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We discuss the onset of many body localization in a one-dimensional system composed of a
XXZ quantum spin chain and a Bose-Hubbard model linearly coupled together. We consider two
complementary setups depending whether spatial disorder is initially imprinted on spins or on
bosons; in both cases, we explore the conditions for the disordered portion of the system to localize
by proximity of the other clean half. Assuming that the dynamics of one of the two parts develops
on shorter time scales than the other, we can adiabatically eliminate the fast degrees of freedom,
and derive an effective hamiltonian for the system’s remainder using projection operator techniques.
Performing a locator expansion on the strength of the many-body interaction term or on the hopping
amplitude of the effective hamiltonian thus derived, we present results on the stability of the many-
body localized phases induced by proximity effect. We also briefly comment on the feasibility of the
proposed model through modern quantum optics architectures, with the long-term perspective to
realize experimentally, in composite open systems, Anderson or many-body localization proximity
effects.

I. INTRODUCTION

Inhibition of energy transport induced by the pres-
ence of spatial disorder has its origins at the middle of
last century1,2, and its phenomenology has been confined
to free systems till the last decade. More recently, a
number of works ranging from applications of perturba-
tion theory3–5 to numerical simulations6–8 have estab-
lished that a localized phase exhibiting absence of diffu-
sion and equilibration on long time scales, can survive
the presence of many body interactions. For instance,
a one dimensional disordered quantum system can show
a many-body localized phase9–11 even at strong inter-
actions or at high energy densities, failing to act as its
own bath. The existence of a many-body localized phase
has been recently proven rigorously for one-dimensional
systems on a lattice with short-range interactions12, and
explored in experiments with cold gases13–15. This novel
phase of matter not only displays breakdown of ergod-
icity as salient feature, but it also shows a rich phe-
nomenology, including connections to integrability16–22,
unusual response properties23,24, a rich pattern of quan-
tum entanglement25–29, and new types of order that can-
not arise in equilibrium30–32. This many body localiza-
tion (MBL) is accordingly drawing considerable interest.

While much effort has been devoted to the question of
when an isolated quantum system can be localized33–43,
in reality, any system is unavoidably coupled to an en-
vironment, and understanding the interplay of a many-
body localized phase communicating with a thermal bath
is of paramount importance, both for the exploration of
the phenomenon in experiments, as well as a to under-
stand its robustness to ergodic perturbations. The naive
expectation that the bath can provide sufficient energy
and phase-space to facilitate the hopping in an other-
wise localized system, has been confirmed by a series of
theoretical studies41,44–52 and by a recent experiment53.
These works have however shown that the interplay of
localization and dissipation can leave signatures on the

evolution of observables of interest at intermediate times,
before thermalization establishes eventually.

These findings suggest an inherent fragility of disorder-
induced localized phases of matter to the coupling to the
environment. However, there exist other captivating sce-
narios when open systems supporting a localized phase
are not necessarily doomed to a restoration of thermody-
namic equilibrium; in addition to dissipation engineering
via non-local Lindbladians capable to drive a system into
a state with desired localization properties, the possibil-
ity of a many body localization proximity effect represents
a promising direction. The phenomenon has been origi-
nally discussed in a toy model of two interacting systems
composed of different elementary degrees of freedom36:
when a disordered system is coupled to a clean one with
comparable size acting virtually as a bath, the former
can in turn, for certain choise of interaction and disor-
der strengths, induce localization on the latter. Start-
ing from the analysis in Ref.36, we aim at presenting in
this work a realistic setup (see for some experimental
proposals Sec. V) where a many body proximity effect
can occur in a quantum spin chain coupled to interact-
ing bosons hopping on a lattice (Sec. II). Our analysis
makes use of the Lindblad formalism, which has not been
previously applied to the MBL proximity effect. We will
consider both disorder imprinted on the spin (Sec. III) or
bosonic sector (Sec. IV), and establish the conditions for
the robustness of a many-body localized phase, induced
by the proximity of the disordered system into the clean
one. We provide a series of estimates for the borders of
the localization/delocalization transition in various pa-
rameter regimes, basing our study on the combination of
adiabatic elimination techniques and locator expansion,
which can serve as guideline for subsequent numerical
and analytical developments. We also discuss the more
natural occurrence of the clean, ergodic system acting as
a bath, which delocalizes the disordered one. In view of
proposing viable platforms to observe these effects, we
also suggest at the end of the paper (Sec. V) some po-
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tentially interesting quantum optics platforms where the
phases discussed in this work might be experimentally
explored in the future.

II. THE MODEL

We consider a one dimensional model composed of a
XXZ quantum spin chain coupled linearly to a Bose-
Hubbard model, as given by the hamiltonian (see also
Fig. 1)

H = −J
∑
〈i,j〉

b†i bj +
U

2

∑
i

ni(ni − 1)−
∑
i

ωib
†
i bi+

+Hint + α
∑
〈i,j〉

σ+
i σ
−
j + λ

∑
i

σzi σ
z
i+1 +

∑
i

hiσ
z
i ,

(1)

The term Hint denotes a spin-boson, dipolar-like (see
Sec. V for the choice of terminology in connection
with potential experimental realisations), interconversion
term

Hint = g
∑
i

(σ+
i bi + h.c.), (2)

while ni = b†i bi labels bosonic occupation numbers, and
σαi (α = x, y, z) are Pauli matrices describing spins-1/2
on sites i = 1, ..., N ; the sum

∑
〈i,j〉 ... is intended over

next-nearest-neighbours. The transverse field hi and the
chemical potential ωi are taken site-dependent, since they
will alternatively host spatial disorder.

A Jordan-Wigner transformation renders the XXZ
quantum spin chain an interacting fermionic model,
which, in presence of disorder, constitutes a paradigm for
the many body localization transition6,7. We therefore
first imprint disorder on the transverse fields, hi, drawn
accordingly from a uniform probability distribution of
width, W , and consider the emergence of a many-body
localization transition in the bosonic chain by proximity
of the disordered spin model, Sec. III. Alternatively, we
consider on-site disorder (uniformly drawn from a distri-
bution of width Ω) on the chemical potential of bosons,
ωi (see Sec. IV), and study the impact of the latter on
the quantum spin chain. A schematic representation of
the setups considered is provided in Fig. 1.

In order to estimate the border of the many-body local-
ized phase, we will always consider a disorder sufficiently
strong to push the disordered sector of the system (spins
or bosons) deep into the localized phase and evaluate
its impact on the latter portion, assumed clean. A fully
many-body-localized system (i.e. with all the many-body
eigenstates localized), renders more transparent the anal-
ysis, since the effective hamiltonian can be approximated
by a sum of several single particle terms, with the range
of many-body interactions falling exponentially with a
short correlation length if disorder is sizeable. Under
this hypothesis the conserved, l−bits of the many-body
localized phase12,18,54 are close to original bare degrees

FIG. 1. We consider an interacting quantum spin chain cou-
pled to a Bose-Hubbard model by a linear, dipole-like inter-
action term, Hint = g

∑
i(σ

+
i bi + h.c.), see hamiltonian (1).

When the typical energy scale ruling the dynamics of the
bosons (or of the spins) is larger than the coupling g, one
can adiabatically eliminate the bosonic (spin) sector, and de-
rive an effective hamiltonian for the reminder of the system,
viz. spins (or bosons). We study the onset of a many body
localized phase in these effective hamiltonians derived in adi-
abatic elimination, imprinting first disorder on the spin sector
(S) in Sec. III, and later in Sec. IV on the bosonic (B) one.

of freedom employed in hamiltonian (1), which can be
therefore employed in the subsequent analysis without
qualitatively affecting the generality of the conclusions.

III. DISORDER IN THE SPIN SECTOR

A. MBL proximity effect for bosons

The first case considered in our analysis consists of
spins subject to disordered fields, hi ∈ [−W/2,W/2],
along the ẑ-direction, and linearly coupled to bosons as
described by the hamiltonian

H = −J
∑
〈i,j〉

b†i bj +
U

2

∑
i

ni(ni − 1)− ω0

∑
i

b†i bi+

+Hint +
∑
i

hiσ
z
i .

(3)

Compared to (1), we have assumed a constant chemical
potential ωi = ω0, ∀i = 1, ..., N . The hamiltonian (3)
models the transfer of disorder from a bath of free spins
into a clean system of bosons via the linear term Hint;
as we commented in Sec. II, spins precessing in strong
(W � λ, α), disordered transverse fields hi, can be in-
terpreted as resulting from a disordered XXZ spin chain,
deep in the many-body localized phase. In the W → ∞
limit all other terms in the spin Hamiltonian can be ne-
glected; at large but finite W , the spin Hamiltonian can
be written in terms of emergent local integrals of motion
or ‘l-bits,’ which are approximately equal to the σzi , with
some dressing by higher spin terms 12,18,54.

Within the energy scale separation g � W , i.e. as-
suming that the spin bath has faster dynamics than the
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bosonic system (ω � W ), we can integrate out the for-
mer and find an effective dynamics for the bosons, using
projection operator techniques55. In particular, denoting
with ρb(t) the reduced density matrix for the bosons at
time t, we can write an effective master equation, where
spin dynamics has been averaged out55,56, as a result of
second order perturbation theory in the coupling g,

ρ̇b(t) = Lbρb(t)−

−
∫ ∞

0

dτ Trs{[Hint, e
τLs
(
[Hint, ρb(t)⊗ ρ0

s]
)
]}.

(4)

In Eq. (4), the density matrix ρ0
s encodes the state in

which the spins are frozen as a result of the above men-
tioned energy scale separation, and Ls is the Liouvillian
evolutor of the spin sub-system; finally, Trs{...} denotes
the trace on the spin’s Hilbert space.

Eq. (4) holds in the generic case of dynamics with co-
existent hamiltonian and Lindbladian processes55. Al-
though for large part of the paper, we will consider purely
hamiltonian evolutions, in Sec. V we study the impact of
dissipation on the spin sector, where the use of Eq. (4) is
convenient to perform adiabatic elimination.

In order to apply (4), we first assume that the bosonic
gas is in the atomic limit (J = 0) and subsequently (see
discussion after Eq. (6)) we perform a locator expansion
in the hopping J , in order to find the border of the many
body localization transition as a function of the couplings
appearing in Eq. (3). The effective hamiltonian, H ′b, for
the bosonic system is easily identified writing the right
hand side of (4) as the generator of a unitary dynamics,

ρ̇b(t) = −i[H ′b, ρb(t)]. (5)

The trace over the spin degrees of freedom is performed
assuming that the spin system is in an eigenstate of the
disordered spin hamiltonian, hs =

∑
i hiσ

z
i . The compu-

tations on the right hand side of Eq. (4) can be easily
carried (see for instance56,57 and the Appendix), as they
require to freely evolve the spin operators in Hint with
eτLs (in this case, we have simply Ls = ihs), and to
evaluate the time integral in the variable τ . Since spin
states are localized in real space (as consequence of hav-
ing assumed the XXZ spin chain deep in the localized
phase), the new effective disordered bosonic term in H ′b
will be local in space as well: indeed, the matrix element∑
i,j〈σ

−
i σ

+
j 〉b
†
i bj , occurring in the evaluation of Eq. (4),

will have local spatial support, 〈σ−i σ
+
j 〉 ∼ δi,j , because

strong disorder rules out spin states, ρ0
s, delocalized in

real space. Eq. (4), therefore, yields the effective bosonic
hamiltonian

H ′b = −J
∑
〈i,j〉

b†i bj +
U

2

∑
i

ni(ni−1)−
∑
i

(
ω0 +

g2

sihi

)
ni,

(6)
where the disordered dressing of the bosonic frequency
ω0 is the main effect of the adiabatic elimination of the
spins. The term si in (6) is reminiscent of the state of the

spin bath, ρ0
s, and it can acquire only the values si = ±1,

depending whether in ρ0
s the spin on the lattice site i,

was respectively oriented up or down along the ẑ direc-
tion; however, since hi is drawn from a distribution with
support in [−W/2,W/2] and centred around zero mean,
the sign of si cannot qualitatively alter the results of
the following analysis. The impact of the hopping term
∝ J , on the otherwise trivially localized boson hamil-
tonian (Eq. (6) with J = 0), will now be discussed in
locator expansion. As a side remark, we notice that if
the dynamics of spins is itself dissipative, terms in the
Lindblad form will appear in the effective Liouvillian for
the bosons as a result of the calculations contained in
Eq. (4); see for instance Sec. IV C.

As anticipated, we now consider the effect of the hop-
ping J in locator expansion. A regime of interest is the
one where ω0 is negligible compared to the disordered cor-
rection ∝ g2 arising from adiabatic elimination of spins,
ω0 � g2/W . At J = 0, hamiltonian (6) is trivially local-
ized because in the atomic limit; switching the hopping,
locator expansion33,36 predicts a critical value of J , at
which transport is restored in the system

J >∼ Jc '
g2

W
exp(−1

2
ΣT ξ). (7)

In the above expression ξ is the localization length of
bosons and ΣT the entropy density at fixed tempera-
ture T (we recall that in the estimate (7) and in the
others following in the next sections, the localization
length ξ is measured in units of the lattice spacing of (1),
and therefore adimensional). Formula (7) is derived
(see Ref.36) requiring that the typical matrix element,
J exp(− 1

2ΣT ξ), among states connected by the bosonic
hopping term is larger than their off-shell energy level
spacing, (g2/W ) exp(−ΣT ξ), indicating the breaking of
the locator expansion, and the onset of a delocalized er-
godic phase in the system. However, as long as J <∼ Jc,
the bosonic system described by (6) will be in a localized
phase induced by the coupling to the original stronlgy
disordered spin model and representing accordingly a
typical instance of many-body localization proximity ef-
fect.

B. Delocalization of the disordered spin bath

We now consider a regime of energy scales separation
complementary to the one discussed above. Specifically,
we set to zero the spin hopping term (α = 0 in Eq. (1)),
and discuss the generation of a next-neighbour spin-
flipping term when the clean bosonic system is traced
out. The impact of the transverse spin-spin interaction
term ∝ λ will be analysed in locator expansion. When
g � ω0 in hamiltonian (3), we can adiabatically elimi-
nate the bosons, if they evolve faster compared to spins,
ω0 � W , and derive an effective hamiltonian for the
latter using once again the formula (4) where the role
of bosons and spins are now interchanged with respect
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to Sec. III A. Since the bosons are clean from disorder,
we can now assume that they are frozen in a delocalized
state in real space, contrary to the ’l -bits’ of Sec. III A;
this carries the consequence that the effective spin hamil-
tonian can inherit an hopping term ∝ g2

∑
〈i,j〉 σ

+
i σ
−
j af-

ter bosons are traced away, because the matrix element

〈bib†j〉 can have non-local support on the lattice.
The effective hamiltonian for the spins degrees of free-

dom reads then,

H ′s =
∑

hiσ
z
i +

∑
i

g2

ω0 + U(1 + 2n̄i)
(σ+
i σ
−
i+1 + h.c.).

(8)
For instance, in order to generate a hopping to next
neighbouring sites as in Eq. (8), is sufficient to trace
out a bosonic state, |ψ〉b, written as a superposition
|ψ〉b = c1|{01}i〉 + c2|{10}i〉 (with c1 and c2 arbitrary
constants), where the shorthand |{01}i〉 stands for a
state with sites alternatively occupied and unoccupied by
bosons, |010101...01〉, and the state |{10}i〉 = |10101...10〉
is just obtained by a unit shift of the lattice site position
in |{01}i〉. The number n̄i in (8) is the expectation value
of the conserved, local bosonic number n̂i (we recall that
we considering the atomic limit J = 0 for bosons).

A one dimensional, non-interacting disordered system
is an Anderson insulator at any disorder strength; in or-
der to study the potential onset of delocalization in this
system via many body spin-spin interactions, we treat in
locator expansion the term

V = λ
∑
i

σzi σ
z
i+1 (9)

in the hamiltonian (8) (therefore now H ′s has been
dressed by V ), having in mind the structure of the XXZ
spin chain in (1). Since V is a quartic fermionic inter-
action after Jordan-Wigner fermionization, we can esti-
mate the magnitude of the typical term of the locator
series33,36 connecting two localized states |α〉 and |β〉 of
the spin hamiltonian (8) with energies respectively Eα
and Eβ ,

〈α|V |β〉
Eα − Eβ

∼ λξ−d

J ′ξ−4d
(10)

where d = 1 in our case and J ′ ∼ g2/(ω0 + U) is the
effectively generated hopping in hamiltonian (8). The es-
timate for the matrix element of the interaction 〈α|V |β〉
is derived33 in the basis of the localized wave functions of
the spins, and requires to take properly into account the
normalization of the localized states, ∝ ξ−d/2, while the
energy level spacing in the denominator, ∆E = Eα−Eβ ,
is proportional to ξ−4d, since the interaction involves
four localized fermions, acting each one on a region of
order ∼ ξ−d. Since the model is one dimensional, loca-
tor expansion for the free model (8) predicts a localiza-
tion length smaller than lattice spacing and scaling as
the logarithm of the ratio between disorder and hopping

strengths, ξ ∝ 1/ log (W/J ′), since the spin chain (8)
will be in a strongly localized regime for the energy scale
separation adopted. Therefore, the threshold in the cou-
pling λ for delocalizing the disordered spin bath is, using
Eq. (10),

λ >∼ λc ' J
′ log3(W/J ′), (11)

since as far as λ <∼ λc and the locator expansion con-
verges, the eigenstates of the interacting problem would
remain close to those of the Anderson insulator (8)
present at λ = 0.

In a similar fashion, if we start with bosons in a hop-
ping dominated regime (U = 0, t 6= 0) and with spins
in a strongly localized phase, the adiabatic elimination
of the latter will imprint on-site disorder on the former
which will immediately localize the bosons at any disor-
der strength (once again, the system is one dimensional).
If one treats on-site bosonic interactions in locator expan-
sion, one can easily show, following the same procedure
outlined above, that the spin-induced, localized phase of
bosons melts as interaction’s strength, U , reaches values
∝ t log3

(
g2/(Wt)

)
, where we have employed again strong

localization theory.

IV. DISORDER IN THE BOSONIC SECTOR

A. MBL proximity effect for spins

The setup of the second part of this work complements
the one of the previous Section. Disorder is now im-
printed on bosons, specifically, the chemical potentials
ωi are drawn from a uniform distribution of width Ω and
with zero mean value; complementing Sec. III A, we aim
at inspecting the impact of the disorder transfer from
bosons to the quantum spin chain hamiltonian with uni-
form transverse fields, hi = h0, cfr. Eq. (1),

H =
∑
i

h0σ
z
i + λ

∑
i

σzi σ
z
i+1 + α

∑
〈i,j〉

σ+
i σ
−
j +

+Hint +
∑
i

ωib
†
i bi.

(12)

Since we now wish to adiabatically eliminate the bosons,
we adopt the energy scales separation g � Ω and
h0 � Ω, while hopping will be subsequently switched on
in locator expansion. The choice of a diagonal bosonic
hamiltonian can, once again, be considered the extreme
limit of a strongly disordered, interacting bosonic system,
deep in its many-body localized phase (see the discussion
in Sec. II and Refs.12,18,54). In the spin ’atomic’ limit
α → 0 (σzi is conserved at each lattice site), the calcu-
lations necessary to adiabatically eliminate bosons using
Eq. (4), can be straightforwardly performed. Assuming
the bosons frozen into a localized state, we find that they
contribute with a disordered shift to the constant trans-
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verse field h0, in the effective spin hamiltonian

H ′s =
∑
i

(
h0+

g2

ωi

)
σzi +λ

∑
i

σzi σ
z
i+1+α

∑
〈i,j〉

σ+
i σ
−
j . (13)

Considering in this case the hopping as a perturbation
V = α

∑
〈i,j〉 σ

+
i σ
−
j , capable to connect states which oth-

erwise would be localized, we can estimate the magnitude
of the characteristic term of the locator expansion

〈α|V |β〉
Eα − Eβ

∼ α

g2/Ω exp(−sT ξ)
, (14)

using an argument analogous to the one employed for (7).
We can then conclude that the series would converge for

α <∼ g
2/Ω exp(−ΣT ξ), (15)

and the system’s eigenstates would remain close to the
localized ones (as in Eq. (7), ΣT is the entropy density
at temperature T ). It is straightforward to notice the
analogies between the hamiltonians (6) and (13), and
their respective results.

B. Delocalization of the disordered bosonic bath

In the complementary limit of spin dynamics occurring
on faster time scales than the bosonic one, g � h0, Ω�
h0, we find that the impact of the clean, spin bath is to
restore ergodicity in the disordered boson hamiltonian.
As in Sec. III B, we assume that there is no bare bosonic
hopping in (1), and integrate out the spin sector frozen
in a delocalized state, deriving an effective tunnelling for
bosons. Indeed, the effective bosonic hamiltonian reads
in this case

H ′b =
∑
i

ωini −
∑
〈i,j〉

g2

h0
(b†i bj + h.c), (16)

which again is a model of disordered free particles in one
dimension, localized at any disorder strength Ω. A loca-
tor expansion using the on-site many-body bosonic inter-
action term as perturbation

V = U
∑
i

ni(ni − 1), (17)

leads to the estimate

Uc ∼
g2

h0
log3

(Ωh0

g2

)
, (18)

for the magnitude of the critical interaction strength for
delocalization, where in Eq. (18) we have employed the
expression of ξ for a strongly disordered system one di-

mension, ξ ∝ log
(

Ωh0

g2

)
, replacing the effective hopping

∝ g2/h0 (compare with Sec. III B).

Analogue results to those discussed at the end of
Sec. III B, are found if we consider the bosons in the local-
ized phase coupled to a XX-quantum spin chain (λ = 0),
and treating the spin-spin interaction along the ẑ direc-
tion in locator expansion. As expected, once again, the
latter gets in turn localized by the former: eliminating
the bosons imprints on-site disorder on the spins, which
gets localized until the interaction strength λ ramps up to
a threshold which would restore ergodicity in the system.

C. Coupling to thermal spins and dissipation

The generality of Eq. (4) allows us to adiabatically
eliminate systems with both coherent and dissipative dy-
namics. This offers the opportunity to briefly comment
on the fate of the Bose Hubbard model in (3) with on-site
disorder of strength ∝ Ω (as the one considered through
this section), in contact with a system of spins at equi-
librium with a thermal bath at temperature T . This
can be, for instance, achieved adding to the simple spin
hamiltonian in (3), on-site Lindblad operators

Li = σ+
i , Li = σ−i , (19)

respectively with rates γ+ = γnT and γ− = γ(nT + 1),
where nT is the spin thermal distribution at frequency h0

and temperature T . We assume the scale separation h0,
γ± � g, and consider the spins frozen in their thermal
state at temperature T . The adiabatic elimination of the
spin sector adds an effective dissipation to the bosons
(see for instance57), described by the dephasing jump

operator, Li = b†i bi, and occurring at rate Γ = γ̃g2/(γ̃2 +
h2

0) where γ̃ = γ/ tanh(h0/2T ); the contribution to the
bosonic hamiltonian is inconsequential, since the thermal
state ρT ∼ e−

∑
i h0σ

z
i /T is factorised into a product of

local density matrices at each site, yielding a constant
energy level shift to the disordered chemical potential,
ωi.

Unless h0 � γ̃, which would render the dissipation
rate Γ small, we arrive at the natural conclusion that, on
time scales of the order ∼ 1/Γ, the localized phase melts
under the effect of the dephasing operators Li, without
need to invoke a delocalization transition mediated by
coherent many body interactions.

V. PERSPECTIVES

A. Experimental implementations

The model (1) discussed in this work originates from
the coupling of two paradigmatic hamiltonians of con-
densed matter physics. In this Section, we briefly out-
line possible realizations of the many-body localization
proximity effects presented here, from the perspective of
quantum many body simulation using quantum optics
platforms.
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A first simple experimental implementation of our set-
up consists in considering circuit QED-arrays58, mod-
elling a Jaynes-Cummings lattice with nearest neighbour
photon hopping. The latter consists of a one-dimensional
array of micro-wave resonators supporting photonic ex-
citations at a given frequency set by the cavity modes;
a linear dipole interaction of the type discussed in this
work, Hint, converts bosons into excitations of supercon-
ducting qubits (spins one-half), each of them coupled to
one of the resonators. Tunnelling among nearby photonic
cavities implements a kinetic hopping term of the Hub-
bard type, leading to a competition, even in the clean
system, among delocalization of photons, and the trap-
ping of the associated polaritons, arising from effective
on-site interactions58. In turn, the phase diagrams of the
Jaynes-Cummings and of the Bose-Hubbard model bear
several similarities58, and it would be of interest to ex-
plore, in the laboratory, the impact of disorder present
in individual cavity frequencies59, using as guidelines the
prediction of this work. Indeed, the increasing scalability
of circuit QED lattice experiments with the consequent
possibility to observe phase transitions60, make in prin-
ciple these hybrid qubit-photon architectures promising
grounds to realise many-body localization proximity ef-
fects.

A more complex, yet closer, platform to implement the
ideas presented in this work, are bosonic Hubbard mod-
els of photons on a lattice61–63 (equipped with effective
two-body photon-photon interactions arising from Kerr
non-linearities), coupled to superconducting quibts with
a photon-spin dipole interaction term; varying the pho-
tonic (or spin) modes from cavity to cavity (or qubit),
one can simulate disorder in this system. Furthermore,
when qubits are placed next to each other, electrostatic
or magnetic interactions among them become relevant,
mimicking the spin-spin interaction terms in our starting
hamiltonian (1).

Another possibility to start with intrinsic spin in-
teractions, as a term of the type ∼

∑
i σ

z
i σ

z
i+1, are

Rydberg-dressed spin lattices coupled to interacting
photons64. However, off-diagonal spin couplings terms,
∝
∑
i σ

+
i σ
−
i+1, would be effectively generated only at

higher orders in perturbation theory, changing some of
the estimates contained in the previous Sections.

B. Future directions

Our results concerning the onset of many-body lo-
calization proximity effects in physically feasible plat-
forms, are based on a combination of locator expan-
sion and adiabatic elimination methods, and constitute a
promising first route towards a systematic study of many-
body localization in realistic systems made up of different
species. As a first direction, we foresee a study of Ander-
son localization in a disordered Jaynes-Cummings lattice
(see also discussion at the beginning of Sec. V A) using
methods suited for one dimensional disordered systems,
such as strong disorder renormalization group. At the
next level of complexity, there is the challenging possi-
bility to derive the effective strong disorder hamiltonian
for the many-body spin-boson model in (1) using flow
equation methods65, which have already proven success-
ful66 in the description of the paradigmatic many-body
localization transition of the XXZ quantum spin chain.
Another promising avenue consists in going beyond our
perturbative estimates with a real-space renormalisation
group procedure67,68; for instance Ref.69 adopts, as in
our work, an energy scale separation to derive as well an
effective hamiltonian, and extract from the latter a flow
of the probability distribution of the random couplings
of a disordered, interacting quantum spin chain. This
approach might lead to clearer characterisation of the
many-body localized phases induced by proximity effect,
which up to now has been characterised only through
locator expansion techniques.

Finally, an agenda for future studies of the many-body
localization transition in quantum optics, would require
a systematic inclusion of dissipation since experimental
implementations would be plagued at long times by
photon losses or spin decoherence/dephasing terms (see
for instance Sec. IV C), which would eventually spoil the
features of the localized phase.
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APPENDIX: DERIVATION OF THE EFFECTIVE HAMILTONIAN (EQ. 6)

Our starting point is Hamiltonian (3) with J = 0. First, we evolve the spin operators at g = 0 as indicated in
Eq. (4), which is the result of a perturbative expansion in the spin-boson coupling g; spin dynamics is straightforward,
for instance, for the spin raising operator we find

σ+
i (τ) = σ+

i (0)eihiτ . (20)

Using the cyclic property of trace in Eq. (4), we need to compute the following expectation value (dropping signs and
pre-factors for the moment)

Trs{[Hint(τ), [Hint(τ = 0), ρb(t)⊗ ρ0
s]]}, (21)

where the time evolution of Hint(τ) pertains only the spins degrees of freedom (cfr. with Eq. (4)), as well as the trace
is over the slow, spin degrees of freedom, ’frozen’ in the state ρ0

s. Since ρ0
s is a pure state (in the specific instance

we are considering), we can replace the trace by an ordinary expectation value, and we expand the commutators in
Eq. (21) as

Trs{[Hint(τ), [Hint(τ = 0), ρb(t)⊗ ρ0
s]]} =

= 〈Hint(τ)Hint(τ = 0)ρb(t)〉 − 〈Hint(τ)ρb(t)Hint(τ = 0)〉 − 〈Hint(τ = 0)ρb(t)Hint(τ)〉+
〈ρb(t)Hint(τ = 0)Hint(τ)〉,

(22)

in Eq. (22) the average should be intended over the spin degrees of freedom only, and accordingly it does not affect the
reduced, bosonic density matrix ρb(t). Therefore, one only needs to evaluate matrix elements involving the interaction
hamiltonian, Hint, over the the state ρ0

s, as, for instance,

〈Hint(τ)Hint(τ = 0)〉 = 〈(
∑
i

σ+
i (τ)bi + h.c.)(

∑
i

σ+
i bi + h.c.)〉 =

=
∑
i,j

(
〈σ+
i (τ)σ−j 〉bib

†
j + 〈σ−i (τ)σ+

j 〉b
†
i bj

)
.

(23)

In the above equation, we have dropped time dependence for the observables that do not evolve, in order to lighten
the notation. Notice that expectation values which do not conserve the total spin along the z-direction are zero (cfr.
with hamiltonian (3)).

According to the working hypothesis of a strong localized spin bath, we choose the state ρ0
s as a product state of

spins pointing up or down over the whole one-dimensional lattice: as we write in the main text, ρ0
s cannot be in a real-

space superposition of spin product states since the spin system is taken deep into the localized phase. Accordingly,
the expectations values, 〈σ+

i (τ)σ−j 〉 ∝ δij , in Eq. (23), are proportional to a Kronecker delta on the real lattice, δij
(see also discussion in the main text). The time integral over the variable τ in Eq. (4) is straightforward, as the trivial
time dependence (20) is replaced in Eq. (23). Notice that in order to make convergent the integral an infinitesimal
imaginary part, η, has to be introduced, and set to zero at the end of the calculations, η → 0:∫ ∞

0

dτe±i(hi±iη) =
1

±i(hi ± iη)
. (24)

Analogous computations for the fourth term in Eq. (22), allows to write the right hand side of Eq. (4) as an hamiltonian
term (cfr. with Eq. (5))

H ′b = −
∑
i

g2

sihi
b†i bi, (25)

which is the result in Eq. (6). The term si = ±1 comes from the fact that the the first term in Eq. (23) yields
a non-zero contribution when the spin on lattice site i is up, while the second is non-vanishing if the spin is down;
however, the two contributions comes with opposite signs (cfr. the integral in (24)) since in the former case the
evolution follows Eq. (20), while in the latter follows its hermitian conjugate.

Concerning the second and third term in Eq. (22) they are proportional to η, and in general they encode dissipative
effects in Lindblad form. They are non-vanishing when the adiabatically eliminated bath (spins, in this case) is
equipped with some form of dissipation, or when the bath can self-generate a quasi-particle lifetime, η 6= 0. Since the
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spin bath is assumed in a localized state, the latter is zero in the instance we are considering: this has the important
consequence that the strongly localized system can induce a MBL phase in the bosonic one, contrary to what would
occur in the presence of an effectively generated Lindbladian term.

The analysis then proceed switching a bosonic hopping term ∝ J treated in locator expansion, as discussed in the
main text.


