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Abstract

The specularity of phonons at crystal surfaces is of direct importance to thermal transport in

nanostructures and to dissipation in nanomechanical resonators. Wave scattering theory provides

a framework for estimating wavelength dependent specularity, but experimental validation remains

elusive. Widely available thermal conductivity data presents poor validation since the involvement

of infinitude of phonon wavelengths in thermal transport presents an underconstrained test for

specularity theory. Here, we report phonon specularity by measuring the lifetimes of individual

coherent longitudinal acoustic phonon modes excited in ultrathin (36-205 nm) suspended silicon

membranes at room temperature over the frequency range ∼ 20-118 GHz. Phonon surface scat-

tering dominates intrinsic Akhiezer damping at frequencies & 60 GHz, enabling measurements of

phonon boundary scattering time over wavelengths ∼72-140 nm. We obtain detailed statistics

of the surface roughness at the top and bottom surfaces of membranes using HRTEM imaging.

We find that the specularity of the excited modes are in good agreement with solutions of wave

scattering only when the TEM statistics are corrected for projection errors. The often cited Zi-

man formula for phonon specularity also appears in good agreement with the data, contradicting

previous results. This work helps to advance the fundamental understanding of phonon scattering

at the surfaces of nanostructures.

∗ These two authors contributed equally
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1



I. INTRODUCTION

Recent measurements of thermal transport in nanostructures have motivated a reexami-

nation of the specularity of phonons scattering at surfaces. Specularity is difficult to measure

directly in heat conduction experiments. Instead, a standard empirical approach is to as-

sume an effective specularity1 across all phonon modes without considering any wavelength

dependence. Within this approach, perfectly diffuse scattering (zero specularity) satisfacto-

rily appears to explain the majority of thermal conductivity data2 in structures with char-

acteristic dimensions larger than ∼0.5 µm. Since dominant phonon wavelengths at room

temperature approach a few nm and are comparable to the typical cleanroom processed

surface roughness, diffuse scattering appears physically reasonable at room temperature.

However, it is difficult to argue that phonons should scatter diffusely from similar surfaces

even at low temperatures. The gap in understanding wavelength-dependent surface scatter-

ing is evident in the confusion over transport in more complicated nanostructures such as

metal-assisted chemically etched nanowires, core-shell nanowires or holey silicon3–6. Failure

of the effective approach in these select cases has prompted a theoretical examination of the

wavelength dependence in phonon surface scattering7–9. The availability of systematic data

on specularity, however, remains a challenge.

Specularity of a surface to an incident wave depends on the relative magnitude of the

wavelength to the roughness height and correlation length10. The exact dependence can

vary substantially based on simplifying assumptions. Which theoretical results from wave

scattering theory could be applied to phonon transport remains unclear. A recent innova-

tive measurement11 using superconducting tunnel junctions to identify individual phonon

frequencies found zero specularity for phonons incident at nm scale roughness, even at .

0.1 THz frequencies. Interestingly, the report found that the measured zero specularity was

inconsistent with that predicted by a formula based on the Rayleigh-Rice theory9,12 (also

referred to as the Ziman formula in the phonon transport literature13). The formula applies

in the limit of an infinite correlation length, and under the assumption of small roughness

in relation to the incident wavelength. The specularity is then given by e−16π
2η2/λ2 where η

is the root mean square height of surface roughness and λ is the wavelength. In contrast, in

another experiment14 on coherently excited phonon modes in silicon membranes, the Ziman

expression was used to fit data in the similar frequency range (20-500 GHz). The lack of
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detailed statistics of surface roughness in either measurement further makes data interpre-

tation difficult. In this Letter, we show that the roughness statistics from detailed surface

characterization is necessary to interpret boundary scattering data. Distinct from these

measurements, we find that phonons in the measured 20-118 GHz range reflect specularly

for surfaces with typical . 1 nm roughness. These sub-THz frequencies are important for

nanomechanical resonators and thermal transport at low and intermediate temperatures.

To verify phonon specularity against expectations from wave scattering theory, this work

combines detailed surface characterization using high resolution transmission electron mi-

croscopy (HRTEM), with measurements of phonon lifetimes of longitudinal acoustic modes.

Long-window HRTEM of roughness profiles enable us to obtain detailed roughness statistics

across multiple membranes. A subtle error arises in projecting the two-dimensional rough-

ness of the surface to a one-dimensional profile measured by the HRTEM. We find that

correcting the error is critical toward matching wave theory predictions against the experi-

mental data. In the optical measurements, individual phonon modes are coherently excited

in the frequency range ∼ 20 − 118 GHz in ultrathin suspended Si membranes (∼ 36 − 205

nm thick) using an ultrafast laser pump. The suspended membrane acts as nanomechanical

resonator in our experiments. The quality factor (Q) of the resonator is intrinsically limited

by scattering with phonons15–17. However, extrinsic processes18 such as surface scattering

dominates attenuation in practice. In our experiments, we measure the attenuation of each

mode using a time delayed probe to find that intrinsic Akhiezer damping correctly predicts

phonon lifetimes at the lower frequencies (ν ≤ 24 GHz), consistent with results for bulk

silicon19. The reduction in phonon lifetimes at higher frequencies (≥ 60 GHz), however

is dominated by roughness dependent phonon surface scattering. We analyze the lifetime

data using results from wave scattering theory at rough surfaces9,10,20–22 and find that the

estimated phonon specularities are in good agreement with the data over the measured

frequency range.

II. EXPERIMENT

For our measurements, we fabricated free-standing single-crystal silicon membranes from

the [100]-oriented silicon-on-insulator (SOI) wafers23. The device layer, buried oxide, and

the Si substrate are 205 nm, 410 nm, and 700 µm thick respectively. We first deposited a
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300 nm thick film of silicon nitride (SiNx) on top of the device layer using a low pressure

chemical vapor deposition (LPCVD) process at 800 ◦C. In order to reduce the surface dam-

age and contamination in subsequent fabrication process, we encapsulated the diced SOI

samples with protective silicon dioxide and SiNx layers using plasma-enhanced chemical va-

por deposition (PECVD). We then defined a backside window using photolithography and

etched the Si substrate using a combination of deep reactive ion etching (DRIE - Inductively

coupled Bosch Process) and wet etching in tetramethylammonium hydroxide (TMAH - 80

◦C). The buried oxide layer is removed by placing the samples in a buffered oxide etch (BOE)

solution. Silicon membranes are suspended by removing the protective layers covering the

top surface of the SOI samples using Freon RIE. Further etching with the same Freon RIE

process allowed us to control the thickness of the membrane to within ∼ 10 nm. The ap-

proach yielded membranes of ∼ 300 µm × ∼ 400 µm area with thicknesses in the range

36-205 nm.

We performed lifetime measurements using an ultrafast laser pump-probe setup which

is described in detail before24–26. Both the pump and probe beams are obtained from a

synchronously mode-locked Ti:sapphire oscillator with a repetition rate of 74.8 MHz, pulse

duration of 200 fs, and a wavelength of 785 nm. The pump beam is modulated using an

electro-optic modulator at 10 MHz to facilitate lock-in detection of reflected probe beam.

The 1/e2 radius of the focused pump and probe spots on the sample surface is ∼ 5.5 µm.

The pump pulses hitting the sample surface create an electron-hole (e-h) plasma, which

after relaxation (∼ 1 ps)27 creates stress in the illumination region of the membrane28. The

generated stress is uniform along the thickness of membrane due to the large penetration

depth29 (∼ 8 µm) of 785 nm wavelength in silicon and results in excitation of the first-order

dilatation mode of the membrane. The frequency of oscillation is given by ν = VL/2d0,

where VL = 8430 m/s is the longitudinal speed of sound in silicon30 and d0 is the thickness

of the membrane. The excited acoustic mode modulates the membrane thickness (∆d0 < 1

pm), which in turn changes the reflectivity of the membrane (∆R/R ∼ 10−5)14,31 measured

by the probe beam. Varying the delay between the arrival of the pump and the probe beams

captures the time evolution of the amplitude of the excited acoustic mode.

Figure 1 shows the in-phase voltage obtained from the lock-in amplifier for a 182 nm thick

membrane which corresponds to 23.1 GHz longitudinal acoustic mode. The sharp rise in the

signal at t = 0 ps is due to electronic excitation followed by a multi-exponential decay. The
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electronic response is removed to obtain the acoustic modes32 shown in the inset of Fig. 1.

We detect the peaks in the resulting acoustic signal and use linear regression to fit a line

through the logarithm of the peak amplitudes. The amplitude damping time is obtained

from the inverse of the slope of fitted line. The phonon lifetime (τ) is defined as the rate of

energy decay and is half of the amplitude damping time (since acoustic energy scales as the

square of the amplitude).
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FIG. 1. In-phase voltage (black) obtained from pump-probe measurements for 182 nm thick mem-

brane. The slowly decaying electronic background (red) is fitted using a spline. (Inset) Acoustic

signal extracted after removing the electronic background from the in-phase voltage.

To facilitate a quantitative evaluation of boundary scattering in the measured thin films,

we characterized the roughnesses of the top and bottom surfaces of the membranes in terms

of the correlation length, L, and the root mean square (rms) roughness height, η. We used
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a JEOL 2010 LaB6 transmission electron microscope (TEM) to obtain roughness profiles

for 5 membrane samples with thicknesses of 36, 49, 132, 175 and 187 nm. The sample

preparation for TEM imaging includes depositing 100 nm copper on the bottom surface of

the membrane for reinforcement and 200 nm Pt/C composite on the top surface. We used

electron beam-induced deposition on the top side to prevent damage to the surface of the

membrane33. We slice a thin (∼ 100 nm width) rectangular portion of the membrane and

transfer it to the TEM grid inside a FIB. The cross-section of the membrane is then imaged

in 40-60 nm segments along the (110) zone axis to obtain a series of high resolution (400K

X) images. The individual images are stitched together (Figure 2a) using ImageJ34 to obtain

a surface profile over distances of ∼ 350 - 450 nm. The [111] direction serves as a reference

to establish correspondences between adjacent pairs of images during the stitching process.

The interface boundary (Figure 2b) is traced by selecting discrete points corresponding to

the last discernible Si lattice site along the [111] direction. The surface roughness profile

(Figure 2c left column) is then obtained by interpolating over the unequally spaced discrete

points with a smoothing B-spline at a sampling interval ≥ 0.3 nm.

In order to determine the correlation length L from the surface roughness profile, we

first evaluate the height-height autocorrelation function (ACF). Following prior work on

understanding electron scattering at the Si-SiO2 interface35,36, we fit the decay of the ACF as

an exponential distribution of the form C(r) = exp(−r/L) and extract the correlation length

L as shown in the right column of Fig. 2c. We find that the measured correlation length lies

in the range L ∼ 6 − 77 nm between different membranes. Since the lengths are measured

using a finite picture window, we expect a compression of the correlation length and rms

roughness between the actual and measured values36, especially when the correlation length

is comparable to the window length. To avoid this issue, we used long window lengths of ∼

375 nm beyond which we lost TEM focus. We find that the measured values for L are ≤ 20%

of the window length, and therefore, the finite window does not introduce any significant

compression in L. We note that our measurements obviously cannot resolve correlation

lengths longer than the window length of 375 nm. We also obtain the rms roughness height

of the membrane samples from the standard deviation of the surface roughness profile. The

measured rms roughness, ηm range from 0.4 to 1.3 nm.

A subtle issue with obtaining surface roughness from HRTEM images is that the images

are one-dimensional projections of the two-dimensional roughness, through the membrane
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FIG. 2. (a) Example of a stitched surface roughness profile for the top surface of a silicon membrane

obtained from TEM. (b) High resolution TEM micrograph along the (110) zone axis with crystalline

Si membrane at the top, Pt/C composite at the bottom and native SiO2 in between. The red line

traces the Si-SiO2 interface at the surface of membrane. (c) Surface roughness profile (left) and

the corresponding autocorrelation function (right) for the top and bottom surfaces of a membrane

with 187 nm thickness. The blue line represents the measured autocorrelation function and the

black curve represents the exponential fit.

cross-section36. Previous measurements36,37 on Si-SiO2 interfaces with similar surface treat-

ment reported that rms roughness extracted from the projection, ηm are lower than the

actual roughness, η. To account for any such reduction, we numerically obtained a cor-

rection factor for every measurement. Specifically, we simulated a two-dimensional rough

surface using exponential statistics with varying correlation lengths and rms roughnesses.

An example of such a surface with L = 50 nm and η = 1 nm is shown in Fig. 3a. We

then divide the surface into thin segments (∼ 100 nm) along the y-direction and project
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FIG. 3. (a) Two-dimensional random rough surface generated using exponential statistics for

rms roughness η = 1.0 nm and correlation length L = 50 nm. (b) Correction to the measured

rms roughness ηm as a function of correlation length of the original two-dimensional exponential

surface.

the two-dimensional surface to obtain a one-dimensional roughness sequence. We repeat

this process over 80 segments to obtain an average value of the rms roughness for the pro-

jected sequence. This enables us to obtain the correction factor, ηm/η. Figure 3b plots the

correction factor over the range of correlation lengths measured in our membrane samples.

The reduction in rms roughness is severe at short correlation lengths, and the measured rms

roughness approaches the actual value only at correlation lengths & 90 nm. Table I contains

the corrected rms roughness for our membranes samples. The corrected values are in the

range 0.6-1.6 nm.

III. RESULTS AND DISCUSSION

We now discuss the data from the pump-probe measurements. Figure 4 plots the life-

times for longitudinal acoustic phonon modes excited at different frequencies by varying the

thickness of the membrane (ν = VL/2d0). The measured phonon lifetimes decrease rapidly

from τ = 5.4 ns at ν = 20.3 GHz to 99 ps at 118 GHz, a nearly two orders of magnitude

reduction. We further observe that τ obeys a ν−2 dependence in the frequency range ν ≤ 40

GHz, but this dependence grows stronger, τ ∼ ν−3, at higher frequencies (ν ≥ 60 GHz).

8



TABLE I. Surface roughness parameters for top and bottom surfaces of membranes.

Thickness RMS Roughness Correlation Length ηm/η Corrected RMS Roughness

(nm) (nm) (nm) (nm)

36
1.2

0.7

55

6

0.85 ± 0.04

0.57 ± 0.01

1.4

1.2

49
1.3

0.4

39

8

0.81 ± 0.04

0.60 ± 0.01

1.6

0.7

132
0.8

0.4

13

9

0.66 ± 0.02

0.62 ± 0.01

1.2

0.6

175
0.6

0.5

29

14

0.77 ± 0.03

0.67 ± 0.02

0.8

0.7

187
0.6

0.8

77

24

0.87 ± 0.06

0.75 ± 0.03

0.7

1.0

To understand the frequency dependence of phonon lifetimes, we first consider the in-

trinsic attenuation of the excited acoustic mode due to interaction with thermal phonons.

Depending on the frequency of the acoustic phonon mode and temperature, this interaction

can be modeled using the Landau-Rumer38 or the Akhiezer approach39. In the Landau-

Rumer model, the interaction of thermal and acoustic phonons occurs via anharmonic three

phonon scattering. The theory is valid when ωτth >> 1, where ω is the angular frequency of

the acoustic phonon, and τth is the thermal phonon relaxation time. In the alternate Akhiezer

approach, acoustic phonons act as a driving force to perturb the equilibrium population of

thermal phonons. Non-equilibrium phonons collide with each other and remove ordered

energy from the acoustic phonon mode as heat. This approach is valid when ω << kBT/~,

where kB is Boltzmann’s constant, T is the temperature, and kBT/~ is the average ther-

mal phonon frequency. A fundamental difference between the two approaches is that the

Landau-Rumer method evaluates phonon-phonon scattering rates under the single mode

relaxation approximation and hence, ignores interactions amongst thermal phonons. The

latter significantly affects the attenuation of of an acoustic phonon when ωτth 6� 1. For

silicon at room temperature, τth is estimated to be of the order of tens of picoseconds19.

The frequency of interest here, ∼ 20-118 GHz, corresponds to the condition ωτth ∼ 1 and
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FIG. 4. Lifetimes of longitudinal acoustic phonon modes (�) excited in thin silicon membranes as

a function of frequency. The line labeled Akhiezer is evaluated using Eq. 1 with τth = 17 ps.

therefore, Akhiezer’s model is valid. We use a simplified expression provided by Daly et

al.19,40 to evaluate the attenuation of the excited acoustic mode due to Akhiezer.

τ−1ph−ph =
CT

ρVL
2

ω2τth
1 + ω2τ 2th

(< γ2 > − < γ >2), (1)

where C is the volumetric heat capacity, ρ is the density, γ is the grüneisen parameter,

and <> denotes an average over all modes. At low frequencies (ν ≤ 24 GHz), the phonon

lifetimes predicted by Akhiezer mechanism (Fig. 4, solid green line) are in close agreement

with the measured values. At higher frequencies (ν ≥ 60 GHz), the Akhiezer model overes-
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timates the data by at least an order of magnitude. The Akhiezer mechanism also predicts

nearly a constant value of lifetime over the entire frequency range (20 - 118 GHz), different

from the observed frequency dependence of τ .

Recent work14 on silicon nanomembranes (< 200 nm) suggested that intrinsic scattering

based on three phonon interactions instead of Akhiezer damping, are responsible for atten-

uating frequencies in the range ∼ 20 − 100 GHz. This is in contradiction of past work on

bulk silicon19 where the Akhiezer model satisfactorily explains lifetimes even at 100 GHz.

Since the dispersion relations for thermal phonons in the membranes are identical to those

in the bulk, we expect three phonon interactions to be the same as those in the bulk. Indeed,

recent atomistic simulations16 show that modifications to Akhiezer damping occur only in

much smaller structures (.10 nm). Finally, with the exception of lowest frequency excited

modes (ν < 21 GHz), we measure phonon lifetimes that are nearly an order of magnitude

higher than those reported in that work14, suggesting that the attenuation is not determined

by any intrinsic process. We next consider the dominant extrinsic mechanism — boundary

scattering.

The excited longitudinal acoustic mode scatters at the surfaces of the film due to surface

roughness. Over several reflections, the energy of the coherent excitation diminishes due to

out-scattering from the mode. Since we are mainly interested in the coherent part of the

excitation that the probe beam senses, we can apply results from wave scattering theory to

calculate the damping. In the small perturbation approach10, the roughness is assumed to

introduce a small perturbation to the flat surface profile. In our measurements, this nearly

smooth assumption is valid since η/λ . 0.01. The height of the membrane surface above

a reference plane can be described by ζ(x, y) = ζ(r), where < ζ(r) >= 0 and < ζ2(r) >=

η2, the rms surface roughness. The perturbation approximation requires that klζ << 1

and ∇ζ << 1, where kl = 2πν/VL is the wave vector. From the previous discussion, we

assume the autocorrelation function between two points on the surface follows an exponential

distribution,

C(r) =
1

η2
< ζ(R)ζ(R + r) >= e−|r|/L. (2)

The two-dimensional Fourier transform of C(r) is given by
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C̃(k) =
2πL2

(L2k2 + 1)3/2
. (3)

The surface roughness causes a fraction f of the incident longitudinal acoustic phonons

to be scattered diffusely into bulk and Rayleigh modes. Following recent work9 on scattering

of elastic waves from boundaries, we consider the spectral surface Green’s function G̃ij(k, ω)

for an elastically isotropic half-space41,42. We refer the reader to Maznev’s work9 for a lucid

outline and development of the basic wave scattering problem. The scattered fraction, f is

given by

f =
η2k3l ρV

2
L

π2

∫
C̃(k) Im G̃33(k, ω)dk, (4)

where the subscript 3 denotes the direction perpendicular to the surface. It is clear from

the above expression that diffuse scattering follows a ∼ η2 trend but the dependence of f

on the correlation length L is not obvious.

For the case of a small correlation length compared to the wavelength of the acoustic

mode, klL << 1, Eq. 4 reduces to

f0 ≈
2.84

πs3
η2k4l C̃(k = 0) =

5.68

s3
η2k4l L

2, (5)

where s = VT/VL is the ratio of transverse and longitudinal acoustic velocity and the sub-

script ‘0’ denotes small correlation length. In the opposite limiting case of a large correlation

length, klL >> 1, we obtain

f∞ ≈
1

π2
η2k2l

∫
C̃(k) dk = 4η2k2l . (6)

The diffuse scattering fraction shows ∼ L2 dependence for klL << 1 but the dependence

levels off for klL >> 1. In order to understand the transition between the two limiting

cases, we evaluate the integral in Eq. 4 numerically and plot the results in Fig. 5(a). The

y-axis is normalized by the limiting case of an infinitely long correlation length. Figure 5(a)

shows that for klL & 5, the scattering fraction is not sensitive to the actual value of L. At

klL ∼ 1, f ∼ 80% of f∞ and, for klL ≥ 2, f is ≥ 90% of f∞. In our data, the deviation from

Akhiezer damping is significant beyond ∼60 GHz, where the range of kl is 0.044-0.088 nm−1.

The corresponding range of the product klL is ∼ 0.27 - 6.8 considering that the measured

values of correlation length ranges from ∼ 6 - 77 nm. Fig. 5(b) further plots the specularity
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parameter, p = 1 − f , as a function of frequency. We show two shaded graphs for η = 0.6

nm and η = 1.6 nm respectively, corresponding to the smallest and largest rms roughnesses

from the measurements. For each rms roughness height, the corresponding shaded regions

show the effect of varying the correlation length from 6 to 77 nm. It is evident that we

should expect the measured membranes to be closely specular.
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FIG. 5. (a) The diffuse scattering fraction normalized by its value at infinite correlation length, as

a function of the product of wave vector and correlation length. The total scattering can be de-

composed into individual contributions from bulk and Rayleigh modes. (b) Specularity parameter

versus frequency for η = 0.6 and 1.6 nm and a range of correlation lengths. The upper and lower

limit in each shaded region correspond to L = 6 and 77 nm respectively.

We obtain a boundary scattering lifetime τbd from the specularity parameter as follows.

Even though the roughness of the top and bottom sides of the membranes are different,

their theoretical specularities are similar (close to 1). Assuming the same value of p for

both surfaces, the reduction in energy of the acoustic mode after one round trip over a time,

∆t = 2d0/VL is given by p2. We therefore obtain

τbd =
−2d0

VL ln(p2)
≈ d0
VL(1− p)

, (7)

where we approximate ln(p2) ≈ −2(1 − p) since p is close to 1, in our structures. We

note that the lifetime in Eq. 5 corresponds to the decay of the coherent wave, which is
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the signal measured by the probe in our experiments. We do not use the expression τbd =

(1 + p)/(1 − p) × d0/VL used in previous work14 that is derived for incoherent transport43.

The two expressions yield the same value for the range of frequencies reported here but will

diverge at higher frequencies when p does not approach 1.

We infer from Eq. 5 that for small correlation lengths (klL << 1), 1 − p ∝ ν4. In this

limit, the boundary scattering lifetime τbd ≈ d0/VL(1− p) scales with frequency as ν−5 due

to the inherent frequency-thickness relationship of the membranes, ν = VL/2d0. Similarly,

for large correlation lengths (klL >> 1), the boundary scattering lifetime scales as ν−3.

For intermediate klL, the boundary scattering lifetime obeys τbd ∼ νa dependence, where

−5 <a< −3.

Figure 6 replots the phonon lifetime data. The estimated Akhiezer damping time, τph−ph

is also shown for reference. We use the above theory to plot the boundary scattering lifetime

τbd (dashed blue line) for the range of (L, η) obtained from the HRTEM measurements as

η ∼ 0.6 − 1.6 nm and L ∼ 6 − 77 nm. The phonon lifetime τ (shaded pink area) can

be estimated using Matthiessen’s rule as τ−1 = τ−1ph−ph + τ−1bd . We find that the data lie

within the shaded region across all frequencies. We note that the spread of the shaded

area reflects the spread in the statistical parameters of surface roughness. The data agree

in magnitude as well as frequency dependence suggesting that phonon boundary scattering

is indeed the dominant limiter of lifetimes in our measurements. The data appear more

clustered toward the left edge of the shaded region. This may imply that the correlation

lengths are longer than what we could measure using the finite window of a TEM. In

the limit of infinite correlation length, the specularity given by Ziman’s formulation13 is

p = e−16π
2η2/λ2 , independent of the correlation length. Using this expression, we obtain

the shaded orange region where the spread is over the range of measured η. We note that

the specularity estimated using Ziman’s approach and Eq. 6 are essentially identical under

the small perturbation approximation (η/λ� 1). Further, for the measured range of wave

numbers, any correlation length &130 nm can essentially be considered infinite and would

yield a lifetime in the shaded orange region.

As mentioned before, prior measurements on membranes using pump-probe techniques14

attributed the deviation from Akhiezer damping to three phonon interactions. However,

our measurements suggest that the deviation is due to boundary scattering. Further, in

measurements using superconducting tunneling junctions (STJs)11, data could only be ex-
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FIG. 6. Boundary scattering and total phonon lifetime calculated using perturbation approach.

The lines labeled τbd are evaluated using Eq. 7 with η = 0.6 nm, L = 6 nm and η = 1.6 nm, L = 77

nm respectively. The shaded pink region shows the total phonon lifetime calculated by adding the

contribution from Akhiezer and boundary scattering. The shaded orange region shows the phonon

lifetime obtained by evaluating the boundary scattering contribution using Ziman’s formulation

for η ∼ 0.6 - 1.6 nm.

plained at zero specularity that was inconsistent with Ziman’s expression corresponding to

the measured roughness height. In contrast, the data from our work is in excellent agree-

ment with Ziman’s expression. As the authors have themselves suggested, the possibility

of scattering due to surface contamination or excessive oxidation in the STJ experiments

15



may be responsible for the zero specularity. In either case, our measurements highlight the

importance of obtaining detailed surface roughness statistics in order to interpret surface

scattering data.
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FIG. 7. Specularity parameter versus frequency for η = 0.6, 1.0 and 1.6 nm. For each shaded

region, the upper limit corresponds to L = 5 nm whereas the lower limit corresponds to infinite L.

In conclusion, our measurements clearly show that for ∼60-118 GHz, wave scattering

theory agrees well with the data provided detailed roughness statistics are obtained from

the measured samples. Consistent with theory, ∼0.1 THz phonons reflect nearly specularly

at room temperature from surfaces with ∼1 nm scale roughness. The agreement between

theory and data represents an important validation for these theoretical results for phonons.

Obtaining detailed surface roughness statistics is key to testing surface scattering theories.

In particular, subtle errors in estimating roughness parameters such as the one arising from

projecting two dimensional roughness to one in an HRTEM image can introduce significant

errors in theoretical predictions. The frequency range considered here is relevant to damping
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in nanomechanical resonators and low to intermediate temperature thermal transport. Room

temperature thermal transport is dominated by phonons at & 1 THz frequencies which is a

more challenging target for future experiments. Figure 7 uses the theory discussed above to

calculate the specularity of longitudinal phonons at frequencies higher than those measured

here. We note that the assumption of small perturbation is suspect when η
λ

exceeds ∼0.05,

which is the case when p → 0 in these calculations. However, the calculations can be

considered as an upper bound on specularity. The prediction of a non-zero specularity for a

∼1 THz phonon incident on low-roughness surface presents an interesting target for future

investigations. If confirmed experimentally, this might imply that treating surfaces as diffuse

scatterers of thermal phonons at room temperature is an overly simplistic assumption.

IV. ACKNOWLEDGMENTS

The authors acknowledge support from the National Science Foundation through Grant

No. NSF-CBET-12-50192 and Grant No. NSF-CBET-17-06854.

1 Y. Ju and K. Goodson, Applied Physics Letters 74, 3005 (1999).

2 A. M. Marconnet, M. Asheghi, and K. E. Goodson, Journal of heat transfer 135, 061601 (2013).

3 R. Chen, A. I. Hochbaum, P. Murphy, J. Moore, P. Yang, and A. Majumdar, Physical review

letters 101, 105501 (2008).

4 M. Ghossoub, K. Valavala, M. Seong, B. Azeredo, K. Hsu, J. Sadhu, P. Singh, and S. Sinha,

Nano letters 13, 1564 (2013).

5 J. Lim, K. Hippalgaonkar, S. C. Andrews, A. Majumdar, and P. Yang, Nano letters 12, 2475

(2012).

6 J. Ma, B. R. Parajuli, M. G. Ghossoub, A. Mihi, J. Sadhu, P. V. Braun, and S. Sinha, Nano

letters 13, 618 (2013).

7 J. Sadhu and S. Sinha, Physical Review B 84, 115450 (2011).

8 J. Carrete, L. J. Gallego, L. M. Varela, and N. Mingo, Physical Review B 84, 075403 (2011).

9 A. A. Maznev, Phys. Rev. B 91, 134306 (2015).

10 J. Ogilvy, Reports on Progress in Physics 50, 1553 (1987).

17



11 J. B. Hertzberg, M. Aksit, O. O. Otelaja, D. A. Stewart, and R. D. Robinson, Nano letters 14,

403 (2014).

12 S. O. Rice, Communications on pure and applied mathematics 4, 351 (1951).

13 J. M. Ziman, Electrons and phonons: the theory of transport phenomena in solids (Oxford

university press, 1960).
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