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A hyperuniform many-body system is characterized by a structure factor S(k) that vanishes in
the small wavenumber limit, or equivalently by a local number variance σ2

N(R) associated with
a spherical window of radius R that grows more slowly than Rd in the large-R limit. Thus, the
hyperuniformity implies an anomalous suppression of long-wavelength density fluctuations relative
to those in typical disordered systems, i.e., σ2

N (R) ∼ Rd as R → ∞. Hyperuniform systems include
perfect crystals, quasicrystals, and special disordered systems. Disordered hyperuniform systems
are amorphous states of matter that lie between a liquid and crystal [Torquato et al., Phys. Rev.
X, 5, 021020, (2015)], and have been the subject of many recent investigations due to their novel
properties. In the same way that there is no perfect crystal in practice due to the inevitable presence
of imperfections, such as vacancies and dislocations, there is no “perfect” hyperuniform system,
whether it is ordered or not. Thus, it is practically and theoretically important to quantitatively
understand the extent to which imperfections introduced in a perfectly hyperuniform system can
degrade or destroy its hyperuniformity and corresponding physical properties. This paper begins
such a program by deriving explicit formulas for S(k) in the small wavenumber regime for three
types of imperfections: (1) uncorrelated point defects, including vacancies and interstitials, (2)
stochastic particle displacements, and (3) thermal excitations in the classical harmonic regime.
We demonstrate that our results are in excellent agreement with numerical simulations. We find
that “uncorrelated” vacancies or interstitials destroy hyperuniformity in proportion to the defect
concentration p. We show that “uncorrelated” stochastic displacements in lattices can never destroy
the hyperuniformity but they can degrade hyperuniform systems into class III hyperuniform systems
where σ2

N(R) ∼ Rd−α as R → ∞ and 0 < α < 1. By contrast, we demonstrate that certain
“correlated” displacements can make systems nonhyperuniform. For a perfect (ground-state) crystal
at zero temperature, increase in temperature T introduces such correlated displacements resulting
from thermal excitations, and thus the thermalized crystal becomes nonhyperuniform, even at an
arbitrarily low temperature. It is noteworthy that imperfections in disordered hyperuniform systems
can be unambiguously detected. Our work provides the theoretical underpinnings to systematically
study the effect of imperfections on the physical properties of hyperuniform materials.

I. INTRODUCTION

Hyperuniform many-body systems in d-dimensional
Euclidean space R

d are characterized by anomalously
suppressed density fluctuations at large length scales,
which can be quantified by a local number variance
σ2
N (R) that grows more slowly than the window vol-

ume Rd in the large-window radius R limit. Equiva-
lently, the hyperuniformity can be identified by a struc-
ture factor S(k) that vanishes in the small-wavenumber
limit, i.e., lim|k|→0 S(k) = 0 [1–3]. The hyperuniformity
concept provides a unified way to categorize crystals,
quasicrystals [4, 5], and certain unusual disordered sys-
tems [1, 3, 6]. Disordered hyperuniform systems are ideal
amorphous states of matter that lie between a crystal and
liquid: they behave like perfect crystals in the manner
in which they suppress large-scale density fluctuations
and yet, like liquids and glasses, are statistically isotropic
without Bragg peaks. In this sense, disordered hyperuni-
form systems have a hidden order on large length scales,
which endows them with novel physical properties [7–13].

Over the last decade, there has been an increasing real-
ization that disordered hyperuniform systems play a vital
role in a number of problems in physics, mathematics,
biological sciences, and engineering. For example, dis-
ordered hyperuniform systems exist as both equilibrium
and non-equilibrium states, including disordered classical
ground states [14–18], certain classical Coulomb plasmas
[19–23], ground states of fermionic and bosonic systems
[24–26], maximally random jammed (MRJ) hard-sphere
packings [27–29], driven non-equilibrium systems [30–34],
highly excited cold atoms [35], spatial patterns of pho-
toreceptors in avian retina [36], novel disordered photonic
materials [7, 8, 13], optimized patterns of pinning sites
in type-II superconductors [11], transparent dense disor-
dered materials [9], highly diffusive porous media [12],
nearly optimal conducting two-phase media [37], and
number theory [19, 38]. Recently, Torquato [39] has cat-
egorized hyperuniform systems into three classes: classes
I, II, and III, which are defined by the large-R behavior
of σ2

N (R), i.e., σ2
N (R) ∼ Rd−1, σ2

N (R) ∼ Rd−1 lnR, and
σ2
N (R) ∼ Rd−α for 0 < α < 1, respectively.
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It is well-known that imperfections play significant
roles in determining physical and structural properties of
crystals; see Refs. [40–42] and references therein. For in-
stance, metallic crystals can be significantly hardened by
increasing densities of point defects and dislocations, i.e.,
strain hardening [40, 43]. In semiconductors and insula-
tors, impurities of certain elements can change their prop-
erties, such as electrical conductivities and colors [40, 41].
Another example is an anomalous phenomenon that the
electrical resistivity of metal increases as the temperature
drops below a certain value due to magnetic impurities,
called the Kondo effect [44, 45].

Importantly, understanding how imperfections can af-
fect the hyperuniformity of a system and its associated
physical properties has been currently lacking for both or-
dered and disordered hyperuniform solid-phase systems.
Our interest in this paper is to explore the degree to
which the introduction of imperfections in perfectly or-
dered or disordered hyperuniform systems degrades or
destroys their original perfect hyperuniformity. This is
accomplished by quantifying the corresponding struc-
ture factors. Interestingly, the hyperuniformity concept
provides a precise mathematical means of detecting im-
perfections in amorphous hyperuniform systems via ei-
ther the violation of the hyperuniformity criterion, i.e.,
lim|k|→0 S(k) = 0, or changes in the small-wavenumber
behavior of S(k). It is important to note that in the same
way that there is no perfect ordered hyperuniform system
(i.e., crystals and quasicrystals) in practice due to the in-
evitable existence of imperfections, such as point defects
[40–42], dislocations [40–42], and phasons [46], there is
no perfect disordered hyperuniform system.

It is instructive to discuss briefly computational and
experimental methods that have been formulated to
construct disordered hyperuniform systems. Computa-
tional methods have been developed in both equilib-
rium and nonequilibrium systems. For example, the
collective-coordinate optimization technique is a com-
putational tool that generates classical ground states
with a target structure factor S(k) for a set of wavevec-
tors [14, 16–18, 47, 48]. Packing protocols such as
Lubachevsky-Stillinger (LS) and Torquato-Jiao (TJ) al-
gorithms are used to obtain (putative) strictly jammed
MRJ hard-sphere packings, which are conjectured to be
hyperuniform [1, 29, 49]. Random organization mod-
els [30, 34, 50, 51] can yield disordered hyperuniform
point configurations at the critical point. Recently, Ma
and Torquato demonstrated that the Cahn-Hilliard and
Swift-Hohenberg equations can yield disordered hyper-
uniform scalar fields [52]. Experimental methods have
been devised to produce (nearly) disordered hyperuni-
form systems, including periodically driven colloidal sus-
pensions [31], jammed colloidal suspensions [53–55], an-
nealed amorphous silicon [56], and self-assembling pat-
terns of block-copolymers [57].

Such disordered hyperuniform systems, whether they
are in thermal equilibrium or not, inevitably include some
fraction of imperfections. Such imperfections may de-

grade or destroy the hyperuniformity, albeit in some cases
to a small degree. For instance, any compressible system
in thermal equilibrium, which has a positive isothermal
compressibility (κT > 0), cannot be hyperuniform at pos-
itive temperatures due to thermal excitations. This con-
clusion follows from the fluctuation-compressibility rela-

tion [3, 16, 39], i.e., S(0) = ρκTkBT , where ρ is num-
ber density, kB is the Boltzmann constant, and T is the
temperature. By theoretically estimating the isother-
mal compressibility of excited states at sufficiently low T
associated with certain disordered hyperuniform ground
states, Torquato et al. [16] utilized the aforementioned
compressibility relation to quantify how hyperuniformity
is destroyed in such cases. However, an understanding of
the underlying mechanisms that result in the destruction
of hyperuniformity for positive temperatures as well as
the behavior of the structure factor away from the ori-
gin, whether the ground states are ordered or not, has
heretofore been lacking.
It can be also difficult to generate perfect realizations

of nonequilibrium hyperuniform systems, partly due to
a type of critical slowing down phenomenon [39, 49].
This refers to the fact that such nonequilibrium systems
are at critical points, which require significantly longer
and longer computational times to achieve as the critical
states are approached [29, 30, 33, 49, 50]. For instance,
MRJ hard-sphere packings correspond to the hyperuni-
form critical states that occur at the jamming transition
[29, 49]. Due to a critical slowing down as well as the
presence of “rattlers” imperfections, numerically gener-
ated MRJ packings deviate from being perfectly strictly
jammed and hence are not perfectly hyperuniform, e.g.,
S(0) ∼ 10−4 [29, 49]. It has been conjectured that the
ideal MRJ state is free of any rattlers and hence would
be exactly hyperuniform [1, 39].
Since imperfections as well as finite-size effects and nu-

merical errors affect hyperuniformity of systems in com-
puter simulations and experiments, it is desirable to de-
velop a rough criterion to determine whether a system
is “nearly” or “effectively” hyperuniform. A useful em-
pirical and operational criterion that has been proposed
[39, 49] for this purpose is the hyperuniform metric H ,
which is defined by

H ≡ S(k → 0)

S(kpeak)
, (1)

where S(kpeak) is the structure factor at the first dom-
inant peak. A given disordered system can be regarded
as effectively hyperuniform if the ratio H is of the order
of 10−4 or smaller.
The overall objective of this paper is to understand

quantitatively the extent to which hyperuniformity is de-
graded or destroyed when one introduces the following
three types of imperfections into perfectly hyperuniform
many-body systems: (1) uncorrelated point defects, in-
cluding vacancies and interstitials, (2) stochastic parti-
cle displacements, and (3) thermal excitations. The left
panel of Fig. 1 illustrates configurations of (a) a perfect
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FIG. 1. (Color online) Left panel: Configurations of (a) an initially perfectly hyperuniform integer lattice and (b)-(e) imperfect
lattices. The different types of imperfections include the following: (b) a single vacancy, (c) a single interstitial defect [denoted by
a solid cyan five-pointed star], (d) uncorrelated stochastic particle displacements u via a uniform distribution with the variance
〈

u2
〉

= 0.05, and (e) thermalized excitations, i.e., elastic waves at T = 0.05, where T is a dimensionless temperature (54). Right
panel: Corresponding deviations in the number of particles N(x0;L) inside a window centered at x0, i.e., δN(x0;L) ≡ N(x0;L)−
〈N(x0;L)〉 at two different window sizes L. The local number variance σ2

N (L), or equivalently the volume average of δN(x0;L)
2,

measures the degree of density fluctuations at a given length scale L. Roughly speaking, a system is nonhyperuniform if σ2
N(L)

grows as the window size increases, as in cases (b), (c) and (d). By contrast, the perturbed system (d) is hyperuniform.

integer lattice and (b)-(e) four imperfect variants. While
the integer lattice (a) is obviously hyperuniform, it is dif-
ficult to determine whether the others are hyperuniform
with the naked eye.

Note that the right panel of Fig. 1 enables one to
gauge qualitatively whether they are hyperuniform by
looking at the deviation δN(x0;L) or the volume aver-
age of δN(x0;L)

2, i.e., the local number variance σ2
N (L).

We show that while in three systems (b), (c) and (e), den-
sity fluctuations are larger [i.e., the deviation δN(x0;L)
becomes non-zero more frequently] at the larger length
scales (L = 10) than at the smaller ones (L = 1), the den-
sity fluctuations in (d) barely change with length scales.
This observation qualitatively shows that the imperfect
system described in (d) is hyperuniform, but the others in
(b), (c) and (e) are not, although counterintuitively the
particles in (d) look more clustered than those in (e). The
nonhyperuniformity of the example in (e) can be qualita-
tively understood by noting that thermalized excitations
in a crystal can be decomposed into a sum of sinusoidal
functions with different wavelengths. A single longitudi-
nal lattice wave of the longest wavelength induces global
inhomogeneity with density modulation in which one half
of the system becomes denser than the other half of the
system, and hence results in nonhyperuniformity.

In the main text, we will quantitatively validate all
of these qualitative explanations by deriving explicit for-
mulas for S(k) in the small-|k| regime for each type of
imperfection. We then demonstrate that our theoreti-
cal results are in excellent agreement with corresponding

numerical simulations.

We begin by showing that uncorrelated point defects
(both vacancies and interstitials) destroy the hyperuni-
formity in proportion to the defect concentration p for
small p. While we focus in this context on two types of
point defects, these results can be easily generalized to
other types of point defects. Subsequently, we quantita-
tively study perturbed point processes [58–60], which are
generated from an initial point process by stochastically
displacing each point in either an uncorrelated or cor-
related manner. When displacements are uncorrelated,
although the hyperuniformity is degraded to some ex-
tent, it is never destroyed, i.e., still lim|k|→0 S(k) = 0.
Using this property, we present a simple method that
transforms class I systems (e.g., lattices and disordered
stealthy hyperuniform systems) to class III systems [39];
see Eq. (12). In addition, we ascertain conditions under
which stochastic displacements can destroy the hyper-
uniformity of initial hyperuniform point processes, both
ordered and disordered.

This study is followed by an investigation of thermal-

ized crystals, i.e., classical crystals in thermal equilibrium
in the harmonic regime. Due to thermal motions, parti-
cles in a thermalized crystal are displaced from their ideal
arrangement, i.e., a ground-state crystal. At first glance,
one might think that at a sufficiently low temperature, a
thermalized crystal is the same as an uncorrelated per-
turbed lattice, and thus it is hyperuniform. However, this
picture is wrong because excited particles move collec-
tively and form long-wavelength lattice waves. We prove
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that thermalized crystals can be mapped to special cor-
related perturbed lattices that are “nonhyperuniform.”
We show that our expression for S(k) are in excellent
agreement with numerical simulations at temperatures
much lower than the melting point [61]. Our expression
for S(k) in the zero-wavenumber limit also yields the cor-
rect isothermal compressibility κT in the low temperature
limit.
We present basic mathematical definitions and con-

cepts in Sec. II. In Sec. III, we theoretically and numer-
ically investigate effects of uncorrelated point defects on
the hyperuniformity of otherwise hyperuniform systems.
In Sec. IV, we study the hyperuniformity of perturbed
point processes. Here, we introduce and examine a family
of singlet displacement probability densities to generate
class III systems [39]. In Sec. V, we investigate effects of
thermal excitations in classical harmonic lattices on their
hyperuniformity. Finally, we provide concluding remarks
in Sec. VI.

II. BASIC DEFINITIONS AND CONCEPTS

A. Point processes

Roughly speaking, a point process in d-dimensional
Euclidean space R

d is a spatial distribution of infinitely
many points x1, x2, · · · , in R

d, which can be described
by a microscopic density function n(r):

n(r) =
∞
∑

i=1

δ(r − xi) , (2)

where δ(x) denotes the Dirac delta function in R
d.

The n-point density correlation function ρn(r
n) is de-

fined by ρn(r
n) ≡ 〈n(r1)n(r2) · · ·n(rn)〉, where rn =

r1, r2, · · · , rn and 〈·〉 represents an ensemble aver-
age. This function is proportional to the probabil-
ity density associated with finding n different points at
r1, r2, · · · , rn. For statistically homogeneous point pro-
cesses at a given number density ρ (number of parti-
cles per unit volume), the n-point correlation function
depends on relative positions of points, i.e., ρn(r

n) =
ρn gn(r21, · · · , rn1) with rij ≡ rj − ri for 1 ≤ i 6= j ≤ n
and ρ1(r) = ρ.
The pair correlation function g2(r) and total cor-

relation function h(r), defined as h(r) ≡ g2(r) − 1,
are of special importance in statistical mechanics [62].
For systems without long-range order, g2(r) → 1 and
h(r) → 0 as |r| → ∞. The autocovariance function

χ(r) ≡ 〈[n(r + r0)− ρ] [n(r0)− ρ]〉 is related to h(r) via

χ(r) = ρ [δ(r) + ρ h(r)] . (3)

B. Structure Factor

The static structure factor is a mathematical descrip-
tion of scattering intensities. For a finite point configu-

ration {xi}Ni=1 of N particles in a unit cell of volume V ,
the static structure factor is defined as

S(k) ≡ 1

N
|ñ(k)|2 = 1 +

1

N

N
∑

i6=j=1

exp(−ik · (xi − xj)),

(4)
where the collective coordinates ñ(k) is the Fourier trans-
form of the microscopic density n(r). Under periodic
boundary conditions, wavevectors k are constrained to
lie on reciprocal lattice vectors of the unit cell, satisfy-
ing exp(ik · aj) = 1 for all basis vectors aj of the unit
cell. Thus, in the thermodynamic limit (N → ∞ with
ρ ≡ N/V fixed), a wavevector k becomes a continuous
parameter.
In the thermodynamic limit, the static structure fac-

tor of a point process is defined by an ensemble average
〈S(k)〉 of (4) with the forward scattering excluded:

S(k) ≡ 〈S(k)〉 − (2π)dρδ(k). (5)

The static structure factor (5) is related to the Fourier
transform of two-point functions, h(r) and χ(r), defined

in the expression (3): S(k) = 1+ρ h̃(k) = χ̃(k) /ρ. In the
rest of this paper, unless otherwise stated, S(k) denotes
the static structure factors defined in (5).
We will use the following definition of Fourier trans-

form f̃(k) and the inverse transform f(r) (assuming their
existence):

f̃(k) =

∫

Rd

f(r) e−ik·r dr , (6)

f(r) =

(

1

2π

)d ∫

Rd

f̃(k) eik·r dk . (7)

C. Hyperuniformity

Consider a statistically homogeneous point process at
number density ρ in d-dimensional Euclidean space R

d.
Hyperuniform [1, 3] (also known as ‘superhomogeneous’
[63]) point processes are ones in which long-wavelength
density fluctuations are suppressed. Quantitatively, hy-
peruniformity can be defined in Fourier space via

lim
|k|→0

S(k) = 0, (8)

or, alternatively, in direct-space via the local number vari-

ance σ2
N (R):

lim
v1(R)→∞

σ2
N (R)

v1(R)
= 0, (9)

where v1(R) is the volume of a d-dimensional hypersphere
of radius R. Here, the local number variance σ2

N (R) rep-
resents the variance in the number of points sampled by
randomly placed spherical windows of radius R (see Fig.
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1), which can be calculated from the following relations
[1, 39]:

σ2
N (R) = ρ v1(R)

[

1 + ρ

∫

Rd

dr h(r)α2(r;R)

]

(10)

=
ρ v1(R)

(2π)d

∫

Rd

dkS(k) α̃2(k;R) , (11)

where α2(r;R) represents the scaled intersection volume
of two spherical windows of radius R that are separated
by r, and α̃2(k;R) is its Fourier transform.
Consider hyperuniform systems that are character-

ized by structure factors with power-law form for small
wavenumbers; S(k) ∼ |k|α. The exponent α determines
the large-R asymptotic behavior of σ2

N (R) [1–3]. Using
this asymptotic behavior, Torquato recently has catego-
rized hyperuniform point processes into three classes [39]:

σ2
N (R) ∼







Rd−1, α > 1 (class I)
Rd−1 ln(R) , α = 1 (class II)
Rd−α, 0 < α < 1 (class III).

(12)

Class I systems include crystals, some quasicrystals, and
disordered stealthy hyperuniform systems [1, 2, 16, 17]. A
variety of examples of class II and III systems are given
in Ref. [39].
Stealthy hyperuniform ground-state systems are de-

fined by the condition that S(k) = 0 for 0 ≤ |k| < K
for some positive number K. The parameter χ pro-
vides a measure of the relative fraction of the number
of wavevectors at which S(k) is constrained to be zero
to the total number of degrees of freedom [16, 39]. For
0 < χ < 1/2, the entropically favored stealthy hyperuni-
form ground states are highly degenerate and disordered,
while they crystallize for 1/2 < χ ≤ 1.
For single-component systems in thermal equilibrium,

the fluctuation-compressibility relation is given by [62]

lim
|k|→0

S(k) = ρκTkBT, (13)

where κT is the isothermal compressibility, and T is the
temperature of the system. Since the left-hand side of
(13) is directly related to the long-wavelength density
fluctuations, i.e., S(0) = limR→∞ σ2

N (R) /(ρ v1(R)), any
compressible system in thermal equilibrium (κT > 0)
cannot be hyperuniform at a positive T ; see Refs. [16]
and [39] for more discussion on this subject.

III. EFFECT OF SPATIALLY UNCORRELATED

DEFECTS

The dimensionality of spatial distribution of imperfec-
tions enables a classification into four types: point, line,
surface, and volume defects. Roughly speaking, three
types of point defects can be considered; vacancies (miss-
ing atoms), interstitial impurities (excess atoms) and

substitutional impurities (different kinds of atoms). Dis-
locations and stacking faults are examples of line and sur-
face defects, respectively. Volume defects include pores
and cracks.
Some theories have been devised to identify types and

amount of point defects in crystalline solids via existing
experimental techniques such as EPR and X-ray scat-
tering experiments [64, 65]. For instance of scattering
experiments, one can determine types and sizes of point
defects, and whether they are isolated or aggregated, by
analyzing the shifts of Bragg peaks and asymmetric dif-
fuse scattering around the Bragg peaks called Huang dif-

fuse scattering [66, 67].
In this section, we investigate how the introduction of

uncorrelated point defects influences hyperuniformity of
an original hyperuniform point process at number den-
sity ρ. Here, we consider a d-dimensional hyperuniform
point configuration {ri}Ns

i=1 in a periodic unit cell of vol-
ume V , and two types of point defects; (1) vacancies and
(2) interstitials. The structure factor of this original con-
figuration is denoted by S0(k). For the simplicity, we
do not consider elastic deformations in imperfect config-
urations due to defects, which can arise in Huang diffuse
scattering [66, 67], as well as steric repulsion that can
restrict the interstitial positions.

A. Point Vacancies

Here, we consider spatially uncorrelated point vacan-
cies by independently removing particles in original con-
figurations. Let us define a stochastic function f(r) to
describe point defects in R

d. In general, f(r) is complex-
valued, but for uncorrelated point vacancies, it becomes
real-valued such that

Pr(f(r) = a) =

{

1− p, if a = 1

p, if a = 0,
(14)

where p is the concentration of vacancies. After intro-
ducing uncorrelated point vacancies, one can express the
structure factor of a defective configuration in terms of
the function f(r);

S(k) = 1 +

〈

1

N

Ns
∑

i6=j=1

fifj
∗e−ik·(ri−rj)

〉

f

, (15)

where fi is an abbreviation of f(ri), fi
∗ is its com-

plex conjugate, 〈·〉f represents the expectation value over

f(r). Here, N ≡ ∑Ns

i=1 fi is the number of remaining
particles in the configuration, which is a random variable
that follows the binomial distribution:

Pr(N = N) =

(

Ns

N

)

(1 − p)NpNs−N , (16)

and its expectation value is 〈N〉f = (1− p)Ns.
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FIG. 2. (Color online) From (a)-(c): Semi-log plots of simulated structure factors of two-dimensional defective point configura-
tions with point vacancies of the fraction p. Three types of original configurations include (a) the square lattice, (b) stealthy dis-
ordered hyperuniform configurations with χ = 0.1, and (c) perturbed square lattices via a distribution f1

(

u; δ = 10−4, α = 0.8
)

given by (35). In (c), theoretical values of S0(k) for perturbed lattices (magenta dashed line) are calculated from (36). Insets
of each panel zoom into the small-wavenumber regime in linear scale, but y-axes are rescaled as (S(k)− p)/(1− p). Note that
peaks observed in (a) and (c) correspond to the first two Bragg peaks of the square lattice. Subfigure (d) is comparison of the
prediction (20) to corresponding computer simulations of S(0) of defective systems as functions of the vacancy concentration
p for three original systems.

One can alternatively express the expectation in (15)
as
〈

1

N

Ns
∑

i6=j=1

fifje
−ik·(ri−rj)

〉

f

=

Ns
∑

N=0

Pr(N = N)
1

N

Ns
∑

i6=j=1

〈fifj〉N e−ik·(ri−rj) (17)

= (1 − p)
1

Ns

Ns
∑

i6=j=1

e−ik·(ri−rj), (18)

where the conditional expectation value of fifj when
N = N is given by

〈fifj〉N =
N(N − 1)

Ns
2 =

(

N

Ns

)2

+O
(

Ns
−1
)

, (19)

where O(f(x)) means that its value is smaller than a f(x)
for some positive constant a as x increases. Substituting

Eqs. (16) and (19) into Eq. (17) yields the result (18),
and thus, the structure factor (15) of the defective point
process in any space dimension is given by

S(k) = 1 + (1− p)
1

Ns

〈

Ns
∑

i6=j=1

eik·(ri−rj)

〉

= 1 + (1− p)(S0(k)− 1)

= p+ (1− p)S0(k) . (20)

This result was previosuly known for defective crystals
[65, 66].
We note that Eq. (20) is valid for any original point

configuration whether it is hyperuniform or not. For-
mula (20) implies that the rescaled the structure factor
as [S(k)− p]/(1− p) yields the structure factor S0(k) of
the original system, regardless of the vacancy concentra-
tion p. Using this rescaling idea in insets in Fig. 2, we
show that numerical simulations are in excellent agree-
ment with our theoretical prediction (20). Application
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of the effective hyperuniformity criterion (1) to the im-
perfect disordered systems described in Fig. 2 (b) shows
that their hyperuniformity metric H is of the same or-
der of p (i.e., Hvacancies ∼ p), and thus they cannot be
regarded as effectively hyperuniform whenever p > 10−4.
Using Eqs. (20) and (11), the local number variance

σ2
N (R; p) of a point process in R

d with the vacancy con-
centration p is straightforwardly obtained as

σ2
N (R; p) = (1− p)pρ v1(R) + (1− p)2 σ2

N (R; 0) , (21)

where ρ is number density of the initial point process.
Note that the first term in Eq. (21) corresponds to vari-
ance in the number of vacancies inside a spherical win-
dow. Thus, the nonhyperuniformity due to uncorrelated
point vacancies is attributed to the tendency of vacan-
cies to cluster, as in Poisson point processes. This re-
sult is consistent with an expression derived by Chieco et

al. [68] for the related volume-fraction variance of two-
dimensional square lattices with uncorrelated vacancies.
Remarks:

1. In the limit of p → 1, S(k) → 1, which implies that
the system behaves like the ideal gas regardless of
the initial configuration.

2. To treat the case of substitutional impurities, one
need to replace the random function f(r) in Eq.
(15) with the following expression;

[1− f(r)] a0(k) + f(r)as(k) , (22)

where a0(k) and as(k) are the scattering amplitude
of a dominant atom and an impurity atom, respec-
tively. Here, f(r) is identical to the random func-
tion (14), but now its expectation value p stands for
the concentration of the substitutional impurities.

3. In Fig. 2, we generate 100 independent initial
configurations of Ns = 104 for each type of two-
dimensional systems, which correspond to the case
p = 0. In order to generate stealthy hyperuni-
form systems, we use the collective coordinate op-
timization technique described in Refs. [14] and
[17]. From these initial configurations, for a given
p(6= 0), we generate 10000 defective configurations
by randomly removing n particles, where n is a
random variable following the Poisson distribution
with a mean pNs. In Fig. 2(d), S(0) represents an
average of S(k) at the three lowest wavenumbers.

B. Point Interstitials

Here, we consider spatially uncorrelated interstitials
by independently adding particles in original perfectly
hyperuniform configurations in R

d. Suppose that the
original configuration has Ns particles at number den-
sity ρ, and pNs interstitials are introduced into the con-
figuration. Thus, number density of a defective system

becomes (1 + p)ρ. Separating the collective coordinate
ñ(k) of a defective system into those of the original sys-
tem and the interstitials, ñ0(k) and ñI(k), the structure
factor of the defective system can be written as

S(k) =
1

(1 + p)Ns

〈

|ñ0(k) + ñI(k)|2
〉

≈ 1

(1 + p)Ns

[〈

|ñ0(k)|2
〉

+
〈

|ñI(k)|2
〉]

(23)

=
1

1 + p
S0(k) +

p

1 + p
SI(k) , (24)

where an approximation 〈ñ0(k) ñI(−k)〉 ≈ 0 is used
under the assumption that interstitials are uncorre-
lated with respect to the original systems. Here, the
structure factor of interstitials is denoted by SI(k) ≡
〈

|ñI(k)|2
〉

/(pNs).

When the interstitial positions are completely uncor-
related (i.e., SI(k) → 1), Eq. (24) can be simplified as

S(k) =
p

1 + p
+

1

1 + p
S0(k) . (25)

We note that as like Eq. (20), Eq. (25) is valid for any
original configuration whether it is hyperuniform or not,
and in any space dimension d. For instance, if an original
configuration is a Poisson point configuration [S0(k) =
1], then the defective configuration obviously becomes
another Poisson point configuration at a different number
density, i.e., S(k) = S0(k).
For computer simulations, we consider only in one-

dimension for simplicity; corresponding results for higher
dimensions will not change qualitatively. Figure 3 com-
pares the predictions of Eq. (25) to numerical simulations
of one-dimensional (entropically-favored) stealthy hype-
runiform ground states [16, 17] with χ = 0.3, K = 1,
and Ns = 103. For each of 100 original configurations,
we generated 100 defective configurations by randomly
adding m particles, where m is a random number chosen
from the Poisson distribution with a mean pNs. Accord-
ing to the effective hyperuniformity criterion (1), the im-
perfect disordered systems described in Fig. 3 are defini-
tively not hyperuniform (Hinterstitials ∼ p > 10−4). Fig-
ure 3 shows that Eq. (25) can provide a good approxi-
mation, even for large values of p.
Using Eqs. (11) and (25), one obtains an expression for

the local number variance in the presence of uncorrelated
interstitials as follows:

σ2
N (R; p) = pρ v1(R) + σ2

N (R; 0) , (26)

where p is the fraction of interstitials and ρ is the num-
ber density of the original system. Since the first term
in Eq. (26) corresponds to the number variance of a
Poisson point process at number density pρ, the nonhy-
peruniformity of the defective systems is attributed to
the tendency of the defects to cluster, which also occurs
in a Poisson point process.
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FIG. 3. Left panel: Comparison of the predictions of Eq. (25) to the corresponding computer simulations of S(0) of the
defective configurations with the fraction p of interstitials. Right panel: Semi-log plot of numerical results for the structure
factor of defective point configurations with uncorrelated interstitials. The original perfectly hyperuniform systems are taken
to be one-dimensional stealthy hyperuniform ground states with χ = 0.3 and K = 1.

IV. EFFECT OF STOCHASTIC PARTICLE

DISPLACEMENTS

We consider a perturbed point process, in which the po-
sition of ith particle in an initial point process is stochas-
tically displaced from ri to ri+u(ri), where i = 1, 2, · · · .
When the initial point process is a lattice, the perturbed
system is referred to a perturbed lattice [58, 60] (also
known as ‘shuffled lattice’ [1, 69]). Perturbed lattices
have been studied or used in various contexts, including
models of lattice disorders [58, 70], and subjects in prob-
ability theory, such as distribution of zeros of random
entire functions [71] and number rigidity [72, 73]. More-
over, perturbed lattices are used to generate disordered
initial configurations for numerical simulations [74], con-
figurations of sampling points [75], and disordered hy-
peruniform point configurations [11, 76]. Here, we start
with summary of results in the previous studies.

A. General Properties of Perturbed Point

Processes

In the rest of this section, we consider a hyperuniform
point process {ri}∞i=1 at number density ρ in R

d, and
its structure factor and pair-correlation function are de-

noted by S0(k) and g
(0)
2 (r), respectively. For the sim-

plicity, in the rest of this section, we assume that the
stochastic displacement vectors u(r) follow an identical
and isotropic singlet probability density function f1(u),
and thus 〈u〉 = 0.
The structure factor of a perturbed point process de-

pends on the initial point process and statistical proper-
ties of displacements [58, 60]:

S(k) = 1 + ρ

∫

dr e−ik·r g
(0)
2 (r) φ̂(k; r) , (27)

where φ̂(k; r) ≡
∫

du dv exp(−ik · (u− v)) f2(u,v; r),
and f2(u,v; r) stands for a conditional joint probabil-
ity density function that two particles, separated by r

in the initial point process, are displaced by u and v,
respectively.
If displacements of distinct particles are uncorrelated,

then the joint probability density function can be reduced
into a product of two singlet probability densities f1(u)
and f1(v), i.e., f2(u,v; r) = f1(u) f1(v), where f1(u) is
the singlet probability density function of a displacement
vector u. Thus, the structure factor (27) of a perturbed
point process with uncorrelated displacements is simply
expressed by [59, 60]

S(k) =

(

1−
∣

∣

∣
f̃1(k)

∣

∣

∣

2
)

+
∣

∣

∣
f̃1(k)

∣

∣

∣

2

S0(k) , (28)

where φ̂(k; r) =
∣

∣

∣
f̃1(k)

∣

∣

∣

2

and f̃1(k) is the characteristic

function, or equivalently the Fourier transform, of f1(u).
In contrast to the effect of point defects described in Sec.
III, “uncorrelated” displacements cannot destroy the hy-
peruniformity of an original hyperuniform point process
because f̃1(k = 0) = 1 by definition.
Suppose that the singlet probability density can be ap-

proximated by f1(u) ≈ A |u|−(d+γ) for large |u|, and thus

the small-wavenumber behavior of f̃1(k) depends on the
exponent γ [60];

f̃1(k) ≈ 1−Bγ |k|min{2,γ}
(|k| ≪ 1), (29)

where 〈u〉 = 0, minC represents the smallest element of
a set C, and the coefficient Bγ is written as

Bγ =

{

1
2d

〈

|u|2
〉

, γ > 2

A(2π)d/2
∫∞

0 dx
Jd/2−1(x)

x(d/2+γ) , 0 < γ ≤ 2.
(30)

If S0(k) ∼ |k|α for small |k|, then the structure factor
(28) of a perturbed point process is approximately given
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as

S(k) ∼ |k|min{2,γ,α}
(|k| ≪ 1). (31)

Thus, an uncorrelated perturbed point process can be-
long to any class of hyperuniformity, i.e., classes I, II,
and III [39], as long as the growth rate of its local num-
ber variance σ2

N (R) is faster than or equal to that of the
original hyperuniform system.
For instance of one-dimensional perturbed lattice, if

f1(u) has a finite variance, e.g., Gaussian distribution,
the system always belongs to class I. Using the Cauchy
distribution (γ = 1) [77] and the Pareto distribution (γ <
1) [78] as f1(u), one obtains class II [79] and class III
perturbed lattices, respectively. However, it is impossible
to change a class II system (α = 1) to a class I system
(α > 1) via the uncorrelated stochastic displacements.
Now we consider cases of correlated displacements. As-

suming that a displacement vector u is isotropically dis-

tributed and its variance
〈

|u|2
〉

exists, φ̂(k; r) in Eq.

(27) can be expanded as a Taylor series of k for small |k|
[60]:

φ̂(k; r) = 1 +

d
∑

µ,ν=1

kµkν [Gµν(r)−Gµν(0)] +O
(

|k|4
)

,

(32)
where the displacement-displacement correlation function

is defined as Gµν(r) ≡ 〈uµ(r + r0)uν(r0)〉. For the sim-
plicity, if we assume that two orthogonal components of
displacements are uncorrelated when d ≥ 2, which im-
plies that Gµν(r) = δµν G(r), then the general expres-
sion for the structure factor (27) can be approximated
by for small wavenumbers [60];

S(k) ≈
[

|k|2 G(0) +
(

1− |k|2 G(0)
)

S0(k)
]

+ ρ |k|2
(

G̃(k) +

∫

dr h0(r)G(r) e−ik·r

)

, (33)

where G̃(k) is the Fourier transform of G(r). Note that
the terms in the square brackets in Eq. (33) are contribu-
tions from the individual displacements (i.e., G(0)), and
these terms are identical to the right-hand side of Eq.

(28) for small |k| because |k|2 G(0) = |k|2
〈

|u|2
〉

/d ≈

1 −
∣

∣

∣
f̃1(k)

∣

∣

∣

2

in the same regime. The rest terms in Eq.

(33) are contributions from “correlations” in displace-
ments.
Remarks:

1. Correlated perturbed lattices are different from un-

correlated ones in two respects; (a) Bragg peaks
and (b) existence of nonhyperuniform states. Both
types of perturbed lattices have Bragg peaks that
are centered at the same positions of their progen-
itor lattices. While correlated perturbed lattices
have broadened peaks as thermalized crystals do,

uncorrelated ones have peaks that are not broad-
ened but weakened compared to those in the initial
lattice.

2. In contrast to uncorrelated perturbed lattices that
are always hyperuniform, correlated ones can be
nonhyperuniform. Suppose that for a perturbed
lattice in R

d, the function G̃(k), which is given in

Eq. (33), exhibits the power-law behavior G̃(k) ∼
|k|β for small |k|. It follows that the perturbed
lattice is no longer hyperuniform when β = −2,
i.e.,

G̃(k) ∼ |k|−2 (|k| ≪ 1), (34)

because the term |k|2 G̃(k) in Eq. (33) converges to
a positive constant as |k| → 0. For low dimensional
perturbed lattices (d ≤ 2), this condition implies

that the variance
〈

|u|2
〉

becomes infinite.

B. Class III Hyperuniformity

Class III (hyperuniform) point processes are character-
ized by the exponent 0 < α < 1 in the large-R behavior
of the number variance σ2

N (R), or equivalently, in the
small-wavenumber behavior of S(k); see Eq. (12). A few
class III systems have been reported, e.g., critical ab-
sorbing states of random organization models (α ≈ 0.45
(d = 1) and 0.425 (d = 2)) [30] and some classical
ground states generated by the collective coordinates op-
timization techniques [14, 48]. However, as noted in Sec.
IVA, one can generate class III perturbed lattices with
0 < α < 1. Moreover, in the construction of class III sys-
tems, generating uncorrelated perturbed lattices is com-
putationally advantageous over other methods, e.g., the
collective coordinate optimization technique [14, 48] and
random organization models [30, 33], in two respects: (a)
parallelization is straightforward, and (b) the computa-
tional cost is in the order of particle number N .
To generate d-dimensional class III perturbed lattices,

the singlet probability density should have a power-law

tail, i.e., f1(u) ∼ |u|−(d+α) as |u| → ∞ and 0 <
α < 1 [60, 80]. The α-stable distributions [81] are one-
dimensional examples of such singlet densities, but it is
difficult to implement them since they can only be analyt-
ically expressed in terms of their characteristic functions.
Here, we will present one of the simplest singlet density

functions to generate class III perturbed lattices in R
d:

f1(r; δ, α) ≡
{

K(d, α, δ) , |r| ≤ δ

K(d, α, δ) (|r| /δ)−d−α
, |r| > δ,

(35)

where the normalization constant is given byK(d, α, δ) =
Γ(1+d/2)α

πd/2(d+α)δd
, and two parameters: an exponent α ∈ (0, 1)

and a characteristic length scale δ ∈ (0,∞). Expressions
for the cumulative distribution, its inverse and the char-
acteristic function of f1(r; δ, α) are provided in Appendix
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FIG. 4. Log-log plots of approximation and numerical results for structure factors of perturbed point configurations, which
are generated by stochastically displacing each particle by the singlet distribution f1(u; δ, α) defined in Eq. (35). Initial
configurations include the following: (a) the integer lattice for d = 1, (b) the square lattice for d = 2, and (c)-(d) stealthy
disordered hyperuniform point configurations with χ = 0.1 (d = 1, 2 for (c) and (d), respectively). A black solid line in each
panel shows S0(k) of the initial configurations.

A. We note that this method can be applied to any class
I system to obtain class III systems; see Fig. 4(c) and
(d) for examples.
Substituting the characteristic function (A5) into Eq.

(28), we obtain the small-|k| asymptotic behavior of S(k)
for an uncorrelated perturbed point process via the sin-
glet density (35):

S(k) = 2A(d, α)

(

kδ

2

)α

+O
(

kmin{2α,2}
)

(|kδ| ≪ 1),

(36)
where k ≡ |k| and A(d, α) is defined as

A(d, α) ≡ Γ(1 + d/2)Γ(1− α/2)/Γ(1 + (d+ α)/2). (37)

As shown in Fig. 4, our approximation formula (36) is in
excellent agreement with numerical simulations of S(k).
Large system size is necessary to observe the class III

behavior in S(k) because this behavior results from large
displacements. Suppose that an initial point configura-
tion lay in a d-dimensional periodic hypercubic box of

side length L. Then, one can estimate the relative error
ǫ in the approximation (36) at the lowest wavenumber
k = 2π/L by comparing terms in series expansion of S(k)
about k = 0. We find the lower bound Lmin of system
size as follows:

L > Lmin ≡ 2π

k
= πδ

(

A(d, α)

2ǫ

)1/α

, (38)

ignoring statistical uncertainties that also increase as
wavenumber decreases.
Remarks:

1. The singlet function (35) can be used to generate
class II perturbed lattices by setting α = 1.

2. We generate 100 initial configurations at unit num-
ber density for each system. Initial point configu-
rations have particles of N = 2 × 103 (d = 1) or
N = 104 (d = 2). Subsequently, we generate 102

perturbed configurations from each initial config-
uration via a singlet function f1(u; δ, α), given in
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Eq. (35), using parameters in Fig. 4. The com-
puted structure factors are presented in Fig. 4.

3. Taking the relative error to be ǫ = 10−3, some lower
bounds of system size Lmin, calculated from Eq.
(38), are listed in Table I.

TABLE I. Smallest system sizes Lmin that correspond to pa-
rameter sets, shown in Fig. 4.

α = 0.8 α = 0.6

d = 1, δ = 10−3, L = 2 × 103 1.1 × 10 1.4 × 102

d = 2, δ = 10−4, L = 102 9.3 × 10−1 1.2 × 10

V. EFFECT OF PHONON MODES

Previously, Torquato et al. [16] theoretically and nu-
merically showed that disordered stealthy hyperuniform
ground states become nonhyperuniform in proportion to
the temperature (i.e., S(0) ∝ T ) for sufficiently low T .
In this study, however, the small-wavenumber behavior
of S(k) was not obtained, and the theoretical predic-
tion was derived from the compressibility relation (13)
without considering the underlying mechanisms. In this
section, we investigate the mechanisms associated with
thermal excitations that destroy the hyperuniformity of
ground states, whether they are disordered or not, and
obtain a corresponding predictive formula for the struc-
ture factor S(k) for small wavenumbers. For simplicity,
we focus on thermal excitations (phonon modes) in clas-
sical crystalline solids for sufficiently low temperatures.
Consider a ground-state crystal at T = 0, which is nec-

essarily hyperuniform and indeed stealthy [1, 16], mean-
ing that S(k) = 0 up to the first Bragg-peak wavenum-
ber. Now, imagine gradually increasing the tempera-
ture. One might surmise that each particle symmetrically
moves around its equilibrium position, and thus the aver-
aged positions of the particles over a long period of time
would be identical to the ideal crystalline structure. This
scenario would lead one to falsely conclude that thermal-

ized crystals (crystals in thermal equilibrium) are hype-
runiform.
Thermalized crystals have been extensively investi-

gated in fields of solid-state physics and crystallography.
In solid-state physics, there are two important (quantum
mechanical) models for harmonic crystals, i.e., Einstein
and Debye solids; see Fig. 5. Roughly speaking, in an
Einstein solid, constituent particles behave as indepen-
dent harmonic oscillators. In a Debye solid, collective
motions of the particles arise as elastic waves, each mode
of which behaves like an independent oscillator, called a
phonon. It is noteworthy that Einstein and Debye solids
can be mapped to uncorrelated and correlated perturbed
lattices, respectively. Thus, an Einstein solid, which cor-
responds to the aforementioned scenario, cannot be non-
hyperuniform at a positive temperature, and we focus on
Debye solids.

Particles

Equilibrium positions

Harmonic interactions

FIG. 5. Schematics illustrating particle displacements in Ein-
stein (left) and Debye solids (right) at a positive temperature.
For illustrative purposes, displacements are exaggerated. The
particles (large blue dots) in an Einstein solid ‘independently’
experience harmonic restoring interactions (blue line) toward
their equilibrium positions. By contrast, the particles in a De-
bye solid interact with their nearest neighbors. In summary,
displacements in Einstein and Debye solids are uncorrelated
and correlated, respectively, leading to different behaviors in
long-wavelength density fluctuations.

In crystallography, it has been known that thermally
excited elastic waves (phonons) in crystals cause back-
ground scattering, called thermal diffuse scattering. In
the past, this subject had been extensively studied by

utilizing approximations for φ̂(k; r), which is given in Eq.
(27). For instance, the well-known Debye-Waller factor

[40], exp
(

−
〈

(q · u)2
〉)

is essentially a higher-order ex-

pression of the quantity 1 −∑d
µ,ν=1 kµkν Gµν(0) in Eq.

(32). However, heretofore, a quantitative description of
the small-wavenumber behavior of the structure factor of
a thermalized crystal in the harmonic regime has been
lacking. This is partly because previous studies have
mainly focused on diffuse scattering near Bragg peaks
rather than the small-wavenumber behavior. Further-
more, many previous theoretical predictions become in-
valid for low-dimensional crystals (d ≤ 2) because they
contain the Debye-Waller factor that vanishes at any pos-
itive temperature for these cases [40, 82].
Our objective here is to derive an explicit expression

for the structure factor of classical Debye solids within
the harmonic regime, especially in the vicinity of k = 0.
In order to formulate a predictive theory for low dimen-
sions, we avoid starting from standard formulas with the
accompanying Debye-Waller factor.

A. Simple Harmonic Lattices

In the harmonic approximation, the potential energy
Φ({R}) of crystalline solids can be described as [40,
42, 83]: Φ({R}) ≈ 1

2

∑

R,R′ uµ(R)Dµν(R−R′)uν(R
′) ,

where uν(R) represents the ν-component of displacement
vector u(R) of a particle whose equilibrium position is
R, and Dµν(R) is called the dynamical matrix.
Suppose a finite subset Λ(L) of an infinitely large Bra-

vais lattice in R
d, which contains N = Ld particles. Un-
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der periodic boundary conditions, motion of a particle at
R can be described by a superposition of normal modes

ũs(q, t) e
iq·R, i.e.,

u(R, t) =
1√
N

∑

q,s

ũs(q, t) e
iq·R, (39)

where a normal coordinate ũs(q, t) ≡ ũs(q) ǫ̂s(q) e
iωs(q)t

represents elastic wave characterized by a wavevector q,
polarization ǫ̂s(q), and angular frequency ωs(q). We use

the shorthand notation
∑

q,s ≡ ∑

q∈Λ∗

1(L)

∑d
s=1, where

Λ∗
1(L) denotes the first Brillouin zone of Λ(L). Note that

a normal coordinate is essentially a spatial Fourier com-
ponent of u(R, t).
The quantities ǫ̂s(q) and ωs(q) can be determined by

solving the following eigenvalue problem;

mωs
2(q) ǫ̂µs (q) =

d
∑

ν=1

D̃µν(q) ǫ̂
ν
s (q) , (40)

where ǫ̂νs (q) is the ν-component of ǫ̂s(q), m is the mass of

a single particle and D̃µν(q) is the Fourier transform of
the dynamical matrix Dµν(R). Thus, for each wavevec-
tor q, there are d independent normal modes, and their
polarization vectors ǫ̂s(q) satisfy the orthogonality (41)
and closure (42) relations [83];

ǫ̂s(q) · ǫ̂s′ (q) = δs,s′ (41)

d
∑

s=1

ǫ̂µs (q) ǫ̂
ν
s (q) = δµ,ν , (42)

where δs,s′ is the Kronecker delta symbol. Using the nor-
mal coordinates (39) and the relation (40), total energy
E of a harmonic crystal can be decomposed into a sum
of elastic and kinetic energy of each normal mode:

E =
∑

q,s

[

1

2
mωs

2(q) |ũs(q, t)|2 +
1

2
m

∣

∣

∣

∣

∂ũs

∂t
(q, t)

∣

∣

∣

∣

2
]

.

(43)
In Sec. V, we will consider a d-dimensional simple cu-

bic lattice where each particle is connected to its nearest
neighbors by springs of spring constant K. The potential
energy of this system is approximately given as

Φcubic ≈
K

2

∑

〈R,R′〉

|u(R) − u(R′)|2 , (44)

where 〈R,R′〉 indicates that two sites R and R′ are
nearest neighbors. Its dynamical matrix is given by
Dµν(R) = δµ,νK

∑

〈R′,0〉 (δR,0 − δR,R′), and its Fourier

transform is

D̃µν(k) = δµ,ν4K

d
∑

i=1

sin2(kia/2) , (45)

where a is the lattice constant. Using (40) and (45), one
can obtain the degenerate dispersion relations:

ω2(k) =
4K

m

d
∑

i=1

sin2(kia/2) , (46)

regardless of polarization s. For small |k|, one obtains a
linear dispersion relation:

ω(k) = c |k|+O
(

|k|2
)

, (47)

where c is the sound speed in the continuum limit (|k| →
0), given by c ≡

√

Ka2/m. Here, the speed sound c
is independent of the polarization, but in general it de-
pends on the polarization. In Appendix C, we derive an
isotropic expression of (46) as follows:

ω2(k) ≈ (ck)2
(

1− (ka)2

4(d+ 2)

)

. (48)

B. Static Structure Factor of Thermalized Crystals

We will consider a finite subset Λ(L) of a d-dimensional
Bravais lattice of unit lattice constant, as described in
Sec. VA, and assume the classical harmonic interac-
tions. We first present a heuristic derivation of the small-
wavenumber behavior of the structure factor at low tem-
peratures [84]. The rigorous derivation that leads to the
same result is provided in Appendix B.
The collective coordinates can be approximated for

small displacements by

ñ(k) =
∑

R

exp(−ik ·R) exp(−ik · u(R, t))

≈
∑

R

exp(−ik ·R)
[

1− ik · u(R, t)
]

=

[

∑

R

exp(−ik ·R)

]

− i
√
Nk · ũ(k, t) , (49)

where we use the fact that normal coordinates ũ(k, t)
are the Fourier components of displacement vectors
u(R, t). Here, we note that for small |k|, the quantity
∑

R exp(−ik ·R) is zero in this regime because an ideal
lattice is stealthy hyperuniform. Thus, the structure fac-
tor of harmonic crystals can be approximately given by

S(k) = lim
N→∞

1

N

〈

|ñ(k)|2
〉

≈
〈

|k · ũ(k, t)|2
〉

, (50)

for 0 < |k| ≪ 1. In fact, for low-dimensional crystals
(d ≤ 2), the approximation used in Eq. (49) is not jus-

tifiable because the quantity
〈

|u|2
〉

diverges in the ther-

modynamic limit [82]. Nonetheless, it is noteworthy that
the result (50) is identical to the one rigorously derived
in Appendix B.
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According to the equipartition theorem, the ensemble
average of potential energy (43) of a normal mode with
a polarization index s is expressed as

1

2
mωs

2(k)
〈

|ũs(k, t)|2
〉

=
1

2
kBT, s =‖, 2, · · · , d, (51)

where the index ‖ indicates the longitudinal polarization
at a given wavevector k and m is the mass of a single
particle. Thus, the expression (50) can be simplified as
[61]

S(k) =
|k|2

mω‖
2(k)

kBT. (52)

For the hypercubic model described in Sec. VA, we
obtain the small-wavenumber expression for the isotropic
structure factor S(|k|) by substituting the dispersion re-
lation (48) into Eq. (52):

S(|k|) = T

[

1 +
(|k| a)2
4(d+ 2)

]

+O
(

|k|4
)

, (53)

where a is the lattice constant and T is a dimensionless
temperature, defined as

T ≡ kBT/(mc2). (54)

Our approximate result (53) is consistent with numerical
simulations for spatial dimensions d = 1, 2, 3: see Fig. 6.
Taking the limit |k| → 0 in Eq. (53) and comparing to
the compressibility relation (13) enables us to determine
the isothermal compressibility explicitly:

κT = (Ka2−d)−1, (55)

which is identical to the inverse of the bulk modulus for
the corresponding spring networks.
Expression (50) implies that only sound waves (lon-

gitudinal elastic waves) contribute to long-wavelength
density fluctuations or nonhyperuniformity of thermal-
ized crystals. It is reasonable because while sound waves
are caused by density modulations, transverse waves re-
sult from volume-preserving shear deformations. In ad-
dition, the predicted hyperuniformity of an “incompress-
ible” system in thermal equilibrium would result from a
non-relativistic (infinite) speed of sound. The reader is
referred to a recent study on a perfect glass model that
is hyperuniform and has the same attribute of a non-
relativistic (infinite) speed of sound [85].
For a non-Bravais crystal of Nb basis atoms, there are

Nb independent “longitudinal” normal modes at each
wavevector k [40], and thus Eq. (52) will be modified
as

S(k) =

Nb
∑

i=1

|k|2
µi ω‖(i)

2 (k)
kBT, (56)

where µi are some finite constants of mass unit, and
ω‖(i) (k) is the angular frequency of ith longitudinal nor-
mal mode. In the acoustic mode (i = 1), all basis atoms

in the same unit cell move in phase, while in optical modes

(i = 2, · · · , Nb), the basis atoms move out of phase.
For small wavenumbers, only acoustic modes have lin-
ear dispersion relations, as in (47), while optical modes
have non-linear ones, i.e., lim|k|→0 ω‖(i)(k) 6= 0. There-
fore, in the limit of |k| → 0, it is only the “longitu-
dinal acoustic modes” that can contribute to the long-
wavelength density fluctuations, i.e., S(0) = KBT

µ1c21
, where

c1 ≡ lim|k|→0 ω‖(1)(k) / |k|.
Since thermalized crystals at a positive temperature

can be mapped to “nonhyperuniform” perturbed lat-
tices, their displacement-displacement correlation func-
tion Gµν(r) satisfies the condition (34). Indeed, the sim-
ple harmonic crystal model in R

d satisfies consistently
the condition as follows:

G̃µν(k) ≈ δµ,ν
T

|k|2
(|k| a ≪ 1), (57)

where T is defined by Eq. (54) and a detailed deriva-
tion is provided in Appendix D. Here, we note that since
〈

|u|2
〉

/d = G(0), the asymptotic relation (57) implies

that the variance in displacements
〈

|u|2
〉

diverge, or

equivalently, the Debye-Waller factor [82] vanishes for low
dimensional crystals.
Remarks:

1. Equilibrium hard-sphere systems in R
3 exhibits the

same structure factor scaling as in (53) as they ap-
proach to the FCC jamming point along the sta-
ble crystal branch [86]. This behavior is attributed
to collective “vibrational” motions due to colli-
sions, which are the hard-sphere analogs of phonons
in systems of particles interacting with continuous
pair potentials.

2. The selection rule
∑

Q δ
(

−k +
∑

q,s q(z(q, s) + z′(q, s)),Q
)

in

Eq. (B5) can be interpreted as the crystal mo-
mentum conservation [40]. Then, the result (50)
corresponds to the single-phonon scattering.

3. To gain some physical idea of the dimensionless
temperature T , we provide estimations of a melt-
ing point TM and Debye temperature TD [40] in the
unit of T . To estimate the order of magnitude of
TM , we use the Lindemann criterion [40, 87] that
〈

|u|2
〉

≈ (cla)
2 near TM , where a is the lattice

constant and cl ≈ 0.1. In d = 3, TM ∼ 10−2 and
TD ∼ 10−3, which are consistent with experimen-
tal data for many solids; see Table III. In numerical
simulations, temperatures are much lower than the
melting point, i.e., T ≤ 0.01TM . We note that for
the illustrative purposes, a thermalized lattice in
Fig. 1 is set to be at an exceedingly high tempera-
ture T = 0.05.



14

0 2 4 6 8 10
ka

10
0

10
2

10
4

10
6

10
8

S(
k)

/T

0 1 2

1.0

1.5
T=1.0x10

-4

T=0.6x10
-4

T=0.2x10
-4

Approx.

(a)

0 2 4 6
ka

10
0

10
2

10
4

10
6

S(
k)

/T

T = 1.0x10
-4

T = 0.6x10
-4

T = 0.2x10
-4

Approx.

0 1 2 30.5

1.0

1.5
T = 1.0x10

-4

T = 0.6x10
-4

T = 0.2x10
-4

Approx.

(b)

0 2 4 6
ka

10
0

10
2

10
4

10
6

S(
k)

/T

0 1 2 30.5

1.0

1.5
T = 1.0x10

-4

T = 0.6x10
-4

T = 0.2x10
-4

Approx.

(c)

FIG. 6. Semi-log plots of approximate and numerical results for structure factors for thermalized hypercubic lattices calculated
from the Monte Carlo technique; (a) d = 1, (b) d = 2, and (c) d = 3. Note that structure factors are normalized by the
dimensionless temperature T defined by the relation (54). The approximate results are calculated from the formula (53). Insets
in each of panels are magnifications in the small-wavenumber regime.

4. We use the simulated-annealing technique to simu-
late thermalized crystals with the potential energy
(44). Each simulation starts from the melting point
(T = 0.01) and then employs an exponential cool-
ing schedule to achieve a target temperature. At
each temperature in the cooling schedule, we ad-
just the maximum displacement of trial moves such
that the acceptance rate is around a half. We let
the systems evolve for 10τs MC cycles before sam-
pling the configurations, and then check whether
the acceptance ratio is around a half for the next
τtest MC cycles. Table II lists the sampling param-
eters for d = 1, 2, and 3, respectively.

TABLE II. Parameters used in the Monte Carlo simulations of
thermalized crystals in Fig. 6. We sample sequentially Nsamp

configurations in the interval of τs MC cycles. For one MC
cycle, a single trial movement per one particle is sequentially
made.

d 1 2 3

N 1000 1002 303

Nsamp 5 × 104 104 103

τs 5 × 103 102 10

τtest 103 5 × 102 102

5. For a N × N symmetric positive-definite matrix
A, its Gaussian integral has the following property
[42]:

〈xixj〉 ≡
∫

RN xixj exp
(

− 1
2

∑N
i,j=1 Aijxixj

)

dx

∫

RN exp
(

− 1
2

∑N
i,j=1 Aijxixj

)

dx
=
(

A−1
)

ij
,

where A−1 is the inverse of A. Thus, one immedi-
ately obtains an expression equivalent to Eq. (57):

G̃µν(k) ≡ 〈ũµ(k, t) ũ
∗
ν(k, t)〉th = (kBT )D̃

−1
µν (k), (58)

where D̃−1(k) is the inverse of the Fourier trans-

form D̃(k) of the dynamical matrix.

VI. DISCUSSIONS AND CONCLUSIONS

In this paper, we have theoretically and numerically
investigated the degree to which hyperuniformity is de-
graded or destroyed due to the presence of imperfections
in otherwise perfect hyperuniform point processes. We
focused on three types of imperfections, including (1) un-
correlated point defects, (2) stochastic particle displace-
ments, and (3) thermal excitations. We derived explicit
formulas for the small-wavenumber behaviors (20), (25),
(36), and (52) for the structure factors S(k) and showed
that these expressions are consistent with numerical sim-
ulations in Figs. 2, 3, 4, and 6. These results show that
either the violation of the infinite-wavelength criterion
(8) or changes in the small-|k| behavior of S(k) without
violating the condition provides an unambiguous means
to detect imperfections in otherwise amorphous hyper-
uniform systems.

Our results indicate that uncorrelated point defects
(vacancies and interstitials) and thermal excitations de-
stroy the hyperuniformity of initial systems, but stochas-
tic displacements can destroy it only when displacements
are strongly correlated; see the condition (34). Impor-
tantly, we also note that our result (52) provides a direct
demonstration that thermal excitations can destroy the
hyperuniformity of harmonic crystals, which has been in-
directly predicted [16, 39] by the compressibility relation
(13).

Note that these results are consistent with the qual-
itative arguments that we made concerning the several
example configurations shown in Fig. 1; specifically, the
seemingly more disordered configuration (d) is hyperuni-
form, but the others (b), (c), and (d) are not. To explain
these counterintuitive results, it was helpful to examine
the local number variance σ2

N (R). In the presence of
point defects, as we show in Eqs. (21) and (26), the
major contributions in σ2

N (R) come from the variances
in the number of point defects contained within a large
window. In other words, the tendency of point defects



15

to cluster, as in the Poisson point process, results in the
destruction of hyperuniformity.
Interestingly, as we see in Fig. 1(d), uncorrelated

stochastic displacements degrade but cannot destroy the
hyperuniformity because particles only near a window
boundary can fall in and out of the window in an in-
dependent manner, i.e., σ2

N (R) < Rd for large R. Using
this property, we presented a simple method to transform
class I systems, such as lattices and disordered stealthy
hyperuniform systems, to class III systems, defined in
Eq. (12), by application of relation (35).
By contrast, correlated stochastic displacements can

destroy hyperuniformity in the way that particles near
the window boundary move in and out of the window
simultaneously [88]. Our results (50) and (57) show that
for thermalized crystals, long-wavelength “longitudinal
acoustic waves” arise such correlated displacements; see
Fig. 1(e).
We have studied the effect of each type of imperfection

on the small-wavenumber behavior of structure factors
for otherwise perfectly hyperuniform systems. It would
be interesting to study how multiple types of imperfec-
tions simultaneously affect the hyperuniformity. In the
reverse direction, it would be also interesting to know
the general conditions under which correlated particle
displacements in a nonhyperuniform system can lead to
a hyperuniform system.
Our work provides the theoretical underpinnings to

study the effect of imperfections on the physical prop-
erties that depend sensitively on the degree of hyper-
uniformity of materials. For instance, according to the
type of imperfection that is introduced in a “stealthy
hyperuniform” system, the system becomes merely “hy-
peruniform” or even “nonhyperuniform.” Thus, imper-
fections may influence some exotic physical properties
associated with the stealthy hyperuniformity, e.g., com-
plete isotropic photonic bandgaps [7, 8, 13], transparency
at high densities [9], negative compressibilities [89] and
nearly optimal transport properties [12]. For future
study, it would be interesting to investigate the degree
to which the presence of imperfections in otherwise hy-
peruniform systems affect their physical properties. Fur-
thermore, one could explore whether it is possible to con-
tinuously modulate the degree of imperfections in a hy-
peruniform material to achieve desired properties.
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Appendix A: Mathematical Details of the Singlet

Density (35)

In this appendix, we provide explicit formulas for
the cumulative distribution function C(R), its inverse

C−1(y), and the characteristic function of the singlet den-
sity function (35). The cumulative distribution function
C(R; δ, α) is

C(R) ≡
∫

|r|<R

dr f1(r; δ, α) =

{

α
d+α

(

R
δ

)d
, R ≤ δ

1− d
d+α

(

R
δ

)−α
, R > δ

,

(A1)
and its inverse function C−1(y) is

C−1(y) =

{

δ (y(1 + d/α))
1/d

, 0 < y ≤ α/(d+ α)

δ ((1− y)(1 + α/d))
−1/α

, α/(d+ α) ≤ y < 1.

(A2)
One can generate a random radius followed by the prob-
ability density function (35) by substituting y in (A2)
with a uniformly-distributed random number between 0
and 1.

The explicit expression for the characteristic function
of Eq. (35) is

f̃1(k; δ, α) = −A(d, α) (kδ/2)
α

(A3)

+ α/(d+ α) 0F1

(

; (1 + d)/2;− (kδ/2)2
)

+ d/(d+ α) 1F2

(

−α/2; d/2, 1− α/2;− (kδ/2)
2
)

,

where k = |k|, A(d, α) is given in Eq. (37), and the gener-
alized hypergeometric function pFq({a}; {b};x) is defined
as

pFq({a}; {b};x) =
∞
∑

P=0

(a1)P · · · (ap)P
(b1)P · · · (bq)P

xP

P !
, (A4)

where (a)P ≡ Γ(a+ P ) /Γ(a). For small k, Taylor series
expansion of Eq. (A3) is

f̃1(k; δ, α) = 1−A(d, α) (kδ/2)
α
+O

(

k2
)

. (A5)

Appendix B: Rigorous Derivation of Eq. (50)

Suppose a finite subset Λ(L) of a d-dimensional infinite
large Bravais lattice, as defined in Sec. VA. Using the
Jacobi-Anger expansions

exp(ia cos θ) =

∞
∑

z=−∞

Jz(a) e
iz(θ+π/2) (B1)

exp(ia sin θ) =

∞
∑

z=−∞

Jz(a) e
izθ, (B2)

and normal coordinates (39), the collective coordinates
ñ(k) of a thermalized crystal can be written in a Fourier
series:
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ñ(k) =
∑

R

exp(−ik · (R+ u(R, t)))

=
∑

R

e−ik·R
∏

q,s

exp(ikq,s cos(q ·R+ ωs(q)t)) exp
(

i2kq,s sin(q ·R+ ωs(q)t)
)

=
∑

R

e−ik·R
∏

q,s

∞
∑

zq,s,z′

q,s=−∞

Jzq,s(kq,s)Jz′

q,s
(ikq,s) exp

(

i(zq,s + z′q,s) (q ·R + ωs(q)t) + izq,sπ/2
)

=
∑

R

e−ik·R
∑

{z(q,s),z′(q,s)}

∏

q,s

[

Jz(q,s)(kq,s)Jz′(q,s)(ikq,s)

exp(i(z(q, s) + z′(q, s)) (q ·R+ ωs(q)t) + i z(q, s)π/2)
]

, (B3)

where Jn(x) is the Bessel function of order n and we use the shorthand notation kq,s ≡ −k · ũs(q)/
√
N . Here,

∑

{z(q,s),z′(q,s)} represents a summation over all possible functions z(q, s) and z′(q, s) from wavevectors in the first

Brillouin zone Λ∗
1(L) and polarization indices to integers. Separating the products of exponential functions in Eq.

(B3), one obtains

ñ(k) =
∑

{z(q,s),z′(q,s)}

[

∏

q,s

Jz(q,s)(kq,s) Jz′(q,s)(ikq,s)

]

exp

(

i
∑

q,s

(

(z(q, s) + z′(q, s))ωs(q) t+
π

2
z(q, s)

)

)

×
∑

R

exp

(

i

(

−k +
∑

q,s

q(z(q, s) + z′(q, s))

)

·R
)

(B4)

=
∑

{z(q,s),z′(q,s)}

[

∏

q,s

Jz(q,s)(kq,s) Jz′(q,s)(ikq,s)

]

×N
∑

Q

δ

(

−k +
∑

q,s

q(z(q, s) + z′(q, s)),Q

)

exp

(

i
∑

q,s

(

(z(q, s) + z′(q, s))ωs(q) t+
π

2
z(q, s)

)

)

, (B5)

where we used an identity
∑

R eik·R = N
∑

Q δ(k,Q), and
∑

R and
∑

Q represent a summation over all lattice vectors

R and over all reciprocal lattice vectors Q of the lattice {R}, respectively. The Kronecker delta symbol is denoted
here by δ(q, q′).

Note that for small |k| and |q|, the arguments in Bessel functions are small, i.e., kq,s = O
(

T/
√
N
)

so that we can

use a power series expansion of the Bessel functions (i.e., |Jn(x)| = (x/2)n/n! +O
(

xn+2
)

for small x) to approximate
the product of Bessel functions in Eq. (B5):

[

∏

q,s

Jz(q,s)(kq,s)Jz′(q,s)(ikq,s)

]

∝ |k|
∑

q,s(|z(q,s)|+|z′(q,s)|) (|k| → 0). (B6)

Combining the selection rule
∑

Q δ
(

−k +
∑

q,s q(z(q, s) + z′(q, s)),Q
)

in Eqs. (B5) and (B6) implies that the leading

order in Eq. (B6) should be the unity;
∑

q,s (|z(q, s)|+ |z′(q, s)|) = 1. Thus, the collective coordinates can be
approximated as

ñ(k) ≈ N

d
∑

s=1

[

(J1(kk,s) i+ J1(ikk,s)) e
iωs(k)t + (J−1(k−k,s) (−i) + J−1(ik−k,s)) e

−iωs(−k)t
]

≈ 2N

d
∑

s=1

ikk,s
2

eiωs(k)t = −i
√
Nk ·

d
∑

s=1

ũs(k) e
iωs(k)t

= −i
√
Nk · ũ(k, t) . (B7)

Therefore, the leading-order behavior of the structure factor of a thermalized crystal is written as

S(k) ≡ 〈S(k)〉 = lim
N→∞

1

N

〈

|ñ(k)|2
〉

≈
〈

|k · ũ(k, t)|2
〉

(0 < |k| a ≪ 1). (B8)
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Appendix C: Derivation of an Isotropic Dispersion

Relation (48)

In this appendix, we derive an isotropic dispersion re-
lation (48). Starting from the second-order power series
of the exact dispersion relation (46):

ω2(k) = c2 |k|2
(

1− (|k|a)2
12

d
∑

i=1

(

ki
|k|

)4
)

+O
(

|k|6
)

,

(C1)
we will obtain its average over the orientations of k. Its
orientational average simplifies as

ω2(k) = (ck)2
(

1− d/12
〈

x1
4
〉

ang

)

+O
(

k6
)

, (C2)

where k ≡ |k|, xi is the first component of a unit
vector x,

〈

xi
4
〉

ang
≡
∮

|x|=1 dx xi
4/Sd(1), and Sd(1) =

2πd/2/Γ(d/2) is the surface area of d-dimensional sphere
of unit radius. Here, we use the fact that

〈

xi
4
〉

ang
are

identical for i = 1, · · · , d due to the rotational symmetry.

In d-dimensional spherical coordinates φ ∈ [0, 2π] and
θj ∈ [0, π] for j = 1, · · · , d− 2, the Cartesian coordinates
of a unit vector x are expressed as

xi =











cosφ
∏d−2

j=1 sin θj , i = 1

sinφ
∏d−2

j=1 sin θj , i = 2

cos θi−2

∏i−3
j=1 sin θj , i = 3, · · · , d.

(C3)

The infinitesimal area dS of the spherical shell of unit
radius is written as

dS = dφ

d−2
∏

i=1

[

dθi sin(θi)
d−i−1

]

. (C4)

Using the following identity

∫ π

0

dx sinmx =
√
π
Γ((m+ 1)/2)

Γ((m+ 2)/2)
, (C5)

one can calculate

〈

x1
4
〉

ang
=

1

Sd(1)

∫ 2π

0

dφ cos4 φ

d−2
∏

i=1

[
∫ π

0

dθi sin(θi)
d+3−i

]

=
Γ(d/2)

2πd/2

3π

4

d−2
∏

i=1

[

√
π
Γ
(

d+4−i
2

)

Γ
(

d+5−i
2

)

]

=
Γ(d/2)

2πd/2

3

4
πd/2

Γ
(

d+4−(d−2)
2

)

Γ
(

d+5−1
2

) =
3

4

Γ(d/2)

Γ(2 + d/2)
=

3

d(d+ 2)
. (C6)

Thus, Eq. (C2) becomes

ω2(k) ≈ (ck)2
(

1− (ka)2

4(d+ 2)

)

. (C7)

Appendix D: Displacement-Displacement

Correlation Functions of Thermalized Crystals

In this appendix, we derive Eq. (57) in Sec. VB for
a classical Debye solid. Since Gµν(r) is defined for the
complex variables as Gµν(r) ≡ 〈uµ(r +R, t)u∗

ν(R, t)〉 =
〈

〈uµ(r +R, t) uν(R,−t)〉
R

〉

th
, we obtain its Fourier

transform by using properties of the autocovariance:

G̃µν(k) = 〈ũµ(k, t) ũν(−k,−t)〉th
= 〈ũµ(k, t) ũ

∗
ν(k, t)〉th , (D1)

where 〈·〉R means the average over the positions R and,
〈·〉th means a canonical ensemble average.

Using normal coordinates (39), Eq. (D1) simplifies as

G̃µν(k) =
d
∑

s,s′=1

ǫ̂µs (k)ǫ̂
ν
s′(k)

〈

ũs(k) ũ
∗
s′(k) e

i(ωs(k)−ωs′(k))t
〉

th

=

d
∑

s=1

ǫ̂µs (k)ǫ̂
ν
s (k) 〈ũs(k) ũ

∗
s(k)〉th , (D2)

where ǫ̂µs (k) is the µ-component of a unit polarization
vector ǫ̂s(k) and we used the fact that normal coordi-
nates with different polarizations are independent of one
another.
Applying the equipartition theorem into Eq. (D2), we

obtain the small-|k| behavior of G̃µν(k):

G̃µν(k) =

d
∑

s=1

ǫ̂µs (k)ǫ̂
ν
s (k)

mω2
s(k)

kBT (D3)

≈
d
∑

s=1

ǫ̂µs (k)ǫ̂
ν
s (k)

mc2 |k|2
kBT = δµ,ν

T

|k|2
, (D4)

where the degenerate dispersion relations (47) for a sim-
ple harmonic crystal in R

d and the closure relation (42)
are used in Eq. (D4). Here, T is defined in Eq. (54).
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TABLE III. Estimations of Debye temperatures TD and melting points TM of solids of some elements in the unit of the
dimensionless temperature T up to two significant figures. The mass and speed sound are denoted by m and c, respectively.

ma (10-23g) cb (103m/s) TD
a(K) [TD ] TM

a(K) [TM ] ma (10-23g) cb (103m/s) TD
a(K) [TD ] TM

a(K) [TM ]
Be 1.50 12.9 1000 [0.0056] 1550 [0.0086] Mg 4.04 5.77 318 [0.0033] 922 [0.0095]
Al 4.48 6.42 394 [0.0029] 933 [0.0070] Sn(white) 19.7 3.32 170 [0.0011] 505 [0.0032]
Cu 10.6 4.76 315 [0.0018] 1356 [0.0078] Ag 17.9 3.65 215 [0.0012] 1234 [0.0071]
Au 32.7 3.24 170 [0.00068] 1337 [0.0054] Zn 10.9 4.21 234 [0.0017] 693 [0.0050]
Mo 15.9 6.25 380 [0.0008] 2890 [0.0064] W 30.5 5.22 310 [0.0005] 3683 [0.0061]
Fe 9.44 5.00 420 [0.0025] 1808 [0.011] Ni 9.75 5.04 375 [0.0021] 1726 [0.0096]
Pd 17.7 2.16 275 [0.0046] 1825 [0.031] Pt 32.4 3.26 230 [0.0009] 2045 [0.0082]

a Taken from Ref. [40].
b Taken from Ref. [90].

Appendix E: Debye Temperatures and Melting

Points of Some Solids

In this appendix, we estimate two quantities TD ≡
kBTD/mc2 and TM ≡ kBTM/mc2 from experimental
data of some solids and list them in Table III. These
two quantities correspond to the Debye temperature TD

and melting point TM , respectively, in the unit of the di-
mensionless temperature T , which is defined in Eq. (54).
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