
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Elastic, mechanical, and thermodynamic properties of Bi-Sb
binaries: Effect of spin-orbit coupling

Sobhit Singh, Irais Valencia-Jaime, Olivia Pavlic, and Aldo H. Romero
Phys. Rev. B 97, 054108 — Published 20 February 2018

DOI: 10.1103/PhysRevB.97.054108

http://dx.doi.org/10.1103/PhysRevB.97.054108


The elastic, mechanical and thermodynamic properties of Bi-Sb binaries: Effect of
spin-orbit coupling

Sobhit Singh,1 Irais Valencia-Jaime,2 Olivia Pavlic,1 and Aldo H. Romero1

1Department of Physics and Astronomy, West Virginia University, Morgantown, WV-26505-6315, USA∗

2Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, United States

Using first principles calculations, we systematically study the elastic stiffness constants, mechan-
ical properties, elastic wave velocities, Debye temperature, melting temperature, and specific heat
of several thermodynamically stable crystal structures of BixSb1−x (0 < x < 1) binaries, which are
of great interest due to their numerous inherent rich properties, such as thermoelectricity, thermo-
magnetic cooling, strong spin-orbit coupling (SOC) effects, and topological features in the electronic
bandstructure. We analyze the bulk modulus (B), Young’s modulus (E), shear modulus (G), B/G
ratio, and Poisson’s ratio (ν) as a function of the Bi concentration in BixSb1−x. The effect of SOC
on above mentioned properties is further investigated. In general, we observe that the SOC ef-
fects cause elastic softening in most of the studied structures. Three monoclinic structures of Bi-Sb
binaries are found to exhibit significantly large auxetic behavior due to the hinge-like geometric
structure of bonds. The Debye temperature and the magnitude of the elastic wave velocities mono-
tonically increase with increasing Sb-concentration. However, anomalies were observed at very low
Sb-concentration. We also discuss the specific heat capacity versus temperature data for all stud-
ied binaries. Our theoretical results are in excellent agreement with the existing experimental and
theoretical data. The comprehensive understanding of the material properties such as hardness,
mechanical strength, melting temperature, propagation of the elastic waves, auxeticity, and heat
capacity is vital for practical applications of the studied binaries.

I. INTRODUCTION

A thorough understanding of the mechanical response
of any given material is essential before the technolog-
ical applications of that particular material can be re-
alized. A good place to start is investigating the elas-
ticity, a fundamental property of a crystal which gov-
erns the macroscopic response of the crystal under exter-
nal forces. The hardness, mechanical strength and the
propagation of the sound and elastic waves in a given
material can be determined by knowledge of the elastic
constants of that particular material. Amongst many
known binary compounds and alloys, Bi-Sb based bi-
naries have retained a peculiar place due to their ap-
plications in the low-temperature thermoelectric indus-
try and refrigeration.1–5 Moreover, Bi-Sb binaries are
the first predicted three dimensional topological insulator
(often referred as the first generation topological insula-
tor) that host robust conducting surface states.6–10 Soon
after the theoretical prediction, Hseih et al.7 reported the
experimental detection of novel gapless conducting sur-
face states in this binary system. Recently, we found that
the lowest energy structure of BiSb composition (in R3m
space group) exhibits large ferroelectric behavior along
with a giant tunable Rashba-Dresselhaus effect, which is
the result of the broken inversion symmetry and the large
spin-orbit coupling (SOC) of the constituent Bi and Sb
elements.11,12 Furthermore, we demonstrated that one
can realize a novel Weyl semimetallic phase under ex-
ternal stress of 4–6 GPa.11 Interestingly, by exploiting
an interlink between the large SOC of the constituent
atoms and the ferroelectric polarization, one can tune
the dynamics of Weyl fermions in the momentum space
of BiSb. This particular property is of notable interest

for applications of Weyl semimetals in the forthcoming
Weyltronic technology.

BiSb is not only interesting in its bulk phase, but
it also shows unique electronic properties in two-
dimensions.13–16 In particular, a giant tunable Rashba ef-
fect along with a large direct bandgap (∼1.6 eV) has been
reported for this system.16 The existence of the large tun-
able Rashba effect together with a direct bandgap in the
visible region makes this material of peculiar interest for
its applications in the optoelectronics and spintronics in-
dustry. Recently, Yu et al.14 investigated the topological
properties of monolayer BiSb, and observed the emer-
gence of robust novel quantum spin Hall (QSH) effect
under biaxial tensile strain. This finding was further
confirmed by the calculation of Z2 topological invariant
and the nontrivial topological edge states. These fea-
tures make BiSb an attractive candidate for applications
in spintronic devices.

Other than the BiSb composition, several other sta-
ble compositions of the Bi-Sb binaries have been re-
ported in literature by both theoretical and experimental
studies.1–3,5,12,17–20 The formation mechanism and the
chemical synthesis procedure of BixSb1−x nanocrystals
are given in refs.21–23 A detailed structural, electronic,
vibrational and thermoelectric investigation of the Bi-Sb
binaries can be found in our recent work.12 In ref.,12 we
explored the potential energy surface of Bi-Sb binaries us-
ing the minima hopping method,24,25 and calculated the
theoretical convex-hull of Bi–Sb. We not only discovered
several new energetically and thermodynamically stable
crystal structures of Bi-Sb binaries that are located on
the convex-hull, but we also recovered the known struc-
tures of Bi-Sb binaries in our structural search calcula-
tions. In the present work, we investigate the elastic and
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thermodynamic response of the stable Bi-Sb binaries. All
the studied structures could be synthesized in laboratory
under suitable ambient conditions.5,12,21–23

Changes in the mechanical properties of BixSb1−x sin-
gle crystals as a function of Sb-concentration have been
studied by ultrasonic wave velocities measurements at
room temperature as well as at low-temperatures.26–31

In general, the elastic properties, i.e. bulk modu-
lus, Young’s modulus, and shear modulus increase with
increasing Sb-concentration in Bi-Sb binaries.26 Also,
the average speed of sound increases with increasing
Sb-concentration, however, it decreases with increasing
temperature.31 Although, most of the experiments report
monotonous increase in the elastic moduli with increasing
Sb-concentration for larger atomic % of Sb, there exists
some anomalies in the variation of the mechanical prop-
erties at low Sb concentration, which is consistent with
our theoretical findings.26 Although, the specific heat of
pristine Bi32–35 and pristine Sb36,37 has been studied in
detail,35,37 little attention has been paid to the thermo-
dynamic properties of Bi-Sb binaries.17,27,38 Lichnowski
and Saunders reported increase in Debye temperature
with increasing Sb-concentration.27 The effect of SOC
on the elastic and mechanical properties of Bi-Sb binaries
has not yet been reported in the literature, even though
SOC is known to significantly change the electronic, vi-
brational and thermodynamic properties of Bi and Sb
based compounds.35,37,39

In the present work, we report a systematic investi-
gation of the elastic and thermodynamic properties of
the Bi-Sb binaries calculated using first-principles. We
study the properties of the following Bi-Sb binary com-
positions (crystal structures are shown in Fig. 1): Bi1Sb7,
Bi1Sb1, Bi3Sb1, Bi7Sb1 and Bi9Sb1, which lie on the
convex-hull of the Bi-Sb binary phase diagram (the only
exception is the Bi3Sb1 composition which lies above,
yet very close to the convex-hull).12 Our results indi-
cate that the ductility of the structures increases with in-
creasing Bi-concentration, whereas in general, the elastic
moduli decrease with increasing Bi-concentration. The
bulk modulus (B), shear modulus (G), Young’s modulus
(E), Poisson’s ratio (ν) and the elastic stiffness coeffi-
cients (Cij) of the studied systems are reported below.
We notice that Bi1Sb7, Bi7Sb1, and Bi9Sb1 monoclinic
structures exhibit negative Poisson’s ratio along differ-
ent spatial directions. The Debye temperature and max-
imum heat capacity are found to increase with decreas-
ing Bi-concentration. Comparison of our theoretical find-
ings with the available experimental data shows excellent
agreement between theory and experiments.

II. COMPUTATIONAL DETAILS

Density Functional Theory (DFT) based first-principle
calculations were carried out using the projector
augmented-wave (PAW) method as implemented in
the VASP code.40,41 We used the PBE exchange-
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FIG. 1. (Color online) Figures (a-e) represent the crys-
tal structure of Bi-Sb binaries located on the Bi–Sb phase
diagram.12 Bi atoms are shown in purple color while Sb atoms
are shown in green color. Each crystal structure is shown from
two different lattice orientations. The cutoff length for bonds
was defined as 3.10 Å in Sb-rich compositions and 3.20 Å in
Bi-rich compositions.

correlation functional as parametrized by Perdew-Burke-
Ernzerhof.42 We considered fifteen valence electrons of
Bi (5d106s26p3) and five valence electrons of Sb (5s25p3)
in the PAW pseudo-potential. The lattice parameters
of each structure were optimized until the Hellmann-
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Feynman residual forces were less than 10−4 eV/Å per
atom. For convergence of the electronic self-consistent
calculations, a total energy difference criterion was de-
fined as 10−8 eV. We used 650 eV as kinetic energy cut-
off of the plane wave basis set. We employed a Γ-type
k-mesh for hexagonal and trigonal structures, while a
Monkhorst-pack type k-mesh was used to sample the ir-
reducible Brillouin zone of all other crystal phases. The
size of k-mesh was large enough to ensure the numerical
convergence of total energy to less than 1 meV/atom.

The elastic constants Cij were calculated using the
stress-strain relationship as implemented in the VASP
code. Elastic constants were converged better than 1
GPa by increasing the k-mesh size. The bulk modu-
lus (B), shear modulus (G), Young’s modulus (E) and
Poisson’s ratio (ν) quantities were first determined us-
ing the Voigt bound43 and Reuss bound44 schemes, and
then an arithmetic average was computed following the
Voigt-Reuss-Hill averaging scheme.45 This way of eval-
uating elastic moduli is important since the Voigt and
Reuss bounds give an upper and lower estimates of the
actual elastic moduli of polycrystalline crystals, respec-
tively. The Voigt bound scheme43 relies on the assump-
tion of uniform strain throughout the crystal, whereas
the Reuss bound scheme44 relies on the assumption of
uniform stress throughout the crystal. Since SOC plays
an important role in describing the electronic and vi-
brational properties of Bi and Sb atoms,35,37,39 we de-
cide to investigate the effect of SOC on the elastic and
mechanical properties of Bi-Sb binaries. Therefore, we
have calculated elastic constants and elastic moduli for
each studied structure twice: once with-SOC and once
without-SOC. The phonopy code46,47 was used to calcu-
late the heat capacity of crystal lattice.

In order to facilitate the analysis of elastic and me-
chanical properties, we have developed an open source
python code named MechElastic,48 which can be used
to evaluate many important physical quantities such as
elastic moduli, elastic wave velocities, Debye tempera-
ture, melting temperature, anisotropy factors, and per-
form the mechanical stability test for any crystalline bulk
materials. In future, this code will be generalized for 3D
as well as 2D systems.

III. RESULTS AND DISCUSSIONS

A. Elastic constants

The crystal structures of all the binary compounds un-
der investigation are shown in Fig. 1. It is important
to first discuss the elastic stiffness constants and define
their relationship with the macroscopically measurable
quantities that give us information about the elastic and
mechanical properties of the system. The bulk modulus
(B), Young’s modulus (E), shear modulus (G), and Pois-
son’s ratio (ν) are known as the elastic moduli and are
macroscopically measurable quantities that give a mea-

sure of the elasticity of the material. These quantities can
be determined from the elastic constants, Cijkl. These
constants are obtained through the use of the generalized
stress-strain Hooke’s law,49

σij = Cijklεkl, (1)

where σij and εkl are the tensile stress and longitudinal
strain, respectively. Utilizing the crystal symmetry op-
erations, the total number of constants can be reduced
from 81 to 3, 5, 6 and 13 for cubic, hexagonal, tetrag-
onal, and monoclinic structures, respectively.49 Table 1
lists the values of the relevant elastic constants calcu-
lated with and without inclusion of SOC. Although, few
non-diagonal elements of the Cij matrix contain negative
values for Bi7Sb1 and Bi9Sb1 binaries, all the six eigen
values of the Cij matrix are positive suggesting the elas-
tic stability of these binaries. In fact, all the eigen values
of Cij matrix are positive for each studied Bi-Sb binary.

We notice a small yet significant change in the Cij val-
ues due to the SOC effects. Notably, SOC is known to
considerably change the electronic and vibrational spec-
tra of Bi and Sb based compounds. Ramifications of SOC
on the electronic bandstructure chiefly depend upon the
crystal symmetry, and therefore, SOC could have dif-
ferent implications on the same composition but with
different crystal symmetry.12,39 Moreover, Dı́az-Sánchez
et al.39 have reported that the dynamical properties and
the interatomic force constants of Bi are very sensitive to
the strength of SOC. They reveal that SOC softens the
phonon modes in Bi by about 10% and yields remarkable
agreement when compared to that of the experimental
values. However, SOC has much smaller effects on the
lattice parameters.39 In a similar work, Serrano et al.37

have studied the effects of SOC on the specific heat, the
lattice parameter, and the cohesive energy of Sb. Their
calculations reveal that all these quantities depend al-
most quadratically on the SOC strength.37 The small
change in the Cij values due to SOC can be attributed
to the above mentioned reasons. The calculated elastic
constant values are consistent with an experimental work
reported by Lichnowski et al.,27 where they investigated
the elastic properties of Bi1−xSbx (0.03 < x < 0.1) single
crystals for small Sb concentration.

Notably, the strength of SOC in Sb is much smaller
compared to that of in Bi, consequently, changes in the
Cij values for Sb-rich compositions are relatively less
(slightly over our convergence criteria of 1.0 GPa) com-
pared to that of in the Bi-rich compositions. However, we
do notice considerable SOC induced changes in the Cij

values for Bi-rich compositions. The influence of SOC on
the Cij (to increase or decrease the Cij and therefore the
stiffness) is fairly uniform across all compositions. Even
pure Sb and Bi follow the same trends with the exception
of C12. These trends indicate that, in general, due to the
SOC effects BixSb1−x becomes less stiff along the x and
y major axes for deformations along x and y directions,
more stiff along the z major axis for deformation along
the z direction, and they differ for the transverse forces
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TABLE I. List of elastic constants (Cij) calculated with (PBE+SOC) and without SOC (PBE). Cij values (in GPa units)
calculated with PBE+SOC are given in parentheses. x represents the concentration of Bi in BixSb1−x. The space group of
each composition is given in the square brackets.

Composition x C11 C22 C33 C44 C55 C66 C12 C13 C23 C15 C25 C35 C46

Sb [166] 0.0
92.2 35.8 29.8 21.8 20.3

(89.3) (38.9) (28.3) (22.5) (20.4)
Theory a 91 38 27 24 21

Bi1Sb7 [06] 0.125
98.5 83.1 36.2 36.8 13.0 16.2 6.4 12.7 32.0 15.1 6.4 1.9 6.8

(95.1) (81.5) (37.4) (34.0) (13.7) (15.2) (7.2) (13.0) (30.9) (13.2) (5.4) (2.3) (6.5)

Bi1Sb1 [160] 0.5
75.5 29.1 13.4 21.8 18.0

(68.7) (31.2) (12.4) (22.6) (19.6)

Bi3Sb1 [160] 0.75
67.3 31.0 7.8 27.0 20.7

(58.0) (34.0) (8.3) (25.4) (21.8)

Bi7Sb1 [08] 0.875
61.6 63.4 26.3 4.2 5.8 20.7 23.1 16.9 17.8 1.6 -4.1 -0.6 -4.3

(54.6) (58.1) (29.5) (3.9) (4.5) (18.3) (23.2) (18.7) (18.6) (0.63) (-3.3) (0.6) (-4.2)

Bi9Sb1 [08] 0.9
25.7 64.5 62.4 20.5 8.1 6.6 16.5 16.8 20.9 -0.5 -5.5 5.7 -4.5

(30.0) (66.3) (55.2) (15.8) (10.7) (0.5) (16.7) (15.4) (18.8) (-4.4) (-5.6) (2.9) (-0.9)

Bi [166] 1.0
68.6 31.7 6.0 27.8 21.3

(62.6) (36.1) (8.8) (25.6) (23.3)
Theorya 68 30 10 24 19
Theoryb 67.7 40.6 8.7 25.0 24.3
Exp.c 69.3 40.4 13.5 24.5 25.4
Exp.d 68.7 40.6 12.9 23.7

a Ref.50 data from materials project database.
b Ref.51 data from LDA+SOC calculations.
c Ref.27 experiment was performed at 4.2 K. For high temperature Cij values for Bi, see ref.27 and references therein.
d Ref.52 experiment was performed at 4.2 K.

and responses in the x− y plane. In general, SOC effects
cause elastic softening in all directions perpendicular to
the z axis. The observed elastic softening could be asso-
ciated to the SOC induced softening of phonon modes.39

In a previous work, Arnaud et al.51 investigated the ef-
fect of SOC on the elastic properties of Bi and observed
a similar SOC induced elastic softening. Their reported
values are in good agreement with our data presented in
Table 1. Here, we would like to note the peculiar effect
of SOC on the Bi rich compound, Bi9Sb1. In Bi9Sb1 we
see that the aforementioned trends are reversed for most
of the Cij values. Also, anomalous changes in the elas-
tic stiffness constants can be observed for Bi9Sb1, which
will be discussed in more detail later. These changes sup-
port the before mentioned complex relationship between
the SOC and the electronic and phonon bandstructure,
leading to directional changes in the bonding within the
material.

Our calculations indicate that SOC causes small
changes (overall less than 1.0 %) in the Bi-Sb, Bi-Bi,
and Sb-Sb bond lengths, which when combined with the
phonon softening could be held accountable for the ob-
served SOC induced changes in the Cij values. The max-
imum variation in the bond length due to SOC is within
the range of ±0.03 Å. Further details of the bond-lengths,
lattice parameters, electronic bandstructure, and phonon

bandstructure of all studied structures can be found in
ref.12 Since elastic constants are defined in terms of free
energy with respect to strain, the following conclusion
can be made here: in presence of SOC, electrons in ma-
terial are redistributed to minimize the total free energy,
thereby recovering some of the strain energy and reduc-
ing the effective elastic stiffness.

B. Mechanical properties

We further test the mechanical stability of all the stud-
ied structures. A material can be considered mechani-
cally stable if it passes the Born-Huang mechanical sta-
bility criteria.49,53 This criteria states that in order to be
mechanically stable, the Gibbs free energy of any relaxed
crystal, i.e. in absence of any external load, must be
minimum compared to any other state reached by means
of an infinitesimal strain. This requires that the elas-
tic stiffness matrix Cij is positive-definite, i.e. all the
eigenvalues of Cij are positive and the matrix is sym-
metric. Additionally, all the leading principle minors
and any arbitrary set of minors (trailing minors) of Cij

must be positive. If a crystal, regardless of its symme-
try, satisfies the aforementioned conditions, it can be
considered mechanically stable. The mathematical ex-

https://materialsproject.org
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FIG. 2. (Color online) Mechanical properties of Bi-Sb binaries calculated with and without inclusion of SOC (a) Bulk modulus
B (in GPa), (b) Shear modulus G (in GPA), (c) Young’s modulus E (in GPA), (d) Poisson’s ratio ν, and (e) B/G ratio. Green
dotted line in Fig. (e) shows the boundary (B/G = 1.7) below (above) which material behaves as brittle (ductile).
a Experimental data at room temperature from ref.26
b Theoretical data from ref.50
c Experimental data at 4.2 K from ref.27

pressions for these conditions have been reported for dif-
ferent crystal classes by various research groups.54–57 It
is important to mention here that in some of the pub-
lished papers54–56 these conditions are incorrectly gen-
eralized from the cubic criteria (specially for the lower
symmetry structures), which could lead to wrong quan-
titative analysis. However, it could not change the qual-
itative picture of mechanical stability of a crystal. For
the first time, Mouhat and Coudert correctly general-
ized the Born-Huang mechanical stability conditions for
all crystal classes.57 Therefore, we refer the reader to
the seminal paper of Mouhat and Coudert for further
details regarding the necessary and sufficient conditions
for the mechanical stability conditions.57 In our case, we
find that all the studied Bi-Sb binary structures pass the
Born-Huang mechanical stability test and hence can be
considered mechanically stable.

Once the Cijkl constants are calculated, the four mod-
uli (B, G, E, and ν) can be obtained by using relations
between the constants.58 Details of these relations for
different crystal systems, and for Voigt and Reuss bound
schemes are summarized in ref.56 The bulk modulus rep-
resents the volume compressibility of the material and
is given by B = E/3(1 − 2ν).49 Young’s modulus gives
a measure of the stiffness of the system. It is simply
ratio of the stress along an axis to strain along that

axis. A material is very stiff if it has large E. Pois-
son’s ratio is used as a measure of plasticity as it mea-
sures the expansion of material in the transverse direc-
tion to the direction of compression. It is calculated
using ν = (3B − 2G)/2(3B + G). The shear modu-
lus, or the modulus of rigidity, describes the deforma-
tion of the system under transverse internal forces. It
is related to Young’s modulus and the Poisson ratio by
G = E/2(1 + ν). A way to measure the brittleness or
ductility of a material comes from the ratio of the bulk
modulus to the shear modulus, B/G ratio, with values
above 1.7 giving ductile behavior.58,59

Figures 2 (a-c) show the observed variation in the
B,G, and E values as a function of Bi-concentration in
BixSb1−x. Red (Blue) color represents the data points
calculated with (without) inclusion of SOC. We notice
that B,G, and E values systematically decrease with in-
creasing Bi-concentration, however, change in B is rela-
tively less compared to that for G and E. As expected,
the effects of SOC are more dominant towards Bi-rich
side than that of towards Sb-rich side. We notice that
in all moduli except B, these effects on the Bi-rich com-
positions are present, and the same reversal in trends
mentioned in the previous section can be seen in Bi9Sb1.

The available experimental and theoretical data (given
in Fig. 2) are in excellent agreement with our theoretical
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calculations.26,27,50 Here, it important to mention that
all the theoretical values are lower than that of the ex-
perimental observations. This is due to the fact that
we used GGA approximation in all our calculations, and
GGA is well-known to underestimate the elastic constant
values.56 We also notice that the Poisson’s ratio (ν) and
B/G ratio increase with increasing Bi-concentration, in-
dicating increase in the ductile behavior of Bi-rich com-
positions. This could be associated to decrease in the
strength of the covalent bonds in Bi-rich compositions.
The Bi-Bi bond length in pristine Bi (3.10 Å) is consider-
ably larger compared to the Sb-Sb bond length in pristine
Sb (2.96 Å), thus suggesting stronger covalent bonding in
Sb. The average bond length increases with increase in
the Bi-concentration. The bond lengths are as follows: in
pristine Sb: Sb-Sb bond = 2.96 Å; in Bi1Sb7: Sb-Sb bond
= 2.98 Å; in Bi1Sb1: Bi-Sb bond = 3.04 Å; in Bi3Sb1:
Bi-Sb = 3.03 Å and Bi-Bi = 3.09 Å; in Bi7Sb1: Bi-Sb
= 3.02 Å and Bi-Bi = 3.10–3.12 Å; in Bi9Sb1: Bi-Sb =
3.05 Å and Bi-Bi = 3.12 Å, and in pristine Bi (Bi-Bi =
3.10 Å). Consequently, the increasing bond-length causes
decrease in the elastic moduli and increase in the ν and
B/G values. The observed variation in the mechanical
properties is consistent with changes in the bond-length.
Thus, monotonic decrease in B,G, and E values with
increasing Bi-concentration can be correlated with de-
creasing valence electron density.60 However, the anoma-
lies observed in the elastic properties of Bi9Sb1 composi-
tion with low-Sb concentration that are consistent with
previous experimental studies26 warrant for a further in-
vestigation of this issue. The first-principles calculations
using Virtual Crystal Approximation (VCA), which are
beyond the scope of the present work, can offer good in-
sights to resolve this issue. The possible reasons behind
the observed anomalies in the properties of Bi9Sb1 are
discussed below.

C. Negative Poisson’s ratio

Materials having negative Poisson’s ratio (ν), known
as auxetic materials, have attracted special attention of
researchers due to their exceptional advantages in the
sensing technology.62–68 As we mentioned earlier, a pos-
itive Poisson’s ratio defines the ratio of the transverse
contraction to the longitudinal extension of a material
during the stretching process. Therefore, materials with
negative Poisson’s ratio, auxetic materials, are expected
to expand in the transverse direction when stretched in
the longitudinal direction. Auxetic materials are quite
rare in nature as compared to the non-auxetic materi-
als. However, Baughman et al.64 reported that the aux-
etic property is often observed in cubic elemental met-
als. Interestingly, auxetic materials with lower symmetry
are more appealing for technological applications because
they yield much larger strain amplification as compared
to the highly symmetric auxetic materials.65 In order to
analyze the auxeticity of the studied structures, we thor-

oughly investigate the elastic tensor of each studied com-
position calculated with-SOC.

Using the open source ELATE software tool,61,69 we
have analyzed the spatial variation of Poisson’s ratio for
each studied structure. We observe that three out of
seven binary structures exhibit significantly large nega-
tive Poisson’s ratio along different spatial directions. All
these structure belong to the low symmetry (monoclinic)
space groups, therefore, these structures are more advan-
tageous for technological applications. The results are
given in Fig. 3. Regarding the theoretical details of these
plots, we refer the reader to the excellent paper of Gail-
lac et al.69 In spherical coordinates, the determination of
ν requires an extra dimension in addition to the θ(0, π)
and φ(0, 2π) coordinates, i.e. ν(θ, φ, χ) The additional di-
mension can be characterized by an angle χ(0, 2π).69,70

The blue color in Fig. 3 represents the surface obtained
at the maximum of χ, whereas the green (red) lobes cor-
responds to the positive (negative) values of ν obtained
at the minimum of χ. We find that Bi9Sb1 monoclinic
structure exhibits the largest negative Poisson’s ratio in
y − z plane. The minimum value of ν is ∼ −0.6, which
is comparable with the value νmin = −0.8 reported for
polymer foam structures by Lakes et al.63 The other two
monoclinic structures, Bi1Sb7 and Bi7Sb1, inherit rela-
tively smaller negative Poisson’s ratio.

In order to understand the microscopic origin of neg-
ative Poisson’s ratio, we analyze the geometry of the
bonds and the distribution of electron localization func-
tion along the bond directions in Bi9Sb1, as shown in
Fig. 4(a). One can notice that the atomic bonds in
Bi9Sb1 form hinge or bow-tie like structure in the y − z
plane. Such structural arrangement has been reported
to yield negative Poisson’s ratio in auxetic materials (see
figure 1 of ref.67). A linear chain of Bi-Bi atoms forming
inverted hexagon or hinge like bonds can be noticed in
the highlighted region of Fig. 4(a). Plotting electron lo-
calization function reveals that two adjacent Bi-Bi bonds
inherit opposite features in their electron distribution.
Along one bond there exists overlap of charges in the
mid indicating bonding nature of orbitals from two near-
est Bi atoms, whereas, along the consecutive Bi-Bi bond,
no such charge overlap is present indicating antibonding
feature or presence of a charge nodal plane at the middle
of Bi-Bi bond. Such two adjacent bonds could form or-
thogonal hinges, which are responsible for the observed
auxetic behavior in Bi9Sb1. Similar concept can be ap-
plied to explain the auxeticity of Bi1Sb7 and Bi7Sb1 mon-
oclinic structures. Due to the intrinsic hinge structures,
in presence of compressive strain along longitudinal di-
rection, these structures tend to shrink in the transverse
direction, and vice-versa. Fig. 4(b) illustrates the behav-
ior of an auxetic material in presence of compressive or
tensile strain.
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Bi1Sb7

Bi7Sb1

Bi9Sb1

FIG. 3. (Color online) Top, middle, and bottom panels represent the calculated Poisson’s ratio of Bi1Sb7, Bi7Sb1, and Bi9Sb1

binaries, respectively. All plots were generated using the ELATE software.61 Green (red) color corresponds to the positive
(negative) values of ν (see text for details).

D. Elastic wave velocities, Debye temperature and
Melting temperature

Knowledge of the elastic wave velocities, Debye tem-
perature and melting temperature is important for prac-
tical applications. Therefore, we estimate these quanti-
ties using the MechElastic code.48 We calculate the lon-
gitudinal (vl), transverse (vt), and average (vm) elastic
wave velocities using the following relations:71,72

vl =

√
3B + 4G

3ρ
, (2)

vt =

√
G

ρ
, (3)

1

vm
=

[
1

3

(
2

v3t
+

1

v3l

)]−1/3

, (4)
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(a)

(b)

FIG. 4. (Color online) (a) Distribution of electron localiza-
tion function (turquoise color) in monoclinic Bi9Sb1 plotted
at isosurface value η = 0.25. Purple color represents Bi atoms
and yellow color represents Sb atoms. The hinge structure or
bow-tie structure of Bi-Bi bonds can be noticed in the selected
region. (b) Illustration of the negative Poisson’s effect under
compression (left) and expansion (right) on auxetic materials.
Dotted square represents the deformed shape of the original
structure (solid lines) and the arrows represent the direction
of strain.

where B and G are the bulk and shear moduli, and
ρ is the density of material. Conversely, one can also
determine the elastic stiffness constants by measuring the
distance traveled by an ultrasonic wave pulse and the
corresponding time.

Debye temperature (ΘD) is another important param-
eters that we can estimate from the knowledge of the
elastic wave velocities and the density of material. De-
bye temperature correlates with several important phys-
ical properties such as specific heat, elastic constants,
ultrasonic wave velocities and melting temperature. At
low temperatures, acoustic phonons are the only vibra-
tional excitations that contribute to the specific heat.
Therefore, at low temperatures the Debye temperature
calculated from the elastic constants is same as the ΘD

obtained from the specific heat measurements. We cal-
culate ΘD using the following equation:71

ΘD =
h

kB

[
3q

4π

Nρ

M

]1/3
vm, (5)

where h is the Planck’s constant, kB is the Boltzmann’s
constant, q is the total number of atoms in cell, N is

the Avogadro’s number, ρ is the density, and M is the
molecular weight of the solid. The melting temperature
was estimated using the empirical relation: Tmelt = 607+
9.3B ± 555.73
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FIG. 5. (Color online) (a) Elastic wave velocities, and (b)
Debye temperature (ΘD) of Bi-Sb binaries calculated with
SOC.

Table 2 contains a list of the vl, vt, vm, ΘD and Tmelt

values calculated with and without inclusion of SOC. We
notice that the magnitude of the elastic wave velocities
and ΘD decreases due to the SOC effects, which can be
associated to the SOC-induced elastic softening. Figure 5
shows variation in the elastic wave velocities and ΘD as a
function of the Bi-concentration. In general, we observe a
monotonic decrease in the mentioned quantities with in-
creasing Bi-concentration. However, anomalies from the
monotonic trend can be noticed at low Sb-concentration.
This observation is consistent with the previous experi-
mental studies of Gopinathan et al.26 and Lichnowski et
al.,27 where authors investigated the elastic properties of
BixSb1−x crystals using ultrasonic waves. The experi-
mental ΘD values for pristine Sb and pristine Bi at low
temperature are ∼210 K and ∼112 K, which are in ex-
cellent agreement with our theoretical findings.

Anomalous changes in the electronic, thermal, elas-
tic, and mechanical properties of BixSb1−x at very low
Sb-concentration have been often noted in experiments.
BixSb1−x undergoes a semimetal-semiconductor phase
transition in the Sb-concentration range: 0.07 < x <
0.22, and a topological non-trivial insulator phase ap-
pears due to the inverted ordering of bands at the L-
point of Brillouin zone.7,74–76 Rogacheva et al.77 stud-
ied the effect of low Sb-concentration on the lattice pa-
rameters, microhardness, electrical conductivity, magne-
toresistance, and the Seebeck coefficient of BixSb1−x.
Their experiments revealed an anomalous change in the
properties of BixSb1−x at small x values, which were
attributed to the percolation transition, geometric re-
ordering of atoms, and semimetal-semiconductor elec-
tronic phase transition. They further argued that at low
Sb-concentration, the elastic fields of neighboring atoms
begin to overlap causing partial compensation of elastic
stress with reversed signs, which leads to an abrupt de-
crease in the elastic stiffness of the entire crystal.77 Due
to this reason, at low Sb-concentration BixSb1−x exhibits
rapid decrease in the microhardness, electrical conductiv-
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ity, and Seebeck coefficient. Increasing Sb-concentration
beyond a critical value yields formation of new atomic or-
dering causing enhancement in the elastic and mechanical
properties of BixSb1−x. Same argument can be used to
explain the observed variation in the elastic wave veloci-
ties and Debye temperature of BixSb1−x with varying x
(see Fig. 5).

TABLE II. List of the longitudinal (vl), transverse (vt),
average (vm) elastic wave velocities, Debye (ΘD) and melting
temperatures (Tmelt) calculated with (PBE+SOC) and
without SOC (PBE). Values calculated with PBE+SOC are
given in parentheses. The space group of each composition is
given in square brackets.

Composition vl (m/s) vt (m/s) vm (m/s) ΘD (K) Tmelt (K)

Sb [166]
3240 1946 2152 202.4 930

(3256) (1945) (2152) (202.4) (937)
Exp.a 209.6
Exp.b 210.0
Exp.c 211.3
Exp.d 211.3

Bi1Sb7 [06]
2941 1714 1902 177.2 904

(2943) (1712) (1899) (177.0) (906)

Bi1Sb1 [160]
2548 1432 1593 145.0 881

(2519) (1372) (1531) (139.3) (887)

Bi3Sb1 [160]
2308 1151 1291 116.5 893

(2260) (1077) (1211) (109.2) (893)

Bi7Sb1 [08]
2123 1050 1179 105.0 856

(2097) (975) (1098) (98.0) (863)

Bi9Sb1 [08]
2158 1131 1265 112.5 850

(1989) (885) (999) (88.9) (847)

Bi [166]
2197 1071 1203 108.2 901

(2237) (1102) (1237) (111.3) (908)
Exp.e 112

a Ref.,78 b Ref.,79 c Ref.80 data from specific heat measurements at low
temperatures.
d Ref.81 data from thermal expansion measurements.
e Ref.82 data evaluated from the sound velocity measurements.

E. Specific heat

After evaluating the elastic properties and mechanical
stabilities of the Bi-Sb binaries, we focus our attention on
the specific heat (C) of crystal lattice. Before we start
our discussion, it is important to mention that at low
temperatures (T ) the difference between Cp(T ) (at con-
stant pressure) and Cv(T ) (at constant volume) is almost
negligible and it lies within the uncertainty range of the
experiments.83 Therefore, we do not make any distinc-
tion between Cp(T ) and Cv(T ) in the present work. In
the low T limit, the general relationship between C(T )
and T can be described using the following expression:

C(T ) = γT + βT 3 + αT−2 (6)

where, first and second terms correspond to the electronic
and crystal lattice contributions to the specific heat,

whereas, the last term addresses the interaction of the
nuclear quadrupole moment with the electric field gradi-
ent of electrons and lattice. The last term is very small
even at low temperatures, however, it might become sub-
stantial below 1 K.37 Usually at low T , the specific heat
follows T 3 power law due to the dominant contribution
from the lattice vibrations. Therefore, plotting C(T )/T 3

versus T is a good way to determine the contribution of
the lattice vibrations in the net heat capacity.37,83–85 The
peak appearing in this plot is the evidence of the devi-
ation from the Debye behavior that is known to sepa-
rate the contribution of the acoustic phonons and optical
phonons in the total specific heat of material. From the
observed position of peak in C(T )/T 3 versus T plot, one
can estimate the Einstein’s oscillator temperature which
is typically equal to ∼ 6T0, where T0 is the temperature
corresponding to the maximum C(T )/T 3.83,85
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FIG. 6. (Color online) C(T )/T 3 versus Temperature T data
for Bi-Sb binaries.

Figure 6 shows the C(T )/T 3 versus T plots for all the
studied binaries. SOC was not included in the calculation
of C(T ). The corresponding phonon dispersion for each
structure is given in ref.12 Noticeably, the peak height
in C(T )/T 3 versus T plot significantly increases (more
than three times) with increasing Bi-concentration from
Bi1Sb7 to Bi9Sb1. Also, the peak shifts towards lower
T with increasing Bi-concentration indicating decrease
in ΘD as we go towards Bi-rich side. This is consistent
with ΘD obtained from the elastic constants calculations,
and it can be associated to the decrease in the average
strength of the covalent bonds in Bi-rich binaries. We
further compare our results with the available theoretical
and experimental reports on the pristine Bi,32–35 pristine
Sb36,37 and Bi-Sb binaries.27 Our findings are in remark-
able agreement with the reported data in the literature.
Lichnowski and Saunders27 have experimentally observed
decrease in ΘD with increasing Bi-concentration. The ac-
cepted T0 values for pristine Sb and pristine Bi are 7.5 K
and 14 K, respectively.35,37 In agreement, we also no-
tice an overall shift of the T0 towards lower temperatures
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from 12 K (for Sb-rich composition) to 8 K (for Bi-rich
composition).

Finally, we would like to make a remark about the
effect of SOC on the specific heat of the studied bina-
ries. Undoubtedly, SOC is expected to have significant
effects on the thermodynamic properties of Bi-rich bina-
ries. In particular, the SOC effects in Bi cause an en-
hancement in the C(T )/T 3 peak height and decrement
in the ΘD value by ∼1 K, thereby reducing the discrep-
ancies between the experimental heat capacity data and
ab initio results.35 However, SOC is found to have neg-
ligible effects on the thermodynamic properties of pris-
tine Sb.37 This is the reason why our results (calculated
without inclusion of SOC) for Sb-rich binaries compare
well with the experimental observations, while there ex-
ists a small inconsistency in the data of Bi-rich compo-
sitions (for example– Bi9Sb1). Including SOC effects in
the calculations would yield better agreement with the
experimental data, specifically for Bi-rich compositions.
Nevertheless, SOC induced changes in the T0 values are
expected to be within ±1 K range.

IV. CONCLUSION

In this work, we have investigated the elastic, mechan-
ical and thermodynamic properties of several energeti-
cally stable Bi-Sb binary structures. We find that bulk,
shear, and Young’s moduli increase with increasing Sb-
concentration in BixSb1−x, and decrease as we move to-
wards Bi-rich side. However, Poisson’s ratio and B/G
ratio increase with increasing Bi-concentration suggest-
ing more ductile behavior in Bi-rich compositions. Our
calculations reveal that Bi1Sb7, Bi7Sb1, and Bi9Sb1 mon-
oclinic structures exhibit negative Poisson’s ratio indi-
cating auxeticity along different spatial directions. The
hinge structure of atomic bonds is the main source of neg-
ative Poisson’s ratio in these structures. We also probe

the effect of SOC on the elastic and mechanical proper-
ties of Bi-Sb binaries. In general, the SOC effects cause
elastic softening in most of the studied structures which
can be ascribed to the fact that in presence of SOC, elec-
trons are redistributed to minimize the total free energy,
thereby recovering some of the strain energy and reduc-
ing the effective elastic stiffness. Our calculations reveal
that Debye temperature and magnitude of the elastic
wave velocities monotonically decrease with increasing
Bi-concentration. This can be ascribed to the decreas-
ing strength of covalent bonds (i.e. larger bond-length)
in the Bi-rich compositions. However, we observe some
anomalies in the elastic properties of Bi-rich composition
Bi9Sb1, which requires further investigation. The peak of
C(T )/T 3 shifts towards lower temperatures and increases
in height with increasing Bi-concentration. We find that
SOC plays an important role in the determination of the
properties for Bi-rich compositions, while the effects of
SOC are very small for Sb-rich compositions. Our over-
all results are consistent with the available experimental
data.
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