a non-Fermi liquid, with fixed point value g2 ∼ ε,
and fermion anomalous dimension γ ∼ ε [21, 25]. Thus
ε � 1 serves as a perturbative control parameter, and
the IR problems found in [31] are absent here.

Continuing with our discussion of (2), the 4-fermion
interaction is evaluated on antipodal points of the Fermi
surface (BCS kinematics), and is responsible for the
superconducting instability. Since the pairing at long
distance is dominated by boson exchange, we will set
λBCS = 0; this does not modify any of our conclusions,
and can also be interpreted as a choice of boundary con-
dition at the UV scale. The strength of the 4-fermion
scattering is then of order g2/N . We have not included
a φ4 interaction because it is irrelevant for overdamped
bosons with a z = 3 dynamical exponent –see more de-
tails on Landau damping around (9).

Before proceeding, let us briefly discuss how we are
approaching the quantum critical region. We start from
a quantum critical point at T = 0, reached by tuning
some external parameter such as pressure or doping. In
our effective description, this corresponds to a specific
choice of the boson mass. Given this choice, we then
turn on finite T and consider quantum effects. Within the
spherical RG approach that we use here, Ref. [28] showed
that no thermal mass is induced due to corrections from
the Fermi surface. As in the Hertz-Millis theory [32, 33],
we do expect a nonzero thermal mass upon including
higher order boson self-interactions that are induced by
integrating out the fermions; see also the more recent
[34]. Nevertheless, in our setup such effects can be made
arbitrarily small, since they are suppressed by 1/N as
well as by the small fixed point coupling g2 ∼ ε. At the
order that we will work, then, no further bosonic mass is
generated at finite temperature after tuning to the T = 0
QCP. More generally, a nonzero thermal mass can again
be tuned to vanish by the external parameter, i.e., at the
thermal critical point.

The fermionic superconducting instability can in prin-
ciple develop in different representations of SU(N), and
one would have to study which one corresponds to the

global minimum of the free energy. However, this is
outside the scope of our linearized analysis, and we
will simply consider the most symmetric channel, with
〈ψi(p)ψj(−p)〉 proportional to the symplectic matrix Ω =
σ3⊗1N/2. The resulting pattern of symmetry breaking is
SU(N)→ Sp(N), and the bosonic and fermionic 2-point
functions have the flavor structure

〈φji (Ωn, q)φ
l
k(−Ωn,−q)〉 = δliδ

j
kD(Ωn, q)

〈ψi(ωn, p)ψ†j(ωn, p)〉 = δji G(ωn, p) (3)

〈ψi(ωn, p)ψj(−ωn,−p)〉 = Ωij G
∆(ω,p) ,

with Matsubara frequencies Ωn = 2nπT , ωn = (2n +
1)πT . The quantum-corrected Green’s functions will be
parametrized in terms of self-energies Π and Σ and the
gap ∆, as follows:

D(Ωn, q) =
1

Ω2
n + q2 + Π

G(ωn, p) =
iZωn + ε(p)− µF

Z2(ω2
n + ∆2) + (ε(p)− µF )2

(4)

G∆(ωn, p) =
Z∆

Z2(ω2
n + ∆2) + (ε(p)− µF )2

,

with

Z(ω, p) ≡ 1 +
Σ(ω, p)

ω
(5)

the wavefunction renormalization. We have suppressed
the frequency and momentum dependence in Π,Σ,∆
to avoid cluttering the formulae. Within our isotropic
model, it is straightforward to check that the effective
interaction is attractive, and that we only need to focus
on the s-wave singlet pairing channel. For lattice models,
however, it has been found [35–38] that multiple pairing
channels may be enhanced by a long-range attractive in-
teraction. It is expected that in these scenarios the ther-
mal fluctuations between these multiple channels lead to
a downturn renormalization of the transition tempera-
ture Tc. These effects are absent in our current model;
however in future work it would be interesting to study
other pairing channels for lattice models and understand
their effect on Tc.

Our task is to calculate the quantum correlation func-
tions; this simplifies considerably at large N because cor-
rections to the Yukawa coupling vertex are suppressed by
O(1/N). In this case, the boson self-energy Π, fermion
self-energy Σ, and fermion SC gap ∆ obey a closed-set of
Schwinger-Dyson equations,
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Π(Ωn, q) =
g2

N
T
∑
m

∫
ddp

(2π)d
[
G(ωm − Ωn, p− q)G(ωm, p) +G∆(ωm − Ωn, p− q)G∆(ωm, p)

]
iΣ(ωn, q) = g2T

∑
m

∫
ddp

(2π)d
D(ωm − ωn, p− q)G(ωm, p) (6)

Z(ωn, q)∆(ωn, q) =
g2

N
T
∑
m

∫
ddp

(2π)d
D(ωm − ωn, p− q)G∆(ωm, p) .

These are shown diagrammatically in Fig. 1. The other
key property of the large N limit is that the contribu-
tion to the self-energy Σ appears at leading order in N ,
while for the gap the leading contribution comes from
order 1/N [39]. (This can also be seen explicitly in terms
of the double-line notation commonly adopted in large
N gauge theories [40]: the diagrams for Σ are planar,
while those for ∆ are non-planar.) A competing effect is
that tree-level boson exchange gives rise to a non-local 4-
Fermi interaction that tends to enhance ∆ exponentially,
as in [17]. Combining both effects we expect that, as N
is increased, NFL behavior starts to compete with, and
may eventually overcome, the pairing instability.

We start from the high-temperature normal state, and
search for Tc at which SC develops. The normal-state
Green’s functions are (see (4))

D(Ωn, p) =
1

Ω2
n + p2 + Π(Ωn, p)

G(ωn, p) = − 1

iωn + iΣ(ωn, p)− ε(p) + µF
, (7)

with G∆ = 0. As T → Tc from above, it is sufficient to
linearize the Schwinger-Dyson equations around ∆ = 0,
which obtains

Π(Ωn, q) =
g2

N
T
∑
m

∫
ddp

(2π)d
G(ωm − Ωn, p− q)G(ωm, p)

iΣ(ωn, q) = g2T
∑
m

∫
ddp

(2π)d
D(ωm − ωn, p− q)G(ωm, p) (8)

Z(ωn, q)∆(ωn, q) =
g2

N
T
∑
m

∫
ddp

(2π)d
D(ωm − ωn, p− q)|G(ωm, p)|2Z(ωm, p)∆(ωm, p) .

In the linearized approximation, Π and Σ are indepen-
dent of the gap, and coincide with the normal state self-
energies, which has been analyzed by two of us in [28].
See also [41–43] for previous related work. We will now
summarize the results there, and in the following sections
we will focus on the gap equation.

The low frequency boson self-energy turns out to be
one-loop exact at finite temperature. In the range |Ω| �
vq that will be important here, this polarization is of the
form

Π(Ω, q) ≈M2
D

|Ω|
vq

, (9)

with M2
D =

g2k2F
4πvN the Debye scale. Combining (9) with

(2) leads, below MD, to a boson with z = 3 dispersion
q3 ∼ M2

D|Ω|/v. The Debye scale is taken to be the UV
cutoff of the low energy effective theory. A key simpli-
fication of working in the z = 3 scaling regime is that

the fermion self-energy and gap depend predominantly
on the frequency and not on the momentum. We will
henceforth drop the momentum dependence in Σ and ∆.

The fermion self-energy is afflicted by thermal in-
frared singularities within perturbation theory. Ref. [28]
showed how to resolve them by summing over rainbow
diagrams. The result is the standard NFL term plus a
new thermal term that is independent of frequency (other
than a sgn(ωn) required by causality),

sgn(ωn) Σ(ωn) = ΣT + Λ
ε/3
NFL(2πT )1−ε/3

× [ζ(ε/3, 1)− ζ(ε/3, |n+ 1|)] .(10)

where ζ is the Riemann zeta function

ζ(x,m) =

∞∑
n=m

1

nx
. (11)
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FIG. 1: Schwinger-Dyson equations for the full boson propa-
gator (black), and fermionic propagators 〈ψψ†〉 (blue), 〈ψψ〉
(red). The contribution from fermion pairing 〈ψψ〉 to Π, not
included, vanishes at Tc.

We have a new scale

ΛNFL ≡MD

(
1

4π2ε

g2

v
M−εD

)3/ε

, (12)

below which NFL effects start to dominate.1 These ex-
pressions hold only if ΛNFL < MD. The thermal term
is

ΣT ≈
(
vεΛ

ε/3
NFLM

2ε/3
D πT

) 1
1+ε

. (13)

For |n| � 1 the difference of Riemann zeta functions
asymptotes to

(2πT )1−ε/3 [ζ(ε/3, 1)− ζ(ε/3, |n+ 1|)] ≈ |ωn|1−ε/3 ,
(14)

thus giving rise to the regular power-law behavior in the
NFL state as is obtained at T = 0. The fermion then
acquires an anomalous dimension ε/3. However, cru-
cially, this difference ζ(ε/3, 1) − ζ(ε/3, |n + 1|) vanishes
at n = −1, 0, i.e., ωn = ±πT , and so the first Matsubara
frequency is always dominated by the thermal term

Σ(±πT ) = ±ΣT . (15)

We will analyze further the special role of the First Mat-
subara frequency in Sec. C.

The emergence and resolution of the infrared singular-
ity can be qualitatively understood by focusing on the
n = m term in the second line of (8),

iΣ(ωn) =− g2T

∫
ddq

(2π)d
1

q2

1

iωn + iΣ(ωn)− vq⊥
+m 6= n terms . (16)

1 Recall [21] that in the z = 3 regime, the engineering dimension
[g2] = ε. So the right hand side in (12) is dimensionless.

Here we have linearized the dispersion relation around
the Fermi surface, ε(q) − µF ≈ vq⊥, and q⊥ is the com-
ponent of the momentum perpendicular to the Fermi sur-
face. A widely used approach to solve this and other NFL
integrals is to approximate the bosonic momentum by its
component parallel to the Fermi surface, q2 ≈ q2

‖. This is

based on the Eliashberg approximation, which we review
below in Sec. III A. However, this leads to a divergent
integral over q‖ for d = 3 − ε. Instead, in this case we
can perform the exact momentum integral to obtain

sgn(ωn)Σ(ωn) ≈ vεΛ
ε/3
NFLM

2ε/3
D πT

1

|ωm + Σ(ωn)|ε
(17)

+ Λ
ε
3

NFL(2πT )1− ε3
[
ζ(
ε

3
)− ζ(

ε

3
, |n+ 1|)

]
.

This gives a self-consistent equation for Σ(ωn) that re-
sums rainbow diagrams and resolves the IR singularity.
To illustrate this, let us focus on the self-energy at the
first Matsubara frequency: since the Riemann zeta func-
tions cancel out, we arrive to an algebraic equation

Σ(πT ) = vεΛ
ε/3
NFLM

2ε/3
D πT

1

|πT + Σ(πT )|ε
, (18)

whose solution reproduces (13) for temperatures below
the NFL scale. The self-consistency of (10) was checked
in [28].

To summarize, the fermionic Green’s function for low
temperatures πT � ΛNFL is characterized by

|ω + Σ(ω)| ≈


ω , ω � ΛNFL

Λ
ε/3
NFLω

1−ε/3 , ΛT � ω � ΛNFL

ΣT , ω � ΛT

(19)

with the crossover scale

ΛT ∼
(

ΣTΛ
−ε/3
NFL

) 1
1−ε/3

. (20)

The finite T quantum critical region then exhibits, in
turn, Fermi liquid, quantum NFL, and “thermal NFL”
behaviors. The thermal term always dominates in the
static limit, and violates the finite T scaling of the QCP.
We will see that it also plays an important role in the
finite T pairing problem.

III. NON-FERMI LIQUID
SUPERCONDUCTIVITY

The interplay between SC and NFL behavior is en-
coded into the linearized gap equation

∆̃(ωn) =
g2

N
πTc

∑
m

∫
ddq

(2π)d
D(ωn − ωm, q) (21)

× ∆̃(ωm)

(ωm + Σ(ωm))2 + (ε(q)− µF )2
,
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where we have introduced the rescaled gap function

∆̃(ω) ≡ Z(ω)∆(ω) . (22)

As we said, the factor 1/N shows the non-planar nature
of SC discussed above, and D(ω, q) is the full boson prop-
agator. In this section we will solve this equation, both
numerically and analytically.

A. Gap equation beyond the Eliashberg
approximation

A standard approach to simplify (21) is to factorize the
momentum integral between parallel and perpendicular
directions to the Fermi surface, assigning the perpendic-
ular momentum dependence to the fermion Green’s func-
tions and the parallel one to the boson. This Eliashberg-
type approximation is justified for nonzero bosonic fre-
quency, as the boson has a larger dynamical exponent
(zb = 3) than the fermion (zf = 1 − ε/3), and is much
“slower”—in analogy with Migdal’s theorem for phonon
mediated superconductivity. However, this procedure is
problematic for zero bosonic frequency: it leads to a con-
tribution∫

q1−ε
‖ dq‖D(q‖, |ωn − ωm|) ∼ 1/|ωn − ωm|ε/3 , (23)

which diverges for the m = n term in the sum, just like
the case of the normal state. As in [28], while factoriza-
tion holds for m 6= n, it fails for the exchange of static
bosons and has to be treated separately.

As before, let us linearize the dispersion relation
around the Fermi surface, ε(q) − µF ≈ vq⊥, and
parametrize q⊥ = q cos θ. We go beyond the factoriza-
tion approximation by performing the full angular inte-
gration; for ε = 3− d� 1, this gives

∆̃(ωn) =
g2

vN
πTc

∑
m

∫
dq

2π
q1−εD(ωn − ωm, q)

× tan−1

(
vq

|Z(ωm)ωm|

)
∆̃(ωm)

|Z(ωm)ωm|
. (24)

The Eliashberg approximation amounts to taking
tan−1(q/|Zω|) ∼ tan−1(ω1/3/|Zω|) → π/2. But as we
said, this leads to a singularity from exchange of zero
frequency soft bosons.

The remaining calculation involves performing the q
integral for the m 6= n and m = n terms separately, and
is presented in the Appendix A. The final result is

∆̃(ωn) = Λ
ε/3
NFL

πTc
N

{
vε/3M

2ε/3
D

∆̃(ωn)

|ωn + Σ(ωn)|1+ε
(25)

+
∑
m 6=n

1

|ωm − ωn|ε/3
∆̃(ωm)

|ωm + Σ(ωm)|

}
.

The resolution of IR singularities then modifies the
Eliashberg equation in two ways: there is a new diagonal

term that resolves the m = n term in the gap equation,
and there is the contribution of the thermal NFL effects
through Σ(ω).

The diagonal term in the right hand side comes from
the static part of the interaction, and is similar to disor-
der effects. Per Anderson’s theorem, in a regular s-wave
superconductor, disorder effects on the pairing gap and
the self-energy cancel and do not affect Tc. This is not
the case here – however, this new diagonal term turns
out to have a small effect at large N . As we show in the
Appendix B, this can be seen by redefining the gap func-
tion in order to absorb this term, with the result that the
thermal contribution from the self-energy is reduced by
1−1/N ≈ 1. Thus the diagonal term in the gap equation
can be safely discarded. On the other hand, we will see
that the thermal term in the self-energy plays a crucial
role in the dynamics of SC and cannot be ignored.

Let us first solve (25) numerically and then develop
analytic methods. Since Tc is approached from above,
the problem amounts to finding the largest eigenvalue
and eigenvector of the kernel that appears in the right
hand side of (25). We do this by fixing a maximum Mat-
subara frequency ωmax = (2Mmax + 1)πTc, and then in-
crease Mmax to check for convergence. Furthermore, for
ωn � πTc it is sufficient to sample the Matsubara fre-
quencies on exponential intervals, which allows to access
parametrically small Tc.

Fig. 2 shows Tc as a function of N .2 It decreases for
larger N , and goes to zero smoothly for N > Nc ≈ 40 for
the present choice ε = 0.3. Further numerical analysis re-
veals that higher order derivatives also vanish smoothly,
thus suggesting a Berezinskii-Kosterlitz-Thouless (BKT)
scaling for Tc(N). In fact, a similar behavior for the SC
gap at zero temperature was found in [21, 27]. To test
this further, we need to access exponentially small tem-
peratures, which requires increasing Nmax and is thus
numerically costly. For this reason we turn now to ap-
proximate analytical approaches.

B. Local frequency approximation

Since we have taken care of the infrared divergence at
zero bosonic frequency (m = n), it is consistent to replace
the Matsubara sum by an integral,

∆̃(ω′) =
1

2N

∫
|ω|>πTc

dω u(ω − ω′) ∆̃(ω)

|ω + Σ(ω)|
, (26)

where the lower boundary |ω| > πTc encodes the dis-
creteness of Matsubara sum, and we have introduced the

2 We set for simplicity ΛNFL = MD, which corresponds to starting
at the fixed point value of g at the UV cutoff MD; the results
are not modified for other choices of ΛNFL/MD < 1.
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5 10 15 20 25 30 35
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10-108

10- 86

10- 64

10- 42

10- 20

Tc

FIG. 2: Blue dots: critical temperature as a function of N ,
for ε = 0.3,ΛNFL/MD = 1. (We set ΛNFL = MD here merely
for numerical effectiveness; it does not affect the precision
of results due to the exponentially large scales present.) Red
curve: prediction from the differential equation (30). A BKT-
like scaling for Tc = 0 is observed at N = 40.

kernel

u(ω) ≡
(

ΛNFL

|ω|

)ε/3
. (27)

As in [27], (26) can be transformed into a differential
equation by a local approximation3

u(ω − ω′) ≈
{
u(ω′) , |ω| < |ω′|
u(ω) , |ω| > |ω′| . (28)

The intuition behind this approximation comes from the
Wilsonian RG, where quantum corrections at a given
scale ω are dominated by virtual loops with character-
istic energy of order ω. Now, here we are integrating
over all momentum modes to obtain the gap function, so
we need to check that a Wilsonian approximation holds.
We have checked this by comparing with numerical re-
sults, finding excellent agreement; we give an example
below. Ultimately, the validity of this approach rests on
the fact that ε is small.4

The change of variables

ω = ΛNFLe
−3x/ε (29)

then yields the differential system

∆̃′′(x)− ∆̃′(x) +
g1e

x

Z(x)
∆̃(x) = 0

∆̃′(xc) = 0 , ∆̃(x→ −∞) = 0 . (30)

3 A similar approximation was first used in [17].
4 For ε ∼ 1, the regime of u(ω − ω′) with ω ∼ ω′ becomes more

important. This range is not taken into account by (28).

Here πTc = ΛNFLe
−3xc/ε, and

Z(x) = 1 +
Σ(ω)

ω
= 1 + ex + exT e3(x−xT )/ε , g1 ≡

3

εN
,

(31)
and xT is defined via ΛT = ΛNFLe

−3xT /ε, namely the
thermal NFL scale ΛT of (19) in the x-variables. The
term ex in Z(x) encodes the zero temperature NFL self-
energy, while the last term comes from the thermal term
ΣT . This equation should be solved for different values of
xT (itself a function of xc or Tc) until the IR boundary

condition ∆̃′(xc) = 0 is satisfied. This determines the
critical temperature Tc.

Eq. (30) describes all possible behaviors of the SC
gap at low temperatures. For x < 0 (i.e. ω > ΛNFL),
Z(x) ≈ 1 and NFL effects from the self-energy are neg-
ligible. The solution is a Bessel function, a result which
reproduces the gap behavior of color superconductivity
found in [17]. The quantum NFL term starts to become
important around x = 0, and Z(x) ≈ 1 + ex. At T 6= 0,
xT is finite, and the last term in Z(x) quickly dominates

for x > xT (i.e. ω < ΛT ). When this occurs, ∆̃ ap-
proaches a constant – the energy scale below which the
thermal term dominates acts like a gap that stops the
growth of the SC instability. Summarizing, we obtain

∆̃(x) ≈


ex/2J1(2

√
g1e

x/2) , x < 0

c1e
x/2 exp

(
ix
√
g1 − 1

4

)
+ c.c. , 0 < x < xT

c2 , x > xT

.

(32)
This is the solution from keeping only a single term of
Z(x) that dominates in each range, and c1, c2 are de-
termined by smoothly connecting across the intervals. In
terms of the original ω variable, the gap function behaves
as

∆̃(ω) ∼


ω−ε/3 , ω > ΛNFL

ω−ε/6 cos( ε3

√
g1 − 1

4 lnω + φ) , ΛT < ω < ΛNFL

const , ω < ΛT

,

(33)
where φ is a phase.

By matching the last two regimes in (32), we find that
the dominant effect of finite temperature is simply to
modify the IR boundary condition to

∆̃′(xT ) = 0 , (34)

because ∆̃ approaches a constant for x > xT , i.e.,
ωm < ΛT . This is a direct consequence of the thermal
NFL regime in the self-energy. The behavior of ∆̃(ω)
is illustrated in Fig. 3, showing an excellent agreement
between the solutions to (25) and (30).

At this point it is instructive to compare the finite-
T and zero-T pairing problems. Under the same local
approximation, the pairing problem at T = 0 can simi-
larly be transformed into an integral equation in the same
form as (30) for ω > ∆0 ≡ ∆(T = 0) [27]. The main dif-
ference is that there are no thermal effects, and hence
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Z(x) = 1 + ex. The solution for ∆̃ only has two different
behaviors—the first two ranges in (32)—and the bound-

ary condition (34) is replaced by ∆̃′(ω = ∆0) = 0. We
note that for T = 0 the differential equation and its IR
boundary condition can also be derived using RG beta
function of the BCS 4-Fermi coupling [27]. Hence by
comparing with (34) we deduce that

ΛTc ≈ ∆0 . (35)

Let us now compare the SC gap at zero temperature
with Tc obtained here. While one would expect ∆0/Tc ≈
1.76 = O(1), e.g. as in BCS theory, this is not what
happens for NFLs. Instead, from ∆0 ∼ ΛTc and Eq.
(20), we have

∆0

Tc
∼

[
v3

(
MD

ΛNFL

)ε(
MD

Tc

)2−ε
] ε

(3−ε)(1+ε)

≈
(
MD

Tc

)2ε/3

� 1 . (36)

The thermal fluctuation then parametically supresses Tc
and generates two different scales at zero and finite tem-
perature. (A scenario in which thermal fluctuations mod-
estly suppress Tc was discussed in Ref. [29].) We com-
ment that indeed in many unconventional superconduc-
tors the ratio ∆0/Tc is large [44–46]. This is typically
attributed to phase fluctuations of the SC order at finite
temperature [47]. Our work points to the role of thermal
fluctuations as an alternative possible scenario for a large
∆0/Tc.

10-76 10-52 10-28 10-4 1020 1044
Ω

10-4

0.01

1

100

D
�

Ω - Ε � 3

Ω - Ε � 6 cosH ...L

FIG. 3: Gap eigenvector from the full numerical solution.
The result from the differential equation approximation com-
pletely overlaps within the plotting accuracy. Parameters:
Tc = 10−100MD,ΛNFL = MD, (just for numerical simplicity,
see caption of Fig. 2 ), N = 37, ε = 0.3.

As we discussed, the critical temperature Tc(N) is de-
termined by matching the boundary conditions. A care-
ful examination of (32) shows that this is only possible
for g1 ≡ 3/εN > 1/4, or

N > Nc = 12/ε, (37)

to ensure non-monotonic (oscillatory) behavior [22, 27]
in 0 < x < xT that can be used to match the functional
form in other regimes at both ends. In physical terms,
NFL effects are subdominant for Nε � 12, but start to
strongly decrease Tc as Nε tends to 12. Matching the
values and slopes of the gap function in different regimes
(32) near Nc obtains

Tc ∼ exp

−(3

ε
− 1

)
(1 + ε)

2π√
12
εN − 1

 ΛNFL , (38)

which exhibits BKT scaling as N → Nc. The relation
between Tc and N obtained with this method is shown
in the red curve of Fig. 2, and the agreement with (25)
is excellent. The same expression follows from the corre-
spondence (35) with the T = 0 problem.

The relation (36) and the formula (38) are the central
results of this work.

The BKT scaling for the superconducting temperature
in the NFL regime appears surprising at first. Indeed, the
physics here is quite different from that of a classical BKT
transition driven by the unbinding of vortices. However,
as shown in [48], BKT scaling arises quite generically
from the collision of fixed points in the RG, and this is
also the underlying mechanism operating in our setup.
To see how this comes about, consider N > Nc, so that
Tc = 0. In this case, SC is completely extinguished down
to the lowest temperatures, and we can use the T = 0
analysis of [21]. This shows that the RG beta function
for the BCS 4-Fermi coupling λBCS admits two fixed
points. One fixed point is stable and leads to a QCP
with critical pairing fluctuations; the other fixed point is
unstable, namely it arises as a high energy critical point.
As N → Nc from above, these fixed points annihilate
each other. This is the physics responsible for the BKT
scaling we have observed, however, as stressed before, the
anomalous scaling between Tc and the gap (which is also
the dynamical scale generated by the RG) is a purely
thermal effect.

To summarize, for N > Nc we enter a quantum critical
region where the pairing fluctuations are critical and the
superconducting instability is irrelevant. The properties
of this normal state were recently discussed in [28]. Our
analysis thus establishes a (T,N) phase diagram (Fig. 2)
where the SC phase lies below the red curve.

C. Approximate solution to the integral equation

It turns out that the above approximate result can
also be obtained by directly solving the integral equa-
tion. The method is similar to that used in [22, 49]. To
proceed, we focus on external frequencies ΛTc � ω′ �
ΛNFL, and consider the SC gap that is even in frequency
∆̃(ω) = ∆̃(−ω). We can then break the integral equation
(26) into the following pieces:
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Λ
−ε/3
NFL ∆̃(ω′) =

1

N

[∫ ΛTc

πTc

dω

(ω′)
ε/3

∆̃(ω)

ΣTc
+

∫ ω′

ΛTc

dω

(ω′)
ε/3

∆̃(ω)

Λ
ε/3
NFLω

1−ε/3
+

∫ ΛNFL

ω′
dω

∆̃(ω)

Λ
ε/3
NFLω

+
1

N

∫ ΛUV

ΛNFL

dω
∆̃(ω)

ω1+ε/3

]
(39)

where we have approximated ω+Σ(ω) by its various con-
tributions, and u(ω − ω′) using the local approximation.

The strategy is to solve self-consistently for a power-
law solution ∆̃(ω) ∼ Aωγ (A, γ can be complex) in this
regime, where the pairing is controlled by the QCP. We
assume and verify later that the SC instability is domi-
nated by the frequency range ΛTc � ω′ � ΛNFL (as we
have seen in the last subsection); the feedback effects
from other frequency ranges are parametrically small.
This leads to

AN (ω′)
γ

=

(
A

γ + ε/3
− A

γ

)
(ω′)

γ
+K (ω′, Tc)

K (ω′, Tc) =
A

γ
ΛγNFL −

AΛ
γ+ε/3
Tc

γ + ε/3
(ω′)

−ε/3
. (40)

Observe that without the second term K(ω′, Tc), power-
law solutions exist for any ε and N :

γ = − ε
6

(1± 2iβ) , β =

√
3

εN
− 1

4
, (41)

so finding Tc is equivalent to the condition

ReK(ω′, Tc) = 0, for any ω′. (42)

Here it suffices for the real part of K to vanish because
the equation is linear and the integral kernel is real, and
real and imaginary parts of ∆̃ ∼ ωγ decouple as two inde-
pendent candidate solutions. The condition (42) is only
possible for a complex exponent γ, in which case ReK as
a function of ΛNFL and ΛT is oscillatory and has zeros.
Then (42) can be satisfied by tuning the phase of the com-
plex amplitude A ∼ eiφ and Tc (or ΛTc). Requiring com-
plex γ reproduces the SC condition N < Nc ≡ 12/ε; near
the phase transition β → 0, and solving ReK(ω′, Tc) = 0
requires that

φ+
ε

3
β ln ΛNFL =

(
1

2
+m

)
π +O(β), m ∈ Z

φ+
ε

3
β ln ΛTc =

(
1

2
+ n

)
π +O(β), n ∈ Z .

Eliminating φ and picking the maximum ΛTc ≤ ΛNFL

reproduces (38).

The functional behavior of ∆̃(ω′) in the other regimes
can be easily determined by performing an integral over
ΛTc � ω′ � ΛNFL, which only involves the known ∆̃(ω′),
and does not require solving integral equation. This gives

∆̃(ω′) ∼


(ΛNFL)

γ+ε/3
(ω′)

−ε/3
, ω′ � ΛNFL

(ω′)γ , ΛTc � ω′ � ΛNFL

(ΛTc)
γ
, πTc � ω′ � ΛTc

(43)

in agreement with (33). The resulting piece-wise solu-

tion ∆̃(ω′) is smooth. Furthermore, it can be verified
that feedback effects in (39) from regimes ω � ΛTc and
ω � ΛNFL are negligible. This solution is therefore self-
consistent.

IV. FINAL REMARKS

In this work we analyzed the interplay between SC
and NFL behavior at finite temperature, near a QCP
for a Fermi surface coupled to a massless boson. We
will end by summarizing the main points of our work,
presenting the resulting phase diagrams, and discussing
future directions.

We argued that the presence of infrared singularities
from the exchange of zero-frequency bosons is an artifact
of the Eliashberg approximation and invalidates the stan-
dard replacement of the Matsubara sum by an integral
(at low temperatures). This afflicts the fermionic self-
energy and the SC gap. The resolution of IR divergences
in the self-energy leads to a new thermal term ΣT [28].
Here we went beyond the Eliashberg approximation, de-
riving a gap equation that takes into account ΣT and
that correctly includes the effect of thermal bosons with
Ωn = 0 (which is found to be subdominant at large N).
The resolution of IR divergences turns out to have im-
portant physical implications. In particular, it leads to a
parametric difference between the zero-temperature gap
and Tc, ∆0 � Tc. It would then be interesting to under-
stand if thermal fluctuations are responsible for a similar
behavior observed in some strongly correlated materials.

The dynamics depends crucially on Nε, with N the
rank of the SU(N) global symmetry, and ε = 3− d. We
obtained, both numerically and analytically, the SC crit-
ical temperature Tc as a function of N . For Nε � 1,
NFL effects from the anomalous dimension are sublead-
ing, and Tc is enhanced (compared to the BCS result)
due to massless boson exchange. As Nε increases, NFL
effects grow, and SC becomes more irrelevant. We found
that at Nε = 12 the critical temperature vanishes with

a BKT scaling behavior, ln (Tc/ΛNFL) ∼ −1/
√

12
εN − 1.

For larger N , SC is extinguished in the critical regime
and the system remains quantum critical down to zero
temperature. SC only develops away from the critical
regime, in which the inverse correlation length sets a “De-
bye scale” for conventional BCS-like pairing. We summa-
rize the results in the schematic phase diagram of Fig. 4.

By increasing the number of flavors to N ∼ 12/ε we
obtain an NFL superconductor, where the quasiparticle
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FIG. 4: A very schematic representation of the phase diagram for different values of Nε near the QCP at g = gc (a parameter
that tunes the boson to criticality).

description breaks down even above the SC dome. This
provides a controlled theoretical framework for strange
metallic behavior. The existence of naked quantum crit-
icality for N > 12/ε is also quite tantalizing, especially
for its thermodynamic and quantum entanglement prop-
erties. Our results, as well as previous works [21, 27], sug-
gest that proximity to a multi-critical BKT fixed point
could play a role in strange metals. It would be interest-
ing to study further the phenomenology of this regime,
for instance by looking at transport properties.

Our conclusions are consistent with the T = 0 results
in [21, 27], and extend them to finite T . Indeed, it was
found that the T = 0 gap ∆0 is also strongly affected
by NFL fluctuations as N ∼ Nc, and that SC vanishes
via an infinite order BKT-type quantum phase transition
at N = Nc. It is noteworthy that this continuity of the
phase structure down to T = 0 can only be achieved
by carefully including the effects of thermal fluctuations
which, however, cannot be seen at the T = 0 fixed point.

We stress that our analysis holds at large N , but we
hope that this can capture some of the physics for a small
number of flavors, as expected in real materials. In this
direction, the recent progress [50–52] to simulate non-
Fermi liquids using quantum Monte Carlo methods of-
fers a valuable source of information. Even though the
models studied in those references have different global
symmetry structure than the one considered here (and
hence could be in different universality classes), some of
the similarities with our results are encouraging. In par-
ticular, Ref. [51] found NFL behavior above the super-
conducting dome of an Ising nematic model with moder-
ately large coupling. And [52] reported a ferromagnetic
QCP stable under SC down to the lowest temperatures

accesible numerically. Such behavior is found in our class
of models upon increasing Nε, as summarized in Fig. 4.
A quantitative comparison would require taking ε → 1,
which is outside the regime of validity of our present ap-
proach. But it is clear that developing further analytic
and numeric tools to approach ε = 1 is an interesting
direction of future research.

Finally, in Appendix C, we discuss the implications of
our findings for the special role of the first Matsubara
frequency uncovered in [26]. This is done by artifically
reducing the strength of the NFL thermal self-energy.
This allows to study the interplay between the special
first Matsubara frequency and NFL effects. In this way,
we recover the Fermi liquid behavior obtained in [26],
as well as a new range with NFL-like first Matsubara
physics. This suggests the intriguing possibility of re-
entrant SC, where the gap is nonzero over a finite tem-
perature interval, but quantum criticality emerges again
at the lowest temperatures. We should stress that the
artificial reduction of the self-energy cannot be achieved
in the regime that was our focus here, which was based
on an overdamped boson with z = 3 dynamical expo-
nent. Nevertheless, the interesting phenomenology that
results motivates further explorations and, in particular,
a discussion of SC at the nonlinear level. We hope to
come back to these points in future work.
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Appendix A: Derivation of the gap equation

In this Appendix we derive the gap equation (25),
which goes beyond the Eliashberg approximation. This
is similar to the derivation of the fermion self-energy in
[28].

The quantity that we need to calculate in (24) is

Imn ≡
∫ ∞

0

q1−εdq D(ωm − ωn, q) tan−1

(
vq

|Z(ωm)ωm|

)
(A1)

and we will need the full boson propagator

D(Ωn, q) =
1

Ω2
n + q2 +

2M2
D

π
Ωn
q tan−1 vq

Ωn

. (A2)

Consider first m 6= n. We split the momentum inte-
gral into vq < |ωm−ωn| and vq > |ωm−ωn|. In the first
range, the boson propagator D ∼ 1/M2

D, and so the con-
tribution from this regime is parametrically small in the
low energy theory; we neglect it in what follows. Hence

Imn ≈
∫ ∞
|ωm−ωn|/v

dq
q1−ε

q2 +M2
D
|ωm−ωn|

q

tan−1 vq

|Z(ωm)ωm|
.

(A3)
Now we note that for small ε, the inverse tan function
here can be replaced by its limiting value π/2. Perform-
ing the q integral then yields

Imn ≈
π

2ε

1

M
2ε/3
D |ωm − ωn|ε/3

. (A4)

On the other hand, the case m = n may be evaluated
explicitly to obtain

Inn =
π

2ε

vε

|ωn + Σ(ωn)|ε
. (A5)

Replacing these results into (24) obtains (25).

Appendix B: Cancellation of diagonal term with
n = m in the gap equation

From (18), (25), the set of Eliashberg equations takes
the form:

∆̃(ωm) =
vεΛ

ε/3
NFLM

2ε/3
D πT

|ωm + Σ(ωm)|1+ε

∆̃(ωm)

N

+
T

N

∑
n 6=m

∆̃(ωn)

|ωn + Σ(ωn)|
Λ
ε/3
NFL

|ωm − ωn|ε/3
,

Σ(ωm) =
vεΛ

ε/3
NFLM

2ε/3
D πT

|ωm + Σ(ωm)|ε
sgn(ωm)

+ T
∑
n 6=m

sgn(ωn)
Λ
ε/3
NFL

|ωm − ωn|ε/3
. (B1)

We can rewrite the set of equations in a more compact
form

∆̃(ωm) =
T

N

∑
n

∆̃(ωn)

|ωn + Σ(ωn)|
u(ωm, ωn),

Σ(ωm) =T
∑
n

sgn(ωn)u(ωm, ωn), (B2)

where

u(ωm, ωn) = u(ωm − ωn) =
Λ
ε/3
NFL

|ωm − ωn|ε/3
(B3)

for m 6= n, and

u(ωm, ωm) =
vεΛ

ε/3
NFLM

2ε/3
D π

|ωm + Σ(ωm)|ε
.

In terms of the physical gap

∆(ωm) ≡ ∆̃(ωm)ωm/(ωm + Σ(ωm)), (B4)

we have

∆(ωm)

(
1 +

Σ(ωm)

ωm

)
=
T

N

∑
n

∆(ωn)

|ωn|
u(ωm, ωn). (B5)

Let’s substitute the expression for Σm on the LHS, and
single out the term ωm = ωn on both sides of (B5):

∆(ωm)

(
1 +

Σ̄(ωm)

ωm
+ T

u(ωm, ωm)

|ωm|

)
=
T

N

∑
n 6=m

∆(ωn)

|ωn|
u(ωm, ωn) +

T

N

∆(ωm)

|ωm|
u(ωm, ωm),

(B6)

where

Σ̄(ωm) =T
∑
n6=m

sgn(ωn)u(ωm, ωn), (B7)
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Reorganizing (B6), we get

∆̄(ωm)

[
1 +

Σ̄(ωm)

ωm
+

(
1− 1

N

)
T
u(ωm, ωm)

|ωm|

]
=
T

N

∑
6=m

∆(ωn)

|ωn|
u(ωm, ωn). (B8)

We can now redefine through a “reverse process”

Σ̃(ωm) ≡ Σ̄(ωm) + (1− 1/N)T sgn(ωm)u(ωm, ωm)

∆̃′(ωm) ≡ ∆(ωm)(ωm + Σ̃(ωm))/ωm, (B9)

such that

∆̃′(ωm) =
T

N

∑
n 6=m

∆̃′(ωn)

|ωn + Σ̃(ωn)|
u(ωm, ωn),

Σ̃(ωm) =T
∑
n 6=m

sgn(ωn)u(ωm, ωn)

+

(
1− 1

N

)
T sgn(ωm)D(ωm, ωm). (B10)

What we have shown is that as an eigen-system, (B2) is
equivalent to (B10). The later eliminates the diagonal
contribution to the gap equation, while modifying the
coefficient (1→ 1−1/N) for the thermal contribution to
the self-energy Σ. This justifies in large N our treatment
of the gap equation in the main section.

Appendix C: Revisiting the role of the first
Matsubara frequency

The result we obtained has found that near the quan-
tum critical region and for N > 12/ε, SC is avoided due
to (thermal and quantum) NFL dynamics. On the other
hand, the work [26] argued that SC always persists at
finite T due to the special role of the first Matsubara fre-
quency, at which the NFL behavior is absent and hence
SC is strongly enhanced. We emphasize here that this
“Fermi-liquid first Matsubara physics” is based on the
cancellation of thermal contributions to the gap equation
and the self-energy, which in our model is only realized at
N = 1 (see Appendix B). For N > 1, the thermal piece
in the NFL self-energy dominates at lowest frequencies,
and the FL first Matsubara physics is spoiled.

To see how exactly the first Matsubara physics inter-
plays with thermal fluctuations, it is interesting to mod-
ify the previous theory so that thermal fluctuations can
be made parametrically small. In this case we show that
the first Matsubara physics can partially re-emerge.

Let’s rewrite the frequency dependent part in the
fermionic kernel for ωm > 0 as [see (10)]

ωm + Σ(ωm) = |ωm|+ (λπT )
1

1+ε

+ Λ
ε/3
NFL(2πT )1−ε/3 (ζ(ε/3, 1)− ζ(ε/3,m+ 1))

≈ |ωm|+ (λπT )
1

1+ε + Λ
ε/3
NFL|ωm|

1−ε/3 (C1)

where we introduced a new parameter λ ≡
v2ε/3Λ

ε/3
NFLM

2ε/3
D and for convenience we have set

MD = 1. The approximate result in the last line is for
m � 1. However, as we mentioned, the first Matsubara
frequency is special: at m = 0, the last term vanishes,
and only the thermal piece contributes to the self-energy,

Σ(πT ) = (λπT )
1

1+ε .
We now take the “artificial” limit of small λ and an-

alyze the special role of the first Matsubara frequency.
Consider the possibility that the gap equation (25) can
be truncated at ωn = ±πT . This truncation at the first
level is consistent if the contributions ∆(ωn) from higher
frequencies are small. This requires

Λ
ε/3
NFL|ωn|

1−ε/3 � πTc + Σ(πTc) . (C2)

This gives an algebraic equation for the SC gap

∆(πTc) ≈ Λ
ε/3
NFL

πTc
N

1

(2πTc)ε/3
∆(−πTc)

πTc + Σ(πTc)
. (C3)

The values of the gap at higher frequencies are deter-
mined iteratively in terms of ∆(πTc). Since the gap func-
tion is symmetric, we arrive at

N =

(
ΛNFL

2πTc

)ε/3(
1 +

Σ(πTc)

πTc

)−1

. (C4)

Remember that (C4) is valid only if (C2) is satisfied,
which will eventually be violated for low enough Tc. This
implies that there exist different regimes. Let us discuss
them in details:

• λ1/ε � Tc � ΛNFL. This range for Tc corresponds to
requiring (C2) and πTc � Σ(πTc). From (C4), we have

N ≈
(

ΛNFL

2πTc

)ε/3
. (C5)

This automatically gives Tc � ΛNFL for any N > 1,
which then ensures (C2). Pairing is driven by the first
Matsubara effect and is Fermi-liquid like; the NFL behav-
ior dominates for all other frequencies, and heir contri-
bution in the pairing equation is parametrically smaller.
This reproduces in our model the results found in Ref.
26. For this result to be compatible with the temperature
range we are in, we need

N � N ′c ≡ (ΛεNFLλ
−1)1/3 . (C6)

• (λ1/εΛ−1
NFL)

1+ε
2−ελ1/ε � Tc � λ1/ε. This range for Tc

corresponds to requiring (C2), but Σ(πTc) � πTc. This
is then a new NFL regime, where pairing is still driven
by the first Matsubara frequency, but the solutions are
now driven by the thermal term instead of the bare fre-
quency term. From (C4), one obtains a different scaling
for N(Tc):

N ≈ (ΛεNFLλ
−1)

1
1+ε

(
Tc

ΛNFL

) 2ε−ε2
3+3ε

(C7)
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In this range Tc increases upon increasing N . Compati-
bility with the temperature range requires the same re-
lation (C6) to hold.

• Tc � (λ1/εΛ−1
NFL)

1+ε
2−ελ1/ε. In this regime, the ther-

mal term dominates all the lowest Matsubara frequen-
cies (not just the first one), in other words, Σ(πTc) �
Λ
ε/3
NFL|ωn|1−ε/3. The special role of the first Matsubara

frequency is thus lost. The pairing is driven by the NFL
dynamics, i.e., the interplay between the thermal and
z = 3 contributions of the boson to the fermionic self-
energy that we analyzed in the previous section:

N(Tc = 0) = 12/ε, (C8)

independent of λ. The independence of N(Tc → 0) on
λ is because λ only affects the scale ΛT , which tends to
zero anyways at T → 0.

FIG. 5: The critical N as a function of temperature T for
ε = 0.3, and λ = 10−12.

We conclude that the FL first Matsubara physics of [26]
dominates at higher T , while the NFL-driven first Mat-
subara behavior emerges at lower T . SC is enhanced in
the FL regime, while thermal and quantum NFL fluctua-
tions suppress it. This suggests the intriguing possibility
of a “re-entrance behavior” – an SC phase at high T and
a return to the NFL normal state at lower temperatures.

To explore this further, let us connect the three ranges
we just obtained. For N � N ′c ≡ (ΛεNFLλ

−1)1/3, there

is no solution for Tc and this corresponds to the NFL
normal state. For Nc ≡ 12/ε � N � N ′c, there are
two solutions Tc1,c2, between which one can show that
a nonzero SC gap develops. These temperatures then
correspond to entry/exit critical temperatures for the re-
entrant SC phase. Finally, for N < Nc, SC develops at
a finite temperature and persists down to zero tempera-
ture. We have verified this numerically, solving the gap
equation for a small parameter λ in the thermal piece of
the self-energy. We show the N = N(Tc) curve in Fig. 5,
for ε = 0.3 and λ = 10−12.

So far we have used the external parameter λ to access
the regimes where the first Matsubara frequency plays
a leading role. However, it is important to determine
whether λΛ−εNFL � 1 can be physically realized in the
class of models studied here. Comparing (C1) and (13)
gives

λ =

(
v
MD

ΛNFL

)2ε/3

ΛεNFL , (C9)

so it is tempting to identify the “strong-coupling” limit
ΛNFL � MD as a realization of the small parameter
λΛ−εNFL � 1. However, we caution that in this limit the
formulas for the self-energy and the gap are no longer
valid, since the z = 3 scaling of the boson breaks down.
Another possibility would be to take v � 1, so that
the fermion is much slower than the boson. But in this
case the z = 3 Landau-damped boson emerges only for
ω � vMD [25]. Then vMD replaces ΛNFL in the denom-
inator of (C9), which thus cannot be made small. We
conclude that in the regime of parametric control that
has been our focus, the special role of the first Matsub-
ara frequency (both in its FL and NFL versions) is lost,
and SC is driven by the NFL dynamics of Sec. III.

Nonetheless, the re-entrant behavior cannot be com-
pletely excluded — it could arise for instance in the in-
termediate undamped regime where the self-energies de-
pends both on frequency and momenta. Further numer-
ical studies are desired to shed more light on this issue.
On the other hand, it would be extremely interesting to
find a modification of our model that realizes the small λ
parameter in a controlled way, for example via disorder,
or changing the dimension of the problem.
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