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Abstract 

Tin titanate (SnTiO3) has been notoriously impossible to prepare as a thin-film ferroelectric, 

probably because high-temperature annealing converts much of the Sn2+ to Sn4+.  In the 

present paper, we show two things: first, perovskite phase SnTiO3 can be prepared by ALD 

directly onto p-type Si substrates; and second, these films exhibit ferroelectric switching at 

room temperature, with p-type Si acting as electrodes. X-ray diffraction (XRD) 

measurements reveal that the film is single-phase, preferred-orientation ferroelectric 

perovskite SnTiO3. Our films showed well-saturated, square and repeatable hysteresis loops 

of around 3 μC/cm2 remnant polarization at room temperature, as detected by out-of-plane 

polarization versus electric field (P-E) and field cycling measurements. Furthermore, 

photovoltaic and photoferroelectricity were found in Pt/SnTiO3/Si/SnTiO3/Pt 

heterostructures, of which properties can be tuned through band gap engineering by strain 

according to the first-principles calculations. This is a new lead-free room-temperature 

ferroelectric oxide of potential device application. 
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I. INTRODUCTION 

 SnTiO3 has been predicted to be a room-temperature ferroelectric with large polarization 

[1-3]. However, it has been difficult or impossible to process [4]. The Cambridge group 

found that only ilmenite formed [4], and in general, high-temperature processing and 

annealing may convert most of the Sn2+ to Sn4+. Therefore, we studied its production via low-

temperature ALD [5]. 

 We emphasize that unlike ferromagnetism, ferroelectricity is not strictly a property of a 

material but of a system consisting of a dielectric and electrodes. In order to demonstrate 

switching it may be necessary, for example, to have blocking electrodes rather than ohmic, in 

order to minimize leakage currents and obtain useful hysteresis curves. In the present case, 

we demonstrate switching for SnTiO3 directly on conducting p-type Si, which acts as both 

substrate and electrode. Si electrodes were first used in ferroelectric thin-film devices by the 

IBM San Jose group in the 1970s [6], and they are well understood. The main difference 

compared with metal electrodes is the longer screening length for depolarization fields [7]. 

 There are known artifacts that can look like ferroelectric switching: L. Pintilie and M. 

Alexe [8] have shown that back to back diodes produce a polarization versus voltage P-V 

hysteresis curve that closely resembles true ferroelectricity. However, there are two ways to 

discriminate unambiguously between such artifacts and true ferroelectric switching 

hysteresis. First, artifacts consisting of charge injection have hysteresis curves that move 

clockwise with time [9], which is impossible for true ferroelectric hysteresis; and second, 

back-to-back diodes (for example, the Si/SnTiO3 interfaces in our systems) will not exhibit a 

Curie temperature above which hysteresis disappears. In the present work, we demonstrate 
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both of these requirements (counterclockwise hysteresis and a measured Curie temperature) 

to prove true ferroelectricity at room temperature. 

 There is no reason to be skeptical of the present results on SnTiO3 synthesis, since both 

the XRD and SEM [5] measurements closely match those reported previously from powder 

data [10, 11], which showed 100-nm diameter single-phase nanocrystals with TC = 628 K 

(close to the frequency-dependent relaxor TC = 600 K we measure). However, the earlier 

work was not commercially viable, since it requires a highly-toxic TiCl4 precursor. 

Moreover, Sn2+ in the powder prepared, due to disproportionation to Sn4+ and metallic Sn, 

might not easily survive the sintering process requisite to make pellets or films for devices. 

  It has been reported that SnTiO3 has an optical band gap lying in the visible region of ~2 

eV or even lower, which makes it a good candidate for photo-ferroelectric materials [12, 13]. 

Photo-ferroelectric materials are particularly interesting due to coupling between 

photosensitivity and ferroelectric properties, which provide a large possibility of 

optoelectronics and solar energy harvesting applications [14-18]. However, there are very 

few useful photo-ferroelectric materials because most ferroelectrics have wide optical band 

gaps (> 3 eV). Therefore, experimental values of the direct optical band gap in SnTiO3 thin 

films were also compared with theoretical values calculated from density functional theory 

(DFT). We have observed photo-ferroelectricity and a photovoltaic effect in our Pt/SnTiO3/p-

Si/SnTiO3/Pt capacitor structures. 

 

 

 

 



 5

II. METHODS 

A. Experimental details 

SnTiO3 thin films of 40 nm thickness were deposited on p-Si substrates (p-type Si (100) 

substrates (resistivity: 1-10 Ω·cm, 20 × 20 mm2)) using atomic layer deposition (ALD) 

technique as detailed in reference [5]. Pt top electrodes were deposited on ALD-grown 

SnTiO3 thin films using RF-magnetron sputtering technique. X-ray diffraction (XRD) was 

performed with a PANalytical Empyrean diffractometer operating in reflection mode using 

monochromated Cu Kα1 radiation. XRD data was collected from 2θ values of 10 to 120 

degrees with step size of 0.017 degrees. Total data collection time was 90 minutes.  

Macroscopic ferroelectric properties were investigated with a ferroelectric loop tester (TF 

Analyzer 2000, aix-ACCT). To examine the intrinsic fatigue behavior, 10 µs wide electric 

pulses with a frequency of 10 kHz were applied to the Pt-top electrode. An incandescent 

lamp was used as a source to measure light-induced changes in ferroelectric hysteresis loops. 

Photovoltaic measurements were performed using a Keithley-2401 electrometer under 1-sun 

AM 1.5 solar simulator with light source density ~1 kW/m2. Conduction mechanisms in 

Pt/SnTiO3/p-Si/SnTiO3/Pt capacitors were studied through current-voltage (I-V) 

measurements using a Keithley 2401 source-meter unit. Temperature dependent 

measurements were done using a programmable Joule-Thompson thermal stage system 

(MMR model # K-20). Dielectric measurements between frequencies 500 Hz and 300 kHz 

were done using an impedance analyzer HP4924A. M-2000 ellipsometer (J. A. Woollam 

Co.) employed to record two ellipsometric parameters, ψ and δ, of SnTiO3 film on p-type Si 

substrate. Then a two-layer model composed of the substrate and film was used to determine 



 6

the optical constants of the films. The optical constants of the substrate as well as film 

thickness were obtained separately and fixed during the fitting procedure. 

 

B. Theoretical methods 

A computational study was conducted to evaluate the bandgap of the polar perovskite 

SnTiO3 subjected to epitaxial strain following the approach outlined in reference [12]. DFT 

[19, 20] calculations were performed using the Vienna ab initio Simulation Package (VASP) 

[21, 22] within the local density approximation (LDA), parameterized by Perdew and Zunger 

[23]. The projector-augmented plane-wave method [24, 25] simulated the core and valence 

electrons. A plane-wave basis supporting the wave function cutoff at 900 eV was used to 

converge the total energy of the system to within 1 meV/f.u. Zone-edge-shifted 8×8×8 

Monkhorst-Pack (MP) [26] k-point mesh was used for the Brillouin zone (BZ) integration. 

Force components on individual ions were relaxed to less than 1 meV/Å and stress-tensor 

components on the simulation cell to less than 0.1 kbar in all the structures studied. The 

monoclinic angle (β) was not allowed to relax in the monoclinic Cm phase. The biaxial misfit 

strain was defined as ߝ ൌ బ െ 1, where ܽ corresponds to the optimized lattice parameter of 

the cubic Pm3m structure with all the normal stresses relaxed to values less than 0.1 kbar. It 

is well known that LDA exchange correlation functional underestimates the value of band 

gap. We have therefore computed more accurate values of the perovskite SnTiO3 band gaps 

using the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid functional [27]. 
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III. RESULTS AND DISCUSSION 

X-ray diffraction (XRD) measurements were carried out to study the structural 

characteristics of our thin films. XRD patterns recorded at ambient conditions showed that 

the film is single-phase, preferred-orientation ferroelectric perovskite SnTiO3 (Figure S1). 

Based on the XRD data, we can predict that our films have grains with several orientations of 

(101), (011), (211), and (100) with c/a ratios of 1.144, 1.146, 1.036 and 1.061, respectively 

(see Supplemental Material) [28, 29].  

Polarization-electric field (P-E) hysteresis loop measurements were done on Pt/SnTiO3/p-

Si/SnTiO3/Pt capacitors at different applied voltages, as shown in Fig. 1 (a). Inset of Fig. 1 

(b) represents the schematic of Pt/SnTiO3/p-Si/SnTiO3/Pt capacitor structure used for 

ferroelectric and photovoltaic measurements. P-E hysteresis loops in Fig. 1 (a) clearly 

indicate the presence of room temperature ferroelectricity with a well-defined remnant 

polarization and coercive field. The saturated (Ps) and remnant polarization (Pr) values were 

found to be around ~7.5 µC/cm2 and 3.3 µC/cm2, respectively, at room temperature and 40 

kHz frequency. 

From Fig. 1 (a), a clear hysteresis switching current characteristic with a nest of loops, 

one inside the other were observed with increasing applied voltages. The inset of Figure 1(a) 

displays the direction of the hysteresis curve as a function of time, which is counterclockwise 

and thus excludes the possibility of artifacts consisting of charge injection, which sometimes 

mimic ferroelectric-like behavior [9]. Some preliminary work on ferroelectric hysteresis was 

also done in an earlier report [5]. They switched via an AFM tip and obtained very 

reproducible fully saturated switching loops at a coercive field of 4 V across 40 nm. This 

value of Ec = 100 MV/m is very reasonable for perovskite oxides and compares with about 
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20 MV/m in the present work. The present data are better than those of earlier work [5], 

because we have a parallel-plate capacitor structure and can therefore estimate electroded 

area, whereas no quantitative value of polarization could be obtained from the AFM-tip 

switched data of the earlier work. Perhaps most important in the present context, the 

hysteresis data of earlier work [5] are on an asymmetric Si/SnTiO3/AFM-tip geometry and 

not on a Si/SnTiO3/Si symmetric sandwich. Therefore, the hysteresis data cannot arise from a 

back-to-back diode artifact, as discussed by Pintillie and Alexe [8]. We have also measured 

capacitance-voltage curves on single metal-oxide-semiconductor (MOS, Pt/SnTiO3/Si) and 

two back-to-back connected MOS (Pt/SnTiO3/Si/SnTiO3/Pt) based capacitor structures of 

SnTiO3 film (see Supplemental Material, Fig. S2) [28, 30-32], where the presence of two 

capacitance peaks attests to the fact that we are observing ferroelectric switching even in the 

MOS structure [30-32]. More interestingly, we observed the presence of two capacitance 

peaks (maxima) in more symmetric way for the case of two back to back connected MOS 

structure, revealing a true ferroelectric property of our SnTiO3 films. 

 Moreover, to exclude any possibility of charge injection and electret effect due to trapped 

charges at the Si/SnTiO3 interface, we measured the frequency dependence of P-E hysteresis 

loops as shown in Figure 1 (c). Frequency dependence of P-E hysteresis loop illustrates clear 

polarization switching at higher frequencies (up to 80 kHz). Such frequency dependent 

behavior eliminates the possibility of a back-to-back diode effect, where the response at such 

high frequencies is not feasible for electrets since slow motion of ions is required. In 

addition, temperature dependent P-E hysteresis loop and polarization measurement using 

PUND technique were also performed to confirm the ferroelectric nature of our thin film as 

shown in Fig S3 (see Supplemental Material) [28].  
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In Figure 1(c), a drastic change in Pr values from low (≤ 20 kHz) to high (≥ 40 kHz) 

frequencies was observed whereas there was little change in Ps (the extrapolated value at E=0 

axis) as a function of frequency. The internal bias field created at each MOS structure will 

tend to stabilize polarization with opposite direction (see Figure 1(b)) due to their back-back 

connection. As such, at low frequency, our Pt/SnTiO3/Si/SnTiO3/Pt structure will suffer from 

backswitching phenomena resulting in very low net remnant polarization. However, at high 

frequency, the depletion will not play a significant role, so there will be negligible 

backswitching phenomena in the structure, resulting in high remnant polarization. We 

speculate that this is why we see a drastic change in Pr in a stepwise fashion from 20 kHz to 

40 kHz, while we see small change in Ps as a function of frequency in Figure 1(c). 

 Temperature dependent current (I) versus voltage (V) curves were measured from 83 to 

600 K to understand the electrical conduction mechanism in Pt/SnTiO3/p-Si/SnTiO3/Pt 

capacitors as shown in Fig. 2 (a). To reveal the dominant conduction mechanism of charge 

transport, the temperature dependent I-V curves were plotted on a logarithmic scale, as 

shown in Fig. 2 (b-c). As can be seen from Fig. 2 (c), the logarithmic I-V plot at room 

temperature can be fitted into three regimes, where the low and intermediate regimes are 

thought to arise from Ohmic conduction and Child’s square law, respectively, and the high-

voltage region corresponds to a steep increase in current [33]. Based on such I-V behavior, 

the conduction mechanism in our films is likely to be trap-assisted space charge limited 

current conduction [34]. However, it has often been observed in oxide thin films that a linear 

I-V relation at low applied voltages can also be explained by Simmons’ modified Schottky 

emission mechanism. Unambiguous discrimination of these mechanisms will require 

thickness-dependent current measurements for further clarification [35]. At present, however, 
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the temperature dependence of current can be used to determine the depth of the trapping 

levels. The slope of ln I versus 1/T, which is (Ec−Et)/k, provides the activation energy value, 

as shown in Fig. 2 (d). We found that deep trap levels exist in the film with activation energy 

of 1.3±0.1 eV. This value is reasonable for oxygen-vacancy transport in perovskite oxides, 

including SrTiO3, where 1.1 eV is the most common value [36, 37]. This value is found in 

two ways: From the ln I vs. (1000/T) graph in Fig. 2 (d) and, less precisely, as the kink and 

steep increase in current of the ln I versus ln V curve in Fig. 2 (c) near ln V = 0 (i.e., V = 1 

V). 

 It is important to rule out charge injection as a source of artifacts. In addition to noting 

that the polarization hysteresis loops are saturated, we provide in Fig. 3 data showing a 

dielectric peak at TC = 450�600 K, depending upon probe frequency from ca. 500 Hz to 300 

kHz. These data display the signature of a relaxor ferroelectric and satisfy a Vogel-Fulcher 

relationship with an extrapolated freezing temperature of ca. 452 K (Fig. 3b), suggesting 

local disordering of the Sn-ions. Inset of Fig. 3 (b) shows the relationship between dielectric 

constant and temperature near freezing temperature, which is described by modified Curie-

Weiss law [38]. A plausible hypothesis for the observed glassy behavior is the presence of 

some Sn4+ at the Ti4+ perovskite B-site. This could be tested via XPS measurement of the 

Sn4+/Sn2+ ratio. Since all these temperatures are well above ambient, these properties do not 

detract from the potential for commercial devices. Parenthetically, the Vogel-Fulcher 

behavior also helps rule out any artifacts as explanations of the hysteresis curves discussed 

above. 

We have also observed the photovoltaic effect in Pt/SnTiO3/p-Si/SnTiO3/Pt capacitors. In 

the dark, a very small current (10-4 µA) at zero bias voltage could be detected. Under white 
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light illumination a distinct photovoltaic behavior was observed with short circuit current 

(JSC) = 3 µA and open circuit voltage (VOC) =0.13 V, as shown in Fig. 4 (a). VOC and JSC 

were measured as a function of time over multiple on/off light cycles, showing good 

retention over time, with instability in VOC and JSC displaying a sudden increase and then 

return to initial values, as shown in Fig. 4 (b). To explain the unstable nature of JSC in 

multiple light on/off cycles, we measured the variation in JSC under continuous light 

illumination of 120 seconds, as shown in Fig. S4 (see Supplemental Material) [28]. We 

observed a continuous increase in photocurrent under continuous light illumination, which 

could be attributed to the presence of trap levels due to the structural defects, mainly oxygen 

vacancies [39, 40]. Under the light illumination, photo-generated electrons are transferred to 

the conduction band and some of them occupy the deep trap levels. Photocurrent starts 

increasing slowly as the trap levels are filled gradually. In addition, we have also observed 

photosensitivity of our samples in the ultraviolet (UV) region. The photovoltaic behavior of 

SnTiO3 films under UV-light illumination has been shown in Fig. S5 (see Supplemental 

Material) [28, 41]. There may be a small effect of the Si substrate on the photovoltaic effect 

but very limited as the photovoltaic effect from the Si/SnTiO3 interfaces will be cancelled out 

due to the nature of back to back connection, and only the ferroelectric part will contribute to 

the photovoltaic effect as the ferroelectric polarization will be aligned in the direction from 

one Pt electrode to the other Pt electrode. To further confirm the contribution from Si 

substrate, we measured I-V curves under the illumination of a red laser pen (~650 nm) and 

we observed a negligible contribution from Si in overall photovoltaic effect (see 

Supplemental Material, Fig. S6) [28].  
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Moreover, polarization fatigue, which is an important factor to determine the 

switchability of remnant polarization over the field cycles, was also measured with 10 µs 

wide electric pulses at a frequency of 10 kHz. Figure 4 (c) shows the evolution of remnant 

polarization of SnTiO3 as a function of switching cycles. We confirmed nearly fatigue-

resistant characteristic up to 106 cycles in our SnTiO3 capacitor, which is comparable to early 

studies of Pt/Pb(Zr,Ti)O3/Pt capacitors [42]. Interestingly, we have also observed photo-

ferroelectric effect in Pt/SnTiO3/p-Si/SnTiO3/Pt capacitor structures, where enhancement in 

ferroelectric properties was observed with an increase in Ps and Pr values under white light 

illumination. Such enhanced ferroelectric behavior shows the photo-ferroelectric nature of 

SnTiO3 thin films.  

 A combination of experimental and computational techniques was utilized to evaluate the 

optical band gap of SnTiO3. We measured the refractive indices of the film samples, n and k, 

using spectroscopic ellipsometry technique and calculated absorption coefficient, α. The 

(direct) band gap was determined to be 2.6 eV by linearly extrapolating ሺߙEሻଶ versus photon 

energy (E), as indicated by a gray line in Fig. 5 (a) [43].  

In such oxides strain imposed by substrates could be an important factor to tailor the band 

gap. Electronic properties of perovskite SnTiO3, including band gap values, band structure 

and electronic density of states (EDOS), were investigated for varying epitaxial strain ߝ. 

Figure 5 (b)-(d) shows an electronic band dispersion diagram (left panel) and EDOS (right 

panel) of SnTiO3 obtained within the local density approximation (LDA) for (b) ߝ ൌെ0.33%, (c) ߝ ൌ 0% and (d) ߝ ൌ 0.33%, i.e., throughout the region where a transition 

from P4mm to Cm structure accompanied by a large band gap change was predicted by the 

previous investigation [12]. The band gap remains indirect (from X to Γ ) for all the 
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considered strains, with value changing from ~0.5 (compression) to 1.0 eV (tension), as 

previously reported [12]. We also included ion and l quantum-number-resolved EDOS for 

the aforementioned three epitaxial strain states. Valence bands between 16 and 17 eV are 

composed of Sn s and O p states. Conduction bands between 19 and 21 eV are largely 

composed of Ti d states with a small mixture of O p states. It is well known that LDA 

exchange correlation functional underestimates the value of the band gap. We computed 

more accurate values of the perovskite SnTiO3 band gaps using the Heyd-Scuseria-Ernzerhof 

(HSE) screened hybrid functional (see Supplemental Material, Fig. S7) [28], obtaining values 

of 2.175 eV for the P4mm phase under compressive and zero strains, and 2.655 eV for the 

Cm phase stabilized in epitaxial tension. The band gap value predicted by the HSE-based 

calculation for the monoclinic Cm phase is in a close agreement with the one determined by 

the experimental techniques, although at this point the nature of the band gap is not clear, 

since the experiment data point toward a direct band gap while the theory suggests an 

indirect band gap. The plot of strain dependent band gap based on EDOS suggests that we 

need to enhance tensile strain inside SnTiO3 film to further lower the optical band gap, which 

will enhance the photoferroelectric property of the film (see Supplemental Material, Fig. S7) 

[28].  

 

IV. CONCLUSION 

In summary, we demonstrated room temperature relaxor ferroelectricity and photovoltaic 

effects in SnTiO3 thin films deposited directly on the p-type Si substrates. XRD data, 

polarization-electric field hysteresis loop and permittivity measurements, dependence of 

dielectric peaks at TC = 450-600 K on probe frequency from ca. 500 Hz to 300 kHz, and a 
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Vogel-Fulcher relationship with an extrapolated freezing temperature of ca. 452 K, confirm 

the presence of relaxor ferroelectric perovskite SnTiO3 in our films. Furthermore, 

photovoltaic and photoferroelectricity were manifested in Pt/SnTiO3/Si/SnTiO3/Pt 

heterostructures, of which properties can be tuned through optical band gap engineering by 

strain according to the first-principles calculations. This study provides a path to develop 

green material for various ferroelectric and dielectric based emerging nanoelectronic devices 

and photoferroelectric applications. 
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FIGURE CAPTIONS 

Figure 1 (a) Polarization-electric field (P-E) hysteresis loop and switching current at 

different applied voltages between 1 and 10 V measured at room temperature. Inset shows 

the direction of hysteresis loop as a function of time. (b) Schematic diagram of Pt/SnTiO3/p-

Si/SnTiO3/Pt capacitor structure used for electrical measurements. (c) Frequency dependence 

of P�E hysteresis loops.  

 

Figure 2 (a) I-V characteristics of Pt/SnTiO3/p-Si/SnTiO3/Pt capacitors at various 

temperatures. (b) lnI-lnV plots at various temperatures. (c) lnI-lnV plot at 300 K exhibits trap 

assisted space charge limited current (SCLC) behavior of current transportation. (d) 

Arrhenius plot for capacitor structure.  

 

Figure 3 (a) Temperature dependence of the dielectric constant. (b) Extrapolated freezing 

temperature was observed to be 452 K. Inset shows the linear fitting of experimental data 

obtained from modified Curie-Weiss law. We note that for any relaxor, as the probe 

frequency is lowered, the temperature corresponding to dielectric constant peaks must 

decrease and the peak magnitude must increase; in any viscous material the susceptibility 

(both electrical and mechanical) must increase as frequency decreases. 

 

Figure 4 (a) I-V characteristics of Pt/SnTiO3/p-Si/SnTiO3/Pt capacitor in dark and under 

white light illumination. Inset shows the portion of the I-V curves around zero field, 

revealing JSC and VOC to be 3 µA and 0.13 V, respectively. (b) Time dependence of JSC and 

VOC was measured under multiple on/off light cycles. (c) Evolution of remnant polarization 
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with the number of bipolar cycles in dark and light. Inset shows the P-E hysteresis loops after 

106 switching cycles. 

 

Figure 5 (a) (αE)2 versus photon energy plot gives the direct band gap of 2.6 eV for SnTiO3 

thin films grown on p-Si substrate. A gray line is an extrapolation line to estimate the band 

gap. (b-d) Electronic bands dispersion (left panel) and ion and l quantum-number-resolved 

electronic density of states (EDOS) (right panel) calculated for SnTiO3 for the biaxial misfit 

strain ߝ  of (b) െ0.33% , (c) 0%  and (d)  0.33%  within the local density approximation 

(LDA). The location of the bands is referenced with respect to the low-lying O 2s state, 

which is assumed to be undisturbed by any structural distortions. 
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