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Orbital modeling of two electron spins confined in a double quantum dot is revisited. We develop an extended
Hund Mulliken approach that includes excited orbitals, allowing for a triplet configuration with both electrons
residing in a single dot. This model improves the reliability and applicability of the standard Hund Mulliken
approximation, while remaining largely analytical, thus it enables us to identify the mechanisms behind the
exchange coupling dynamics that we find. In particular, our calculations are in close agreement with exchange
values that were recently measured at a high interdot bias regime, where the double occupancy triplet configu-
ration is energetically accessible, demonstrating reduced sensitivity to bias fluctuations, while maintaining the

large exchange needed for fast gating.

I. INTRODUCTION

Spins of electrons confined in gate-defined lateral quantum
dots (QDs) are a promising realization of a qubit, due to their
scalability and relative isolation from their host material, as
compared with the charge degree of freedom. In recent years,
a remarkable progress has been made in the coherent manipu-
lation of single-spin,"? two-spin,>* and three-spin>® qubits.

The exchange interaction (.JJ) between electron spins is a
central component in all spin-based qubits. In their original
proposal, Loss and DiVincenzo envisioned using gate voltage
to control the exchange interaction between two electrons lo-
calized in neighboring QDs.” The high tunability of .J that is
traditionally obtained by changing the bias (¢) between the
two dots, provides a subnanosecond control handle. In the
context of single-spin qubits, .J provides a fast and accessible
two-qubit coupling gate. In contrast, single-spin rotations re-
quire coupling to the small magnetic moment of the electron,
which is much more challenging. Combining on-chip micro-
magnets that create field gradients across each QD,? with elec-
trical control over the exchange interaction,® Tarucha’s group
demonstrated a universal set of gates on solid state single-spin
qubits, albeit with single-spin rotation times are still 2-3 or-
ders of magnitude longer than exchange gates.’

The challenging manipulation of single spin qubits has
prompted a number of proposals to encode the logical qubit
states into two-spin singlet (S) and unpolarized triplet (7p)
states.!®"1? In these devices, Pauli spin blockade is used to ini-
tialize the qubit in a doubly occupied singlet state, J provides
single-qubit rotations about the z axis, and inhomogeneous
nuclear spin polarization generates magnetic field gradient
that provides z-axis rotations.'> Two-qubit gates between
S — Ty qubits in neighboring two double QDs were proven
to be more challenging but have also been demonstrated.'*!

While encoding the qubit states in exchange-coupled elec-
tron spins alleviates the challenging tasks of single-spin ad-
dressability and control, it renders the S — T qubit vulnerable
to decoherence from charge noise, since J is electrostatic in
nature and its coupling to the fluctuating charge environment
(e.g., through its interdot bias dependence) is much stronger
than the spin-orbit-mediated charge coupling of single-spin
qubits.'®!® The sensitivity of .J to bias fluctuations is height-
ened with increased bias, due to the very different charge dis-
tributions of the triplet and hybridized singlet in this regime.

This results in increased susceptibility of the qubit to charge
noise and has been a long lasting problem of these QD de-
vices, as the desired fast gating achieved in the positive bias
regime comes at the price of increased decoherence rates. In-
deed, the realization of a controlled-PHASE gate between two
S — T} qubits was made possible by identifying charge noise
as the main obstacle and mitigating it using spin echo pulse
along the z axis."

In a set of experiments targeted at characterizing both low-
and high-frequency components of charge noise, Dial et al.
first operated an S — T qubit at a high bias regime, where
excited orbitals and thus a doubly occupied triplet configu-
ration become energetically accessible.'® In this regime, both
singlet and triplet states are hybridized, and their charge distri-
butions are much more similar, giving rise to reduced d.J/de
while maintaining large J. As expected, reduced sensitivity to
charge noise was manifested at this new regime by enhanced
quality of coherent exchange oscillations.

The main goal of the current work is to develop an or-
bital model that captures the electronic states at this high-
bias operating regime. Rather than employing all-numerical
approaches like Configuration-Interaction (CI)?° or exact
diagonalization,>! we develop an extended Hund-Mulliken
(HM) approach that allows us to derive analytical results,
while rendering the important orbital features of the system
correct within a useful range of parameters, as specified bel-
low. In addition to using our model to study the high-bias
regime, we explore the dependence of J on magnetic field
and double dot geometry. Our analytical treatment points at
the main mechanisms behind the exchange behavior and al-
lows us to identify useful working positions that may improve
electrical control of QD spin qubits.

II. EXTENDED ORBITAL MODEL FOR
SINGLET-TRIPLET QUBITS IN A DOUBLE QD

The physical system we consider consists of two electrons
localized in a pair of laterally-coupled QDs, whose singlet and
triplet spin configurations serve as the qubit computational ba-
sis states. For concreteness we employ parameters relevant for
GaAs quantum dots, but our approach can be applied directly
to other semiconductor QD materials, and in particular to Si*?
or Si/SiGe,?*?* as long as a single-valley calculation is justi-



fied, i.e., when the considered device has a sufficiently large
valley splitting and a uniform ground valley state composition,
where intervalley matrix elements vanish.!”? In such a case,
the Hamiltonian we consider below effectively does not cou-
ple the ground valley state to higher energy valley states and
our model is directly applicable for Si-based QDs. We note,
however, that the larger effective mass and dielectric constant
in Si, generate larger Coulomb couplings and smaller kinetic
energy, as compared with GaAs, resulting in more stringent
conditions for the validity of the HM model.

A. System Hamiltonian

Taking the magnetic (B) and electric (£) fields along the
z- and z-axis, respectively, the Hamiltonian describing the
coupled QDs includes single-particle, two-particle (Coulomb)
and Zeeman terms and is given by
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The single-particle Hamiltonian, HF, describes the dynam-
ics of a single electron confined in the x — y plane, under ap-
plied fields, where B is coupled to the electron charge through
a vector potential A(r) = 1B(—y,,0). Taking GaAs pa-
rameters, the electron’s effective mass as m=0.067m., and
the dielectric constant and effective g-factor are x = 13.1 and
g = —0.44, respectively.

We consider a two-dimensional quartic confinement

potential®® to model the two nominally identical QDs:
hwo | 1
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where d is the dimensionless half interdot distance, measured
in effective Bohr radius of a harmonic dot, ag = +/h/mwy,
and the coordinates henceforth are measured in a g units. The
gate-voltage-induced electric field, F, in Eq. (2) is directed
along the line connecting the centers of the two dots and splits
the single particle energies through tilting of the confinement
potential, as well as shifting the orbitals. Figure 1 qualita-
tively depicts the effects of interdot bias on the confinement
potential. For all experimentally relevant parameters, we can
assume Az = eFap/hwy < d, corresponding to electric
fields F < 0.8 MV/m for hwyg = 5 meV and d = 2.5. In
this limit, the position shift and energy difference of the well
minima are approximately given by the quantities Az, and
e = 2hwodAx, respectively (see Fig. 1).

H¢ represents the bare Coulomb interaction between the
two electrons, and we neglect screening effects that are ex-
pected to be minimal in these few-electron QD devices. We
note that the Zeeman splitting is much smaller than the or-
bital energies we consider. For iwy = 5 meV — the nom-
inal confinement we choose unless otherwise specified —
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FIG. 1. (Color online) A cut along the y = 0 plane of the quartic con-
finement potential for d = 2.5, with (dashed-red line) and without
(solid-blue line) interdot bias. In the limit where Az < d, the bias
term approximately shifts the two potential minima by — Az, and in-
duces an approximate energy difference e, both defined in the main
text. The exact bias-shifted single-particle energies that are used in
our calculations are given in appendix B.

gupB/hwy < 0.03 (up is the Bohr magneton), for magnetic
fields up to 6T, well beyond typical applied fields. This allows
us to ignore the Zeeman term in the orbital energy calcula-
tions, adding it only in the effective spin Hamiltonian. Finally,
spin-orbit coupling for confined electrons is several orders of
magnitude smaller than the orbital energy scale, and can be
safely ignored in this context.

The 2D quartic potential in Eq. (4) assumes infinite con-
finement in the growth (z) direction, appropriate for typical
gate-defined QD structures, and enables us to approximate the
Coulomb interactions using 2-D integrals. It has been demon-
strated experimentally that single-dot spectra in GaAs are ad-
equately described by a parabolic potential with Awy on the
order of a few meV.?” Our main focus here is on weakly-
coupled QDs with relatively large separation. At the limit
of d > 1 the quartic potential separates into two harmonic
wells centered around +d, which provides a convenient start-
ing point for orbital matrix elements calculations. We stress
that confinement in real QD devices may be substantially dif-
ferent from our simple model. A detailed knowledge of the
device electrostatic structure can enable accurate orbital mod-
eling, using e.g., numerical Schrodinger-Poisson CI methods
(see for example Ref. 28, where the CI basis was derived
from device-specific density functional theory calculations).
Instead, our approach here is to use a simple confinement po-
tential that allows us to obtain analytical results, elucidating
the important physical mechanisms behind orbital dynamics
in these devices.

Other confinement potentials have been used to model dou-
ble QDs, including linear combination of three Gaussians (ac-
counting for the two wells and central barrier),?’ biquadratic
potential,?>?>30:31 and a more realistic finite quadratic poten-
tial, used in conjunction with matched variational orbitals in
a Heitler-London calculation.?>3? The simpler quartic and bi-
quadratic potentials both feature unrealistic infinite confine-
ment as r — oo. In addition, the biquadratic potential un-
derestimates the interdot overlap due to its unphysical kink in



the central barrier, whereas the quartic potential has different
confinement energies in the two dots under biased configura-
tion. At sufficiently strong bias, the quartic potential results
in a single well, thus it was argued that the biquadratic poten-
tial is better suited to model biased double dots.>> Motivated
to obtain analytical results, we nevertheless adopt the quartic
potential, contending that even in the large-bias regime con-
sidered below, we are close, but still below the single-well
threshold.

Another caveat shared by the quartic and biquadratic poten-
tials is that the barrier hight governing the tunnel coupling be-
tween the dots is determined by the interdot distance, whereas
in experiments the tunnel barrier is controlled by a gate volt-
age separately from the interdot distance.’> Whereas most ex-
periments implement exchange control using bias detuning,
and are thus reasonably modeled by our biased quartic po-
tential, recent experiments in GaAs** and Si*> QDs have suc-
cessfully implemented symmetric exchange control by inde-
pendently tuning the central barrier height, resulting in im-
proved immunity to charge noise. This additional control can
be modeled by refining our confinement potential to include
a Gaussian term that provides a separate handle for the inter-
dot potential barrier, in the spirit of Ref. 29, but is outside the
scope of the current work.

B. Extended Hund Mulliken approach

Casting the orbital Hamiltonian as an effective spin Hamil-
tonian, JS; - Sa, the exchange energy, J, is found by diag-
onalizing the singlet and triplet subspaces of the Hamiltonian
and taking the difference between the lowest-lying singlet and
triplet states, J = E; — E,. There is an infinite number
of single-dot orbitals, from which the two-electron states are
built, thus all calculational approaches, including full CI, in-
evitably use a truncated basis.

The Heitler-London approximation is the simplest ap-
proach, in which only the ground-state orbitals are used to
build the two separated symmetric and antisymmetric two-
electron states.*® Singlet-triplet qubits operate at biased con-
figuration and even at moderate bias, the Heitler-London ap-
proximation breaks down, as double occupancy states become
energetically favorable. The similarity of electronic states
in a gate-defined double dot to molecular orbitals suggests
the Hund-Mulliken (HM) approximation as an appropriate
approach.?®3 In this approximation the single-particle basis
states still comprise of only the s orbital in each dot, but
doubly-occupied two-electron states are allowed, resulting in
a four dimensional orbital Hilbert space with three singlets:
S5(2,0),5(0,2), S(1,1), and one triplet: T'(1,1) (due to Pauli
exclusion). Here the two numbers denote the number of elec-
trons occupying the left and right dot. Considering positive
interdot bias, electron tunneling is induced from the right to
left dot. The hybridization of the S(1,1) and S(2,0) singlets
dramatically lowers the ground singlet state and in the absence
of such triplet hybridization, the resulting exchange increases
by several orders of magnitude (negative bias will similarly
induce S(1,1) - S(0, 2) hybridization with the same resulting

exchange).

As discussed in the introduction, we are interested in ex-
tending the standard HM model to capture the orbital dy-
namics in the high-bias regime, where p orbitals and thus
doubly occupied triplet states become energetically accessi-
ble. Rather than employing an sp-hybridized Heitler-London
basis?® (that still excludes double occupancy states and is
thus unsuitable for this biased regime), or performing an all-
numerical CI calculation with extended state basis, we opt to
keep the Hilbert space minimal by including only the low-
est excited orbital in each dot, while still keeping double
occupancy states. This choice limits the validity regime of
our model, but as shown below, we are still able to qualita-
tively capture the exchange dynamics at biases well beyond
the triplet anticrossing,'® covering a wide range of working
positions employed in current experiments with QD devices.
The validity and reliability of our exchange calculations are
discussed in appendix A. We note that strictly speaking an
HM calculation includes only s orbitals, but to avoid con-
fusion with the more commonly used sp-hybridized Heitler-
London approximation, we refer to our approach as extended
Hund-Mulliken.

A standard single-particle state basis, from which the ap-
proximate two-particle state solutions for the orbital Hamilto-
nian in Eq. (1) can be constructed are the Fock-Darwin solu-
tions to the two-dimensional parabolic potential (for a deriva-
tion see, e.g., Ref. 31). The ground and first excited (so called
p_) orbitals under magnetic field, centered at the minima of
each (unbiased) well, +d, are given (in agl units) by:
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and their energies are fiw and 2w — hwr, respectively. Here,
w = bwy, where b = /1 + w? /w3 is the magnetic compres-
sion factor, and w;, = eB/(2mc) is the Larmor frequency.
Henceforth, we state energies in fwg units, so that the ground
and first excited energies read b, and 2b — v/b% — 1, respec-
tively. In the presence of electric field, the above orbitals are
both shifted by Az.

While the Fock-Darwin solutions are orthogonal within
each dot, interdot wavefunctions have the following overlaps:
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To facilitate the construction of the two-electron Hamiltonian
matrix elements, we first orthonormalize the four basis states
in Egs. (5). The orthonormalized states are given by
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FIG. 2. (Color online) Orbital hybridization coefficients vs. half in-
terdot separation d. Solid lines depict the exact numerical solution
to Egs. (8) and dashed lines show the approximate solution given by
Egs. 9).

Each orthonormalized state is comprised primarily of one
Fock-Darwin orbital, with additional contributions corre-
sponding to the overlap between the primary orbital and the
two orbitals in the other dot. The normalization constants are
found to be N, = (1 + g% + g3 — 2945+ — 29S)~/? and
Ne = (14 g2 + g% + 2955+ — 2geeSee) /2. The hy-
bridization coefficients are calculated from the orthogonaliza-
tion conditions of the wavefunctions, Egs. (7):
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Symmetry considerations determine that g = —g4 and
g = —g%. These coupled nonlinear equations cannot be

solved analytically, but for sufficiently large interdot distance,
when overlaps are small, the g coefficients are well approxi-
mated by their first order solution:
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A comparison between these approximate solutions and the
numerically obtained exact values is shown in Fig. 2 as a func-
tion of half interdot separation d. We observe that the approx-
imate solutions are accurate down to d 2 2, covering device
geometries employed in experiments with GaAs gate-defined
QDs. For d < 2 and typical confinement energies, the HM
model breaks down anyways (see appendix A), thus Equations
(9) can be safely used within our model’s validity regime.
There are ten singlets and six triplets that can be constructed
from the four orthogonalized states in Eqgs. (7). We reduce

the Hilbert space by eliminating two-particle states compris-
ing two excited orbitals, which are energetically inaccessible
to the same extent as states comprising a ground orbital and
the second excited (p4) orbital, originally excluded from our
model. The resulting Hilbert space has a total of 12 states
with seven singlets and five triplets, listed in Table I. When
considering a limited bias regime (e.g., around the singlet or
triplet avoided crossings), one can further reduce the Hilbert
space and obtain closed-form analytical results, as we show
in appendix C. The matrix elements of the orbital Hamil-
tonian in Eq. (1), in the basis of the 12 states given in Ta-
ble I, include single-particle energy and tunneling terms and
two-particle Coulomb coupling terms. They are constructed
from bare (non-orthogonalized) matrix elements whose ex-
plicit closed-form expressions are given in appendices B1, and
B2, respectively. Appendix B3 details the process of obtain-
ing the final matrix elements from these building blocks. The
Hamiltonian matrix is then diagonalized numerically and the
orbital eigenenergies are determined.

TABLE I. The 12 two-particle states comprising the system’s trun-
cated Hilbert space. The three singlets and one triplet listed in the top
portion of the table are the ground orbitals included in the standard
HM model.*

Singlets Triplets

S(0,2)=® ® —

S(2,0)=®_d_ _

S5(1,1) = (P-4 +P4P-) |T(1,1)=— (P-4 — P4 D)

5c(0,2)= 5 (24 @7 + 07 21) |Te(0,2)= 5 (24 0] — 2T )
Sc(z,o):%(@@iﬁbi@,) Te(2,0)= 05 (P22 — D2 @)
Sge(1,1) =L (P_ G+ P_)|Tye(1,1) =L (P_ 0T - D_)

V2 V2
Seg(1,1) = (8 Dy 49, 8% ) | Tey(1,1) = 1 (8 &4 3, 0°)

III. EXCHANGE SPLITTING RESULTS

We now present results of our exchange calculations and
its dependence on various parameters. We note that across
the range of approximation approaches and model confine-
ment potentials, exchange values can differ by an order of
magnitude,? thus our results should be considered as qual-
itative or semi-quantitative, at best. Nevertheless, since the
bias dependence of J spans several orders of magnitude, we
believe that the main features are correctly captured.

A. High-bias regime

An example of the energy diagram as a function of inter-
dot bias, ¢, is shown in figure 3a, where solid (dashed) lines
depict singlet (triplet) energies. Here and throughout the pa-
per ¢ corresponds to the energy difference between the two
wells, as depicted in figure 1, rather than the detuning from the
S(2,0) — S(1, 1) degeneracy point, commonly used in many
experimental works. Focusing on the lowest lying singlets
(primarily comprising of S(1,1) and S(2,0)), and triplets



(primarily comprising of 7'(1,1) and T¢(2,0)), figure 3b de-
picts the expected singlet anticrossing, followed by a triplet
anticrossing at a higher interdot bias. At this large positive
bias, the resulting exchange energy (blue solid line in figure
3c) presents marked flattening as compared with the standard
HM (green dashed line), where no triplet hybridization is al-
lowed. The high-bias J flattening observed in our extended
HM calculation is a direct result of the double-occupancy
states included in our model for both singlet and triplet con-
figurations, as their charge distributions and thus their bias
dependence is much more similar.

In this positive bias regime, the qubit dephasing time, 7%,
has been experimentally found to be inversely proportional
to 0.J/0e, suggesting that nuclear noise is negligible and the
main noise source is low-frequency voltage fluctuations.'”
The observed number of exchange oscillations, used as a
figure of merit for their quality, is therefore proportional
to J(0.J/0)~! and is experimentally found to be approxi-
mately constant at the positive bias regime (consistent with
the observed exponential dependence of J on ¢). The plot of
(0.J/0¢)/J in figure 3d shows a pronounced maximum at the
singlet anticrossing and an abrupt drop at the triplet anticross-
ing to a value of 0.07 — five-fold smaller than it’s calculated
value without a doubly-occupant triplet (dashed-green line).
The experimental value extracted at this high-bias regime is
0.06 — remarkably close to our calculated value, demonstrat-
ing the simultaneous existence of large J and reduced sensi-
tivity to bias fluctuations.'” Overall, we find a reduction of two
orders of magnitude in (0.J/0¢)/J from its maximal value.
As was noted in Ref. 19, close to the singlet anticrossing,
where 0.J/0¢ is very large, T5 is too short to be correctly
captured, and the extracted values of J and plot 9J9/eJ are
unreliable, precluding a direct comparison of our calculations
with measured values.

B. Exchange dependence on magnetic field and interdot bias

The orbital energy structure shown in figure 3 can change
significantly with different system parameters. We first study
the relative bias locations of the lowest lying singlet and triplet
anticrossings, as they are directly responsible for the J tun-
ability and its sensitivity to bias fluctuations. Figure 4 shows
anticrossing bias locations vs. B for several confinement ener-
gies and two interdot distances. Generally, these anticrossings
occur when electron tunneling from the right to left dot be-
comes energetically favorable. In a triplet configuration, the
electron needs to tunnel to the excited orbital in the left dot,
whereas in a singlet configuration it can tunnel to the ground
orbital. One would then naively estimate the bias difference
between singlet and triplet anticrossings to amount to the en-
ergy gap between the s and p_ orbitals, which at zero mag-
netic field is simply /wg. This gap is partially offset, mostly
due to the reduced on-site Coulomb repulsion in the doubly-
occupied triplet state (U terms in table IV), resulting in a
~ 1.25 meV energy difference for hwy = 4 meV, as seen
in Fig. 4a.

With increased magnetic field, the ground orbital energy is
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FIG. 3. (Color online) (a) Orbital energies of the 12 two-electron
states included in our extended HM model vs. interdot bias. Solid
(dashed) lines depict singlet (triplet) energies. (b) Zoom on the
lowest-lying singlet and triplet energies, exhibiting avoided cross-
ings. The labels state the predominant content of each eigenfunc-
tion. (c) Exchange energy calculated with the current extended HM
approach (solid blue line) and the original HM model of Ref. 26
(dashed green line). Vertical dotted lines mark the locations of the
two anticrossings, determined by equal S(1, 1) and S(2,0) (T'(1,1)
and T¢(2,0)) content in the lowest lying singlet (triplet) eigenvec-
tors. (d) (0J/90e)/J calculated with the extended (solid blue line)
and original (dashed green line) HM models. For all plots, B = 0.1
T and the quartic confinement potential parameters are wg = 5 meV
and d = 2.5.

raised, while the excited orbital energy is reduced. The singlet
anticrossing is then mostly impacted by the increased on-site
Coulomb repulsion (due to the magnetic orbital compression),
resulting in a mild increase in its anticrossing bias, whereas
the triplet anticrossing bias is more drastically reduced due to
the reduced Fock-Darwin excited orbital energy. The order
at which the singlets and triplets anticross is thus reversed at
B = 1.15 T for hwg = 4 meV and at larger B for stronger
confinement, due to the scaling of the energy gap between the
ground and excited orbitals. Increasing the interdot separa-
tion from d = 2.5 to d = 3 (Fig. 4b) has almost no effect
on the on-site Coulomb terms at the weak-coupling regime
we consider, but it reduces the interdot direct and exchange
Coulomb terms by ~ 0.2 meV and should have therefore in-
creased the anticrossing biases. Instead, we observe that both
anticrossings occur at lower biases, and find it to be due to the
d-dependence of the quartic-potential-related @) terms in the
single-particle energies, with larger effect on the excited or-
bital and thus on the triplet energies (see table II). As a result,
the anticrossing order reversal occurs at lower magnetic fields
(B = 0.63 T for hwy = 4 meV), as seen in Fig. 4b. Since the
d dependence of the anticrossing locations is specific to the
quartic potential details, one should not take it too seriously.

The dependence of J on the magnetic field exhibits sev-
eral interesting features. At larger magnetic fields, J demon-
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FIG. 4. (Color online) Bias locations of singlet (solid lines) and
triplet (dashed lines) anticrossings vs. magnetic field for several quar-
tic confinement energies and half interdot separation of: (a) d = 2.5,

(b) d = 3.

strates an exponential decay due to the increased magnetic
compression of the orbitals (and hence their reduced over-
lap), in qualitative agreement with the standard HM model.
We have verified that J > 0 at B = 0 throughout the pa-
rameter range considered, satisfying the Lieb-Mattis theorem
for a two-particle system under a symmetric potential®® (see
also appendix A). For a symmetric double dot (¢ = 0), fig-
ure 5a shows a transition from antiferromagnetic (J > 0) to
ferromagnetic (J < 0) spin-spin coupling at magnetic fields
that are considerably lower than those predicted by the stan-
dard HM model, in qualitative agreement with previously re-
ported sp-hybridized calculations.?%? This behavior is con-
sistent throughout the considered range of d values and ex-
tends to biased double dots, as seen in figure 5b. In contrast
with the standard HM results, J values calculated with our ex-
tended HM model show prominent ferromagnetic amplitudes,
most notably in biased configurations, since we include triplet
hybridization that lowers its energy and guarantees it remains
the ground state over a wider range of magnetic fields.

Figure 6 presents a color map of J(B, ), where the white
line marking J = 0, exhibits a non-monotonous dependence
on bias. This behavior is associated with the different mech-
anisms that govern the S — T' energy crossing in the low-
and high-bias regimes, as we now explain. In the low-bias
regime, where both singlet and triplet states are predomi-
nantly in their separated (single occupancy) configurations,
the S—T crossing is governed by the competition of Coulomb
exchange terms and direct (single-particle) tunneling.?” Elec-
trons in the triplet configuration tend to repel each other so
that their Coulomb interaction is reduced, making the triplet
the ground state when the Coulomb contribution dominates.
As B increases, orbital wavefunctions are squeezed and their
overlap is reduced, making the long-range Coulomb couplings
dominant. Within the low-bias regime, we find that the direct
tunneling contribution becomes smaller as ¢ increase (see ta-
ble II in appendix B), while Coulomb terms are independent
of . As a result, lower B is needed to establish Coulomb
dominance (and thus negative .J) as ¢ is raised.
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FIG. 5. (Color online) J vs. magnetic field calculated using our ex-
tended HM model (solid lines) and standard HM (dashed lines) at:
(a) zero bias; (b) € = 7.5 mV. Blue lines and left axes depict J for
half interdot separation of d = 2.5, while green lines and right axes
depict J for d = 3. The inset in panel (a) provides a zoom around
the S — T crossing for the d = 3 case. wg = 5 meV in all plots.

The origin of the increase in transition B with bias at the
high-bias regime is very different. Here, both singlet and
triplet anticrossings have occurred and the two electrons pre-
dominantly occupy a single dot in both configurations. The
ground orbital energy is increased with B while the excited
orbital energy is lowered. Together with a reduced triplet on-
site Coulomb interaction (half in magnitude as compared with
the singlet — see rable III in appendix B), the triplet becomes
the ground state at sufficiently high B. We find different bias
dependence of the singlet and triplet energies, arising from
their single-particle () terms, where the excited orbital con-
tribution decreases more slowly with € as compared with the
ground orbital (see table II in appendix B). As a result, when
B is fixed at a value above the S — T crossing and bias is
swept up, the singlet energy will inevitably fall below the
triplet energy. We stress again that the bias dependence at
this regime originates from the details of the quartic poten-
tial and is therefore model-specific. Finally, in the vicinity
of the two anticrossings, the lowest-lying singlet and triplet
states have sizable probabilities of both single- and double-
occupancy orbital configurations, thus both aforementioned
mechanisms impact the location of the S — T energy cross-
ing, resulting in a non-monotonous behavior in the bias range
5 5 e & 9 mV, for the example depicted in figure 6.

The fact that the S — 7" energy crossing takes place at lower
magnetic fields in asymmetric double dot devices is practi-
cally useful, as it enables to turn off the exchange interaction
by properly tuning the control fields to experimentally acces-
sible values. The locations of this idle position for several
device geometries are shown in figure 7, where B(e) at which
J = 0 is plotted. At half interdot separation of d = 2.5 (fig-
ure 7a) we obtain the idle positions with minimum fields of
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FIG. 6. (Color online) A color map of J vs. B and ¢ for d = 2.5 and
wo = 5 meV. The white line depicts singlet-triplet energy crossing
(J = 0). The J values at the lower-bias regime are very small, as
compared with the right side of the map, making it difficult to discern
color variations in this regime.
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FIG. 7. (Color online) B(e) at which J = 0 for several confinement
energies and: (a) d = 2.5, (b) d = 3.

0

B=074T,132T,and 1.96 Tate = 7mV, 6 mV, and 6.5
mV, respectively. For larger dot separation, J = 0 is obtained
at even lower magnetic fields, as depicted in figure 7b, since
the wavefunction overlap is lower to begin with, and lower
B is sufficient to compress the orbitals so that Coulomb in-
teraction becomes dominant. While this trend is consistent
for biased dots, we note that it is reversed at zero bias, where
J = 0 is reached at a higher field when d is increased (see
also figure 5a). A closer inspection of J(d) at zero bias re-
veals a non-monotonous approach to zero, a phenomenon that
was also observed in Ref. 25, where it was hypothesized to be
confinement-model-dependent. We conclude that, contrary to
the biased case, the exact location of J = 0 at zero bias is a
result of a delicate balance between several contributions, and
may well be the result of our use of quartic potential.

IV. CONCLUSION

The exchange interaction between two electrons confined
in a double QD is a key ingredient in all spin-based qubits,
and its tunability through interdot bias provides a convenient

control handle. At the same time, the exchange sensitivity to
bias fluctuations, derived from the different charge distribu-
tions the singlet and triplet configurations, plays an important
role in limiting the qubit coherence and reducing its gate fi-
delities.

In this work we developed an extended HM orbital model
that improves the reliability and applicability range of the
standard HM model. In particular, our model correctly ac-
counts for the reduced sensitivity of J to bias fluctuations in
the high-bias regime, in excellent agreement with experimen-
tal values.'” The analytical approach we have taken allowed us
to study the dynamics of the exchange interaction throughout
the validity range of our model, and identify the mechanisms
behind it.

It would be interesting to use our extended HM model
with a confinement potential that includes separate control
over barrier height. This will allow us to model symmet-
ric exchange control that was recently demonstrated®*3> and
directly compare its performance with bias control, poten-
tially unraveling useful information on the orbital landscape of
double-dot devices. In addition, we expect that our extended
HM approach can be applied to three-spin qubits in triple
QDs,>3:3% possibly revealing subtle interplays between in-
terdot tunnel couplings, intradot level splittings and spin cor-
relation energies that directly impact exchange behavior in
these devices. In this context, we mention a recent work that
explored exchange coupling of a multielectron QD to a neigh-
boring two-electron double dot.*>*" Using a Hubbard model
with an additional excited orbital, the authors were able to
explain intricate non-monotonous exchange behavior (includ-
ing negative J) for both spin-1/2 state at odd occupancies and
spin-1 state at even occupancy of the multielectron dot.
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Appendix A: Truncated Hilbert space under the Hund-Mulliken
approximation

In this appendix we briefly discuss the applicability of our
extended HM approach. A well-known validity test for ex-
change calculations is the Lieb-Mattis theorem, stating that at
zero magnetic field the ground state of a two-particle system
under a symmetric confinement potential must be in a singlet
configuration.® It was noted that the Heitler-London model
breaks down when ¢ = /7/2¢?/(kaghwy) > 2.8 (corre-
sponding to wy = 2.13 meV for GaAs), predicting J < 0 at
B = 0 for sufficiently large overlap between the two dots.?®
Similarly, the standard HM breaks down, though at much
smaller interdot distances. This problem intensifies for Si
dots, where both the larger Coulomb energy (due to reduced
screening) and the smaller kinetic energy (due to the larger
effective mass) lead to critical ¢ values reached at smaller dot
sizes.?



The p_ orbitals introduced in our extended HM model to
allow for triplet hybridization in the high-bias regime. In ad-
dition, the p_ orbitals induce anisotropy that allows for more
spread in the electronic wavefunctions and a better account
of the two-electron correlations, both contributing to lower
the orbital energy.”” The latter improvement should be par-
ticularly valuable as both Heitler-London and HM methods
are known to underestimate electron correlations. While our
extended HM approach should thus provide more reliable J
values in the smaller d regime, it has been generally observed
that the accuracy of CI calculations does not necessarily im-
prove with the size of the basis states. An indication of the
potential difficulties associated with state-basis truncation is
given by our inability to orthogonalize the wavefunctions be-
low d 3 1.7, largely independent of wy. In this regime, nei-
ther the approximate equations, (9), nor our numerical solver
provide reliable values for the hybridization coefficients — a
problem that we believe is related to the absence of the py
orbital in our model.

Steering away from this strong-coupling regime, which
have not been implemented experimentally, to the best of our
knowledge, we verify the applicability of our model in the
rest of the d and wq range, by examining the values for which
0J/dd decreases monotonically with d at B = 0 and € = 0.
We find that for wg ~ 1.6 meV (corresponding to ap ~ 270A
and ¢ ~ 3.25), 9J/0d becomes positive at d a~ 2.4, marking
a breakdown of our model. This critical d value is increased
for yet smaller wy values (or larger dots). In this regime the
standard HM model performs better then our extended HM
model, breaking down at d = 1.65 for wy = 1.6 meV. On
the other hand, for wg > 1.6 meV, the extended HM model
does not generate positive 9.J/9d for any d value. Instead, as
d is reduced, 0.J/9Od presents an abrupt increase in magnitude
at some critical value d., that is reduced with increased wy,
as depicted in figure 8. While not in violation with the Lieb-
Mattis theorem, we believe that this behavior is an artifact of
our truncated space, and conclude that .J values in this regime
are less reliable. All results presented in the main text are for
QDs with confinement energies above wy = 4 meV and half
separation above d = 2.5, well above the validity limits indi-
cated by figure 8.

Another limitation of our model emerges at very large mag-
netic fields, where J drops exponentially with B (see, e.g., fig-
ure 5). A numerical calculation that studied corrections to the
Heisenberg interaction revealed that at high magnetic fields,
the ground state alternates between singlet and triplet states,
so that additional zero crossings can occur at larger B fields
than those shown in figures 5-7 in the main text.?’

By far, our crudest approximation is to exclude the rela-
tively close p+ orbital in our calculations. The energy split-
ting between the p orbitals is ~ 0.35Awg at B = 1 T, and
while J can get as high as a 1 — 2 meV at the large-bias
regime, none of the direct tunneling or Coulomb terms ex-
ceeds ~ 10ueV for d > 2.5. The truncation of the p orbital
is not a fundamental limitation of our approach and it is possi-
ble to include it, albeit at the price of additional hybridization
coefficients and an increase in Hilbert space dimension from
12 to 20 (11 Singlets and 9 triplets, provided that we keep
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FIG. 8. (Color online) Critical d values at which 9.J/dd calculated
with the extended HM model abruptly changes (but remains nega-
tive) against wg. We judge that below d., calculated J values are
unreliable. The inset shows an example of J(d) for wy = 2 meV,
where both standard (dashed-green line) and extended (solid-blue
line) HM results are shown. The vertical dashed line marks the reli-
ability regime of the extended HM model.

two-electron states with only one p orbital). While not fully
justified, our truncated Hilbert space results in exchange val-
ues that pass all validity tests within the parameter range used,
and match experimental values surprisingly well.

Appendix B: Orbital Hamiltonian matrix elements

In this appendix we provide details of the calculation of
the matrix elements of our orbital Hamiltonian. It is con-
venient to evaluate the single-particle portion of the Hamil-
tonian, Eq. (1), by referencing it to the Hamiltonian of two-
dimensional harmonic wells, centered at +d,2° such that

where coordinates are measured in ap units, generalized mo-
menta in hagl units, and energies in fwg units.

The calculation of the system’s eigenenergies is carried
out in four steps: (i) closed-form expressions for the single-
particle (kinetic) and two-particle (Coulomb) bare matrix el-
ements, are calculated within the ground and excited Fock-
Darwin orbitals, Egs. (5), (ii) The orthogonalized matrix ele-
ments are constructed out of combinations of the bare terms,
according to Eqs, (7), (iii) the orthogonalized terms are com-
bined to find the final Hamiltonian matrix elements for the 12
singlet and triplet states listed in table I, (iv) the resulting ma-
trix is diagonalized to find the orbital eigenenergies. Below
we provide details pertaining to these calculational steps.



1. Single-particle bare matrix elements

We define single-particle energy and tunneling terms in a
biased quartic potential as:

(%] he +Qx |0L)
(0S| he +Qx |0%)
(oL he +Qx |05), (B2)

|+% )—F‘“ ;_p.a
||

and

9 = (p%| hs + Qx |0%)
t° = (o3| ht + Q= |9%)
t9° = (% | he + Qx 0%, (B3)

where h4 and Q4 are the (biased) harmonic-well Hamiltoni-
ans and quartic potential correction terms, respectively. Note
that for all three cases (ground-, excited- or mixed-orbitals)
we have (p+|hg + Qx [p+) = (px|hs + Q= |p3) and
(pxlhz + Qx o) = (x| hs + Q |p+) (although the
h and ) matrix elements are not equal independently, their
combinations are). In addition, in Egs. (B3) we used the fact
that t§ = t7 = t9 and ¢t = t© = t°. The explicit expres-
sions for the h and () matrix elements are listed in table II.

TABLE II: Bare single-particle matrix elements in fwo units. The overlap inte-

grals are given in Egs. (6).
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2. Coulomb Terms

We denote a generic bare (non-orthogonalized) Coulomb
term as cY*, where i,j,k,] € {g,e} and ¢ €
{w, va, vx, w, x}. The five types of Coulomb couplings corre-
spond to the various double dot occupancies (in either ground
or excited orbitals) and are given by:

u=(p 01| Ho lorpy)
(pro—|Holpro-)
(pro—|Holp—py)
w=(p1p+| Ho lp+p-)
r=(p1+p+| He lp—p-)

Uq

Ux

; (B4)

where oy € {105} Symmetry ~properties
of the Coulomb interaction, (p;p;|Hc |lprpr) =
(pjeil He lorpr) = (erell Ho lpigi), determine the
number of distinct matrix elements in each of the five groups.
In addition, it can be verified that the simultaneous swapping
of all four orbitals, + «+— —, in Egs. (B4) leaves the term
unchanged for an even number of excited orbitals and adds
a sign for an odd number of excited orbitals. Although our
Hilbert space is truncated to include up to one excited orbital
in each dot, the orthogonalized matrix elements include
(small) contributions from all 16 bare orbital combinations.
Taking these symmetry considerations into account we find
that there are seven distinct terms of each of the u, vq, v, and
T types, and sixteen distinct terms of the w type. The explicit



closed-form expressions for these bare Coulomb terms are listed in table III.

TABLE III: Bare Coulomb terms in hwgc units (only distinct terms are listed).
The overlap integrals are given in Eqs. (6). In these expressions, I¢ = I,,(bd?),
I} = I, [d*(b—1/b)], and I}Y = I,(d®/4b) denote the nth order modified
Bessel functions with the indicated arguments.
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3. Final orbital matrix elements

The terms listed in Tables II and IIT and the hybridization
coefficients, Eqs. (9), are used to construct the orthogonalized
kinetic and Coulomb matrix elements. We denote orthogo-
nalized elements with capital letters, i.e., I/ and T" for energy
and tunneling terms, and U, Vg, Vi, W, and X for Coulomb
terms. These orthogonalized elements are then combined to
provide the final matrix elements of the orbital Hamiltonian,

in the basis of the 12 singlet and triplet states listed in table
I. Since singlets are symmetric and triplets are antisymmetric
in their orbital degrees of freedom, they are not coupled by
our symmetric Hamiltonian, resulting in a total of 28 singlet
and 15 triplet matrix elements, listed in table IV. Explicit ex-
pressions of elements involving only ground orbitals can be
found in ref. 26 (for non-biased configuration) and in ref. 42
(including bias).

TABLE IV: Orbital Hamiltonian matrix elements. In these terms Vi = Vg + V.

Diagonal Terms

Singlets Triplets
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Off-diagonal Terms

Singlets Triplets

(5(0,2)| H|S(2,0)) = X999 —

(S(0,2)| H [S(1,1)) = V2(T*? + W999) -

(S(0,2)| H [8e(0,2)) = V2(E{ + U99) —
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Appendix C: Local analytical approximations

The extended HM model used to generate the results pre-
sented in the main text includes 12 two-particle basis states
given in table I. In the vicinity of the singlet and triplet
anticrossings, the higher states become sufficiently removed
from the lowest lying levels and one can obtain approximate

exchange values by considering the reduced 2 x 2 singlet
and triplet subspaces comprising of S(1,1) — S(2,0) and
T(1,1)—T.(2,0), respectively. The singlet and triplet Hamil-
tonians are given by

) (ChH

V2(T9 + W)

He — Es(2,0)
V2(T9 + W) Es,1
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FIG. 9. (Color online) Exact solution for J () (solid blue line) and
several approximations in the vicinity of the singlet and triplet an-
ticrossing, discussed in the text. Parameters used are: B = 0.1 T,
wo =5meV and d = 2.5.

and

Er.(2,0) Tf +AW ) (C2)

T= e
< T_‘?_ + AW ET(I,l)

where the two-particle energies are given in table IV, the di-
rect tunneling and Coulomb terms are given in tables II and
II1, respectively, and we have defined AW = W 999 — |/ ¢999
and omitted superscripts from ground-orbital-only Coulomb
matrix elements for brevity. Diagonalizing these Hamiltoni-
ans, we find the approximate J as

1
J=ET - F% = 3 [Er, 2,00+ Era,1)—Es2,0—Esqn+

\/(ES(ZO) — Bsay)) 4+ 8(T9+ W)2—

2
\/(ETC(Q,O) - ET(1,1)) +4(T9e+ AW)?| | (C3)
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depicted by the red-dashed line in figure 9. Keeping only
leading contributions in interdot overlap (appropriate for the
considered weak-coupling regime), we find the asymptotes of
Eq. (C3) at biases below the singlet anticrossing (egc) and
above the triplet anticrossing (¢1¢) as:

2(t94w)? (£ +Aw)?
I {7Vt Ty T @y 08 < 88O
€ — e —u+u9 ,E > ETC.-
(C4)

We note that in the lower bias regime, the first two terms in
Eq. (C4) match the extended Hubbard limit given in Ref. 26,
with interdot Coulomb correlations (first term) and tunneling
and on-site Coulomb repulsion renormalized by long-range
Coulomb couplings (second term). The third term in the lower
bias regime of Eq. (C4) is a new contribution due to the triplet
hybridization, whose magnitude is comparable to those of the
other terms, for the considered parameter range. At lower
bias, where J becomes very small, long-range contributions
from higher states, absent in this reduced Hamiltonian pic-
ture, become important and the approximation breaks down,
as seen by the dotted-green line in figure 9.

At the high bias regime we find that the asymptotic behav-
ior of Eq. (C3) is accurately captured by the energy differ-
ence between the lowest lying singlet and triplet configura-
tions, since both are predominantly doubly-occupied. Using
the explicit expressions for single-particle energies and bare
Coulomb terms, given in tables II and III, respectively, the
resulting approximate J at this high-bias limit is given by

3 C—\/E]Jr

TP g [b— Vb2 — 14— —
a 0[ T eRE T 2

3 g2
o2 \° T Adhag ) ©5)

While this result suggests that there is no sweet spot, at which
0J/0e = 0, we note that the bias dependence in Eq. (C5)
emerges from the quartic-potential-related () terms and is
therefore specific to our confinement model.
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