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We derive viscous forces for vortices in a thin-film ferromagnet. The viscous force acting on
vortex i is a linear superposition Fi = −

∑
j D̂ijVj , where Vj is the velocity of vortex j. Thanks

to the long-range nature of vortices, the mutual drag tensor D̂ij is comparable in magnitude to the
coefficient of self-drag Dii.

The dynamics of solitons in ferromagnets is a topic
with a long history. Time evolution of magnetization,
represented by the field m(r, t) of unit length, is de-
scribed by the Landau-Lifshitz equation

J ṁ = −m× δU

δm
− α|J |m× ṁ, (1)

where U [m(r)] is a functional of potential energy, J is
the density of angular momentum [1], and α � 1 is
Gilbert’s damping constant [2]. Even in the simplest
models, where the energy includes only exchange interac-
tions and local anisotropy, Eq. (1) is a nonlinear partial
differential equation that rarely admits exact dynamical
solutions. Approximate solutions can be obtained for
soft modes associated with global symmetries (such as
translations) in the limit of weak external perturbations.
Thiele [3] described the dynamics of a rigidly moving
magnetic soliton, m(r − R(t)), whose velocity Ṙ is de-
termined from the equation

G× Ṙ− ∂U/∂R−DṘ = 0, (2)

expressing the balance of gyroscopic, potential, and vis-
cous forces, respectively.

Thiele’s equation (2) has been widely used to describe
the dynamics of vortices in a thin film [4–15]. With few
exceptions [5, 8, 13], analytical treatments take into ac-
count the gyroscopic and potential forces but leave out
the viscous force involved in energy dissipation. Both
the gyroscopic and viscous forces are proportional to the
soliton velocity Ṙ and the neglect of the viscous force can
be justified by its relative weakness: the viscosity tensor
Dab = α|J |

∫
dV ∂am ·∂bm is of a higher order in α� 1

than the gyrovector Ga = εabcJ
∫
dV m · (∂bm × ∂cm).

Nonetheless, in certain situations the viscous force cannot
be neglected. For example, the annihilation of a vortex
and an antivortex is accompanied by gradual dissipation
of energy as the two solitons approach each other. This
motivates us to seek a proper understanding of viscous
forces in vortex dynamics.

To be specific, we set as our immediate goal to obtain a
satisfactory analytical model for the motion of a vortex–
antivortex pair with equal skyrmion numbers, Fig. 1(a).
The two solitons attract each other through a potential
force mediated by exchange interaction. To the zeroth
order in α, Thiele’s equation (2), applied to each soliton

separately, predicts that they will orbit a common center
at an orbital velocity proportional to the force of attrac-
tion. At the next order in α, viscous forces opposing
the orbital motion will induce slow radial motion of the
solitons toward each other, Fig. 1(b).

Our main findings are as follows. (1) Viscous forces
acting on vortices come in two kinds. The first is self-
drag, a force proportional to the vortex’s own velocity
[5, 8]. We show that a vortex also experiences a drag
force from other vortices proportional to their velocities.
The net force of viscous friction acting on vortex i is
Fi = −

∑
j D̂ijVj , where Vj is the velocity of vortex j

and D̂ij is the mutual drag tensor comparable in mag-
nitude to the self-drag coefficient Dii. (2) Both Dii and
D̂ij scale logarithmically with the system size. (3) The
direction of mutual drag depends on the product of vor-
ticities. A vortex receding from an antivortex attempts
to drag the antivortex with it; the force direction reverses
for a vortex–vortex pair. (4) Image vortices, created by
“reflection” in the sample edge, produce substantial cor-
rections to viscous forces.

Our theory is built on the framework of collective co-
ordinates [8, 16, 17], in which the magnetization field
m(r, t) is parametrized by a few coordinates {qµ}, µ =
1, 2, . . ., representing soft modes of the system (e.g., vor-
tex positions). The Landau-Lifshitz equation (1) trans-
lates into equations of motion for each coordinate qµ,

Gµν q̇
ν − ∂U

∂qµ
−Dµν q̇

ν = 0. (3)

Thiele’s equation (2) is a particular case of Eq. (3), in
which {qµ} are global translations m(r) 7→ m(r − R).
The gyroscopic and dissipative tensors are [16, 17]

Gµν = −J
∫
dV m ·

(
∂m

∂qµ
× ∂m

∂qν

)
, (4a)

Dµν = α|J |
∫
dV

∂m

∂qµ
· ∂m
∂qν

. (4b)

We use a simple model of a thin-film ferromagnet
with exchange interaction of strength A and easy-plane
anisotropy of strength K. We omit dipolar interactions
[18]. In a film of thickness h, the energy is

U = h

∫
d2r

(
A|∇m|2 +Km2

z

)
/2. (5)
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FIG. 1. (a) Vortex–antivortex pair with equal skyrmion numbers. Red and blue colors signify positive and negative out-of-plane
magnetization mz, respectively. (b) Trajectory of the vortex. Natural units of length.

The polar angle of magnetization θ is a hard mode
pinned at θ = π/2. At low energies, the system is ef-
fectively an XY ferromagnet [19] parametrized by the
azimuthal angle of magnetization φ(r, t) with energy
U = h

∫
d2r A|∇φ|2/2. A state with N vortices has

φ(r) =

N∑
i=1

ni arctan
y − Yi
x−Xi

, (6)

where Ri = (Xi, Yi) is the location of the ith vortex and
ni ∈ Z is its vorticity, usually ni = ±1. The effective
description breaks down inside vortex cores—circular re-
gions with the size on the scale of the exchange length
λ =

√
A/K, where m comes out of the easy plane.

Gyroscopic and potential forces acting on vortices are
well understood. The gyroscopic density in (4a) comes
from core regions, where m does not stay in a fixed plane
[17]. Vortex cores are rigid objects, for which Thiele’s
approximation [3] works well. The gyroscopic force Fg

for a vortex with velocity Ṙ = (Ẋ, Ẏ ) has components

F gX = −4πQJ hẎ , F gY = 4πQJ hẊ, (7)

where Q = np/2 = ±1/2 is the skyrmion number of the
vortex determined by its vorticity n and polarity p = ±1.
Exchange-mediated conservative forces between vortices
resemble Coulomb interactions in two dimensions [20].
The net conservative force on vortex i is

Fci = −2πAh
∑
j 6=i

ninj
Ri −Rj

|Ri −Rj |2
. (8)

Viscous forces are the primary focus of this paper. It
is natural to expect that vortex i experiences a viscous

force Fvi = −D̂iiṘi, where D̂ii is a 2×2 symmetric tensor
with matrix elements such as DXiXi , DXiYi , and so on.
For magnetization lying primarily in the easy plane, m ≈
(cosφ, sinφ, 0), Eq. (4b) yields, e.g.,

DXiXi ≈ α|J |h
∫
d2r

(
∂φ

∂Xi

)2

= α|J |h
∫
d2r

(y − Yi)2

|r−Ri|4
.

On symmetry grounds, we expect D̂ii to be isotropic,
D̂ii = Dii1̂, with a scalar viscosity coefficient

Dii =
α|J |h

2

∫
d2r

|r−Ri|2
. (9)

The integral diverges and requires regularization for both
r→ Ri and r→∞. The long-range cutoff is the system
size [5]; the short-range cutoff is provided by the size of
the vortex core of the order λ [13]. For a vortex near the
center of a disk of radius Rd � Ri,

Dii ≈ απ|J |h ln (Rd/Cλ), (10)

where C is a numerical factor of the order 1. The log-
arithmic divergence with the system size Rd reflects the
long-range impact of a moving vortex on the magnetiza-
tion distribution m(r). Viscous forces in a ferromagnet
are of the order α� 1 (typically 10−4 to 10−2) and thus
are much weaker than gyroscopic ones. For a vortex, this
is partly compensated by the factor ln (Rd/Cλ)� 1.

The extended nature of vortices leads to substantial
mutual drag between them. Vortex i feels a force propor-
tional to the velocity of vortex j, Fvi = −D̂ijṘj , where
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again D̂ij is a 2× 2 tensor with coefficients such as

DXiXj ≈ α|J |h
∫
d2r

∂φ

∂Xi

∂φ

∂Xj

= α|J |hninj
∫
d2r

(y − Yi)(y − Yj)
|r−Ri|2|r−Rj |2

.

The integrand has two singularities at r = Ri and Rj .
They are weaker than the confluent singularity in Eq. (9)
and are integrable, making the short-range cut-off λ un-
necessary. For two vortices located symmetrically about
the center of a disk, Ri = (±R, 0) in Fig. 1, the viscosity
tensor D̂ij has principal axes parallel and perpendicular
to the line connecting the cores with the eigenvalues

D
||
ij ≈ απninj |J |h [ln (Rd/2R) + 1/2] , (11a)

D⊥ij ≈ απninj |J |h [ln (Rd/2R)− 1/2] . (11b)

TABLE I. Vortices in the numerical simulation.

i ni Qi GXiYi Ri Φi note

1 +1 +1/2 −2πJ R Φ vortex

2 −1 +1/2 −2πJ R Φ + π antivortex

3 −1 0 R2
d/R Φ image of the vortex

4 +1 0 R2
d/R Φ + π image of the antivortex

A notable feature of mutual drag is the dependence of
its direction on vorticities. The drag force Fvi = −D̂ijṘj

on vortex i is roughly opposite to the velocity Ṙj of vor-
tex j for vorticities of the same sign and roughly parallel
to it for vorticities of opposite sign.

To test our theory, we modeled the dynamics of a
vortex–antivortex pair with equal skyrmion numbers (Ta-
ble I) with the aid of the micromagnetic simulator Mu-
Max3 [21]. We used magnetization length M = 8.60 ×
105 A/m, gyromagnetic ratio γ = −2.21×105 m/A s, an-
gular momentum density J = µ0M/γ = −4.89 × 10−6

J s/m3 [1], exchange constant A = 2.6× 10−11 J/m, and

easy-plane anisotropy K = 2.60 × 105 J/m
3
. Natural

units of length and time were λ =
√
A/K = 10.0 nm

and τ = |J |/K = 18.8 ps. The sample was a disk
of radius RD = 2048 nm and thickness h = 4 nm.
A vortex and an antivortex with equal skyrmion num-
bers Q1 = Q2 = +1/2 were initially placed symmet-
rically on opposite sides of the disk center, Fig. 1(a).
The pair orbited the disk center and gradually spiraled
down, Fig. 1(b). The dimensionless constant C = 0.342
in Eq. (10) was determined through a numerical evalua-
tion of the dissipation constant Dii = α|J |h

∫
d2r|∂xm|2

of a simulated vortex.
In the absence of dissipation (α = 0), the motion of

the pair reflects the balance of the exchange-mediated
attraction (8) and the gyroscopic force (7), Fc +Fg = 0.
The radial direction of the exchange attraction results in
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FIG. 2. (a) Angular velocity Φ̇ of the vortices vs. the radius

R of their orbit. (b) The ratio of radial Ṙ and orbital RΦ̇
velocities vs. the orbit radius R. Natural units of length λ
and time τ .

the azimuthal direction of the vortex velocities. The two
topological defects orbit the common center at a constant
radius R. It is therefore convenient to parametrize the
positions of the vortices in polar coordinates (Ri,Φi),
see Table I. The angular velocity is obtained from the
balance of the gyroscopic and conservative forces acting
on a vortex in the radial direction,

− 2πJ hRΦ̇− 2πAh

2R
= 0. (12)

Weak dissipation (α� 1) turns the trajectories into spi-
rals with a radial velocity Ṙ of the order α.

Numerical simulations reveal very good, but not per-
fect, agreement with Eq. (12): the observed angular ve-
locity of the vortices Φ̇(R) differed from the expected
value Φ̇ = −A/2JR2 by a small constant, Fig. 2(a). This
minor discrepancy reflects an edge effect in a finite sys-
tem. Free boundary conditions at the edge, ∂φ/∂r = 0,
result in the appearance of image vortices outside of the
disk [9, 13], see Table I. The images generate a weak ra-
dial force of approximately 4πAhR/R2

d that reduces the
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angular velocity by 2A/JR2
d, in excellent agreement with

the numerical data, Fig. 2(a).
To determine the radial velocity Ṙ, which is of the

order α, we need to carefully evaluate viscous forces act-
ing on the vortices. This task is made complicated by
the constrained motion of images (their positions mir-
ror the locations of the vortices). Because of these con-
straints, the vortices also “feel” forces acting on the im-
ages. Although it is possible to solve the dynamics with
constraints, a more expedient way is to reformulate the
dynamics in terms of the two independent variables R
and Φ that fully determine the positions of all four ob-
jects (see Table I). Equations of motion for R and Φ can
be obtained by following the usual prescription (3):

GRΦΦ̇− ∂U/∂R−DRRṘ = 0, (13a)

GΦRṘ−DΦΦΦ̇ = 0. (13b)

Here we took into account rotational symmetry, which
yields −∂U/∂Φ = 0, and the diagonal nature of the dis-
sipation tensor, DRΦ = DΦR = 0.

Polar components of the gyroscopic tensor GRΦ =
−GΦR can be expressed in terms of Cartesian ones
through a standard coordinate change from {qµ} (here
positions of the vortices and images Ri) to R and Φ:

GRΦ =
∑
µ,ν

∂qµ

∂R

∂qν

∂Φ
Gqµqν = R(GX1Y1

+GX2Y2
)

= −4πRJ h. (14)

Here we used the reference frame of Fig. 1, in which
∂R1/∂R = (1, 0), ∂R1/∂Φ = (0, R), ∂R2/∂R = (−1, 0),
∂R2/∂Φ = (0,−R), etc. Image vortices 3 and 4 do not
contribute to the gyroscopic tensor because they are cen-
tered outside the sample and therefore lack cores. The
energy of the vortices and images is

U(R) = 2πAh

(
ln 2R+ ln

R2
d −R2

R2
d +R2

)
. (15)

The dissipative term in Eq. (13a) is of the order α2 and
can be neglected to yield Φ̇ ≈ −(A/2J )(R−2−4R−2

d ) for
R� Rd, as derived above.

To obtain the radial velocity from Eq. (13b), we need
the dissipative coefficient

DΦΦ =
∑
µ,ν

∂qµ

∂Φ

∂qν

∂Φ
Dqµqν =

∑
i,j

(−1)i+jRiRjD
⊥
ij , (16)

which reduces to a superposition of these terms:

2R2
1D11 ≈ 2απ|J |hR2 ln (Rd/Cλ), (17a)

−2R2
1D
⊥
12 ≈ 2απ|J |hR2[ln (Rd/2R)− 1/2], (17b)

4R1R3(D⊥13 −D⊥14) ≈ 4απ|J |hR2, (17c)

2R2
3(D⊥33 −D⊥34) ≈ απ|J |hR2. (17d)

They represent self-drag of the vortices (17a), their mu-
tual drag (17b), and corrections from the images (17c)

and (17d). In the limit of a large disk, the first two terms
dominate over the edge corrections, albeit only logarith-
mically in the system size Rd. Thus the edge corrections
must be included to obtain quantitative agreement with
simulations, Fig. 2(b).

The ratio of the radial and orbital velocities,

Ṙ

RΦ̇
=

DΦΦ

RGΦR
= sgnJ α

2
ln

Λ

R
, (18)

where Λ = R2
de

2/2Cλ, has a telltale logarithmic depen-
dence on the vortex separation 2R inherited from mu-
tual drag, Eqs. (11b) and (17b). As a result, a vortex-
antivortex pair follows a double logarithmic spiral,

ln ln
R(Φ)

Λ
− ln ln

R(0)

Λ
= sgnJ αΦ

2
, (19)

in excellent agreement with the numerical simulations,
Fig. 1(b). Note the contrast with a single vortex in a
disk, which has a constant self-drag coefficient (10) and
therefore follows a simple logarithmic spiral [13].

At the smallest orbital radii R, the observed radial ve-
locity Ṙ shows small but growing deviations from the
theoretical value, Fig. 2(b). As the radial motion is tied
to energy dissipation, an excess radial velocity hints at
the opening of a new dissipation channel. The likely cul-
prit is spin waves, which have a linear dispersion ω = sk
with the speed s =

√
AK/J 2 = λ/τ . In a disk, the

normal modes in polar coordinates (R,Φ) are

φ(R,Φ, t) = aJm(kR) cos (ωt−mΦ), (20)

where Jm(x) is a Bessel function of the first kind. For
open boundary conditions, the wavenumbers k satisfy
J ′m(kRd) = 0. A rotating vortex-antivortex pair couples
strongly to modes with m = 1. The lowest frequency for
an m = 1 spin wave is ω = 1.84s/Rd = 8.98 × 10−3τ−1.
At the end of the simulation, the angular frequency of the
pair reached Φ̇ = 4.3× 10−3τ−1. Although the pair was
not yet in resonance with this mode, its angular veloc-
ity had a substantial chirp, |Φ̈/Φ̇2| = α ln (Λ/R) ≈ 0.1,
and thus a spectrum potentially wide enough to excite
the m = 1 spin wave, whose dynamics would produce
additional dissipation.

We have derived viscous forces acting on a vortex in
a thin-film ferromagnet. In addition to self-drag pro-
portional to the vortex’s own velocity, vortices experi-
ence mutual drag, a force on vortex i proportional to
the velocity of vortex j, Fvi = −D̂ijṘj . Reflecting the
long-range influence of vortices, both the self-drag coef-
ficient Dii (10) and the mutual viscosity tensor D̂ij (11)
scale logarithmically with the system size. The mutual
drag tensor D̂ij is anisotropic and distance-dependent.
We have tested our theory by deriving the dynamics of
a vortex-antivortex pair with equal skyrmion numbers.
The results are in excellent agreement with micromag-
netic simulations. Edge effects in the form of image vor-
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tices contribute substantially to viscous friction. Dissi-
pation through the emission of spin waves becomes no-
ticeable when vortices approach each other very closely,
within a few exchange lengths λ.
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