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Abstract

We report multistate optical switching among high-order bouncing-ball modes (“ripples”) and

whispering-gallery modes (“petals”) of exciton-polariton condensates in a laser-generated annular

trap. By tailoring the diameter and power of the annular trap, the polariton condensate can be

switched among different trapped modes, accompanied by redistribution of spatial densities and

superlinear increase in the emission intensities, implying that polariton condensates in this geome-

try could be exploited for an all-optical multistate switch. A model based on non-Hermitian modes

of the generalized Gross-Pitaevskii equation reveals that this mode switching arises from compe-

tition between pump-induced gain and in-plane polariton loss. The parameters for reproducible

switching among trapped modes have been measured experimentally, giving us a phase diagram

for mode switching. Taken together, the experimental result and theoretical modeling advances

our fundamental understanding of the spontaneous emergence of coherence and move us toward

its practical exploitation.
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I. INTRODUCTION

Strong coupling between cavity photons and excitonic resonances of quantum wells (QWs)

placed inside the cavity leads to the formation of new mixed eigenstates known as exciton-

polaritons (hereafter simply polaritons). They behave as bosons with extremely low effective

mass and overall repulsive interactions. The photonic and excitonic fractions can be varied

by adjusting the relative detuning of photon and exciton resonances, typically by varying

the cavity width in a wedged sample structure. This allows direct control over the polariton-

polariton interaction strength, which increases with the excitonic fraction.

Polaritons provide a unique testbed for the study and manipulation of macroscopic quan-

tum effects. Quantum phenomena such as Bose-Einstein condensation have been reported

from liquid helium temperature1–3 up to room temperature4–7 in various systems. This not

only allows the investigation of quantum phenomena at elevated temperatures in a con-

venient fashion, but also presents exciting opportunities to create all-optical polaritonic

devices. As a consequence, great efforts have been devoted to the development of techniques

for manipulating the properties of microcavity polaritons2,8–16.

Previous experiments on Bose condensation of polaritons were usually performed with

the photonic resonance close to the excitonic resonance, which resulted in highly excitonic

characteristics of polaritons, namely strong interactions with each other and with the lat-

tice. Together with short cavity lifetimes, this has limited the distance polaritons could

propagate14–17. The development of new structures with much longer cavity photon lifetimes,

from 20-30 ps11 to well over 100 ps18–21, has allowed the possibility of polariton propagation

over macroscopic distances. This property was recently used to measure the polariton-

polariton interaction strength in a region with no free excitons22.

In the present work, we generated polaritons with high photonic fractions by choosing a

region of the wedged sample with large negative cavity detuning. Their highly photonic na-

ture allowed the polaritons to propagate coherently over long distances to form condensate

states with radial extent up to 50µm inside a trap formed by an annular pattern of excita-

tion light. While interactions of polaritons in this case are not strong enough for them to

thermalize into an equilibrium gas, they still play an important role. The interactions of po-

laritons with excitons in the pump region causes the polaritons to feel a confining potential,

which in turn allows them to undergo Bose-Einstein condensation in the trap. Furthermore,
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nonlinear polariton-polariton interactions result in switching and mixing among different

condensate modes at high pump powers. The spatial distributions of these modes vary

dramatically with very small changes of the excitation densities and patterns, but are tem-

porally very stable as long as the excitation power is stable. This stability has allowed us

to map out the phase boundaries between different modes in our optical trap. Upon state

switching with increasing excitation power, the emission intensities from the condensates

also increase in a superlinear fashion. The large changes not only allow us to experimen-

tally distinguish different quantum states, but also strongly suggests the use of polaritons

in all-optical multistate switching applications.

Previous works have seen in some cases the “petal” structures described here15,17, and

other works have observed the “ripple” structures described here13,16,23 in structures with

shorter polariton lifetime, but no prior work has shown how to switch between the two struc-

tures, or their intrinsic relationship. Another study11,24 also showed similar patterns in a

one-dimensional etched structure, but with multimode behavior instead of stable switching

between modes, possibly due to shorter lifetimes. In Ref. [15], a channel formed by two

concentric rings of excitation light was used to generate two counter-propagating conden-

sates. We find that the same patterns can be generated without the need for a channel.

This indicates that the competition between pump-induced gain and in-plane polariton loss,

without the need for a confining channel, can control the petal patterns that emerge.

II. EXPERIMENTAL OBSERVATIONS: PETALS AND RIPPLES

The microcavity used in this work is a GaAs based microcavity structure grown by

molecular beam epitaxy. The cavity has a large number of distributed Bragg reflector (DBR)

layers that leads to cavity lifetime of 135 ps and polariton lifetime of 270 ps at resonance19,25.

This allows polaritons to propagate over macroscopic distances of up to millimeters. The

sample was thermally attached to a cold finger in an open-loop cryostat which was stabilized

at 10K. The excitation laser is a continuous-wave (CW) laser, which was modulated by an

acousto-optic modulator (AOM) at 1 kHz with a duty cycle of 0.5% to prevent unwanted

sample heating. The annular trap was generated by shaping the phase front of the CW

laser using a high-resolution spatial light modulator (SLM). Because of the eccentricity in

the pump profile, which is approximately 0.3, the diameters reported here are geometric
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means of the lengths of major and minor axes of the pattern. We find that symmetry

breaking direction of the pattern formation is not related to the pump eccentricity. The

photoluminescence of polaritons was collected in a reflection geometry using an objective

lens with a numerical aperture (NA) of 0.28, and was relay imaged to a spectrometer CCD.

The energy-resolved emissions were obtained by spectrally dispersing a specific slice of either

the far-field or near-field image selected by the entrance slit of the spectrometer CCD.

Annular-shaped beams with diameters ranging from 21µm to 54µm were used to ex-

cite the high-Q microcavity structure. The laser beam was tuned to about 140meV above

the band gap of the GaAs QW; therefore, it essentially generated free carriers, which sub-

sequently relaxed down to exciton and polariton states. The cavity detuning was ~δ =

Ecav(k = 0) − Eexc(k = 0) = −25meV which corresponds to lower polaritons that are 6%

excitonic and 94% photonic. Petals and ripples were formed inside the excitation annulus,

with radial extent up to 50µm. In theory, if not limited by the pump power, higher-order

condensate states with length scales on the order of millimeters19 could be realized in this

high-Q microcavity structure, making them entirely visible by eye.

“Petals” as defined here are whispering-gallery modes in the annular trap, quantized in

the azimuthal direction. Figure 1 shows the emission patterns from an annular trap with a

diameter of 41µm. Below the condensation threshold, polaritons remain in the vicinity of

the pump region, as shown in Fig. 1(a). The asymmetry in the density distribution is largely

due to inhomogeneity of the pump intensity profile. Figure 1(c) shows the momentum dis-

tribution of the polaritons below the condensation threshold. Because the photonic mode in

the microcavity has an energy gradient of 11µeV/µm along the white solid line in Fig. 1(a),

there is a net flow of polariton fluid along this energy gradient, as evidenced by the accumu-

lation of the polariton densities with in-plane wavevector components at kx = −1µm−1 and

ky = 1µm−1 in Fig. 1(c). The cavity gradient can also be identified from the energy-resolved

emission profile in Fig. 1(e) at low pump powers. In this plot, the x = 0 slice of Fig. 1(a) was

projected onto the entrance slit of the spectrometer CCD and then spectrally dispersed. The

propagation effect can also be identified in the energy-resolved k-space emission profile as a

smeared dispersion, which has been reported in Ref. [18] with the same sample structure.

When the excitation density is above the condensation threshold, polaritons propagate

toward the center of the trap and form the petal state inside the excitation ring. The position

of the pump annulus is plotted in Fig. 1(b) as the white dashed line. The petals demonstrate
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FIG. 1. Petal with 28 lobes in an annular trap with a diameter of 41µm. (a)-(b) Polariton density

distribution below (a) and above (b) condensation threshold. The white solid line in (a) indicates

the direction of the cavity energy gradient (photon energy decreasing from bottom right to top

left), and the white dashed line in (b) shows the position of the annular pump. (c)-(d) Polariton

momentum distribution below (c) and above (d) condensation threshold. (e)-(f) Energy-resolved

polariton density distribution at x = 0 below (e) and above (f) condensation threshold. (g)-(h)

Energy-resolved polariton momentum distribution at kx = 0 below (g) and above (h) condensation

threshold. All results are normalized to 1 except for (a) and (b).

nodal structures similar to those of the high-order whispering-gallery modes in lasers, with

the density accumulation at kx = −1µm−1 and ky = 1µm−1. The petal structure is also

observed in momentum space as expected since the condensate is a coherent state and the

density distributions in position space and momentum space are Fourier-transform-related.

The real-space emission from the (x, y) = (0µm, 17µm) region, for example, corresponds
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to the emission at (kx, ky) = (±0.83µm−1, 0µm−1) in k space. The real-space distance

between the lobes of the petal structure matches the period of the interference pattern

given by d = 2π/∆k = 3.8µm. The energy-resolved measurements show narrower emission

spectra from the condensates than from polaritons below the condensation threshold. Above

the threshold, the energy of emission from petals is higher than emission from uncondensed

polaritons that have flowed to the center of the annular trap, as seen in Fig. 1(f).

Unlike petals, “ripples” as defined here are radially confined bouncing-ball modes in the

annular trap. In Fig. 2(a), we plot the emission profiles observed when an annulus with a

diameter of 33µm was used to excite the microcavity. Below the condensation threshold,

the distributions of polaritons in real and momentum space show very similar signatures to

those in the previous case. Confined ripples appear above the condensation threshold, as

shown in Fig. 2(b). Similar patterns have been studied in quantum chaotic systems where

they were termed as bouncing-ball modes26. In k space, we observed two large populations

of polaritons at kx = ±0.73µm−1 indicative of the ripple mode, together with several states

with smaller but not negligible amount of polaritons. This suggests that the ripple pattern

in Fig. 2(b) can be seen as the interference of paired momentum states, where the period of

the interference pattern is given by d = 2π/∆k = 4.3µm, matching the real-space distance

between the lobes of the ripple. Figures 2(f) and (h) show energy-resolved emission along

the vertical slices x = 0 and kx = 0 in Figs. 2(b) and (d), respectively.

In this work, higher-order condensate states appear at a lower threshold than the lowest-

order condensate state at (x, y) = (0, 0) and (kx, ky) = (0, 0), unlike the case in Ref. [22]

where the polaritons had higher exciton fractions of 20-80%, compared to 6% in this work.

In that case the balance among stronger interactions, slower transport, and longer lifetimes

favors the lowest-order spatial profile. In the present work, the balance between polariton

leakage from the pump region and polariton gain from the reservoir determines whether

ripples or petals will define the lowest-threshold mode; this is expanded in Section IV.

III. PHASE DIAGRAM OF CONDENSATE MODES

The condensate can be switched among various petal and ripple states by varying the

pump power. In the top panel of Fig. 3, we show the integrated emission intensity in the field

of view as a function of the laser pump power. The emission intensity undergoes several
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FIG. 2. Ripple with 7 lobes in an annular trap with a diameter of 33µm. (a)-(b) Polariton density

distribution below (a) and above (b) condensation threshold. The white solid line in (a) indicates

the direction of the cavity energy gradient (photon energy decreasing from bottom right to top

left), and the white dashed line in (b) shows the position of the annular pump. (c)-(d) Polariton

momentum distribution below (c) and above (d) condensation threshold. (e)-(f) Energy-resolved

polariton density distribution at x = 0 below (e) and above (f) condensation threshold. (g)-(h)

Energy-resolved polariton momentum distribution at kx = 0 below (g) and above (h) condensation

threshold. All results are normalized to 1 except for (a) and (b).

distinct sharp jumps, which are marked by the red lines, and increases by five orders of

magnitude when the pump power is increased by only an order of magnitude. The real-

space density distributions corresponding to the green dots in the top panel are shown in

Figs. 3(a)-3(f). We clearly identify that the jumps in emission intensity are accompanied by

redistributions of the real-space densities, that is, by mode switching.
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FIG. 3. Mode switching in an annular trap with a diameter of 21µm. Top panel: the integrated

emission intensity as a function of the laser pump power. Pump power at the sample is reduced to

36% of the power reported in the horizontal axis due to the overall efficiency from optics and SLM.

The red lines indicate boundaries between different modes. The green circles are selected pump

power levels for which the real-space density distributions of the modes are shown in (a)-(f).

In Fig. 3(a), the excitation level is below the condensation threshold, and the polariton

distribution follows the excitation pattern, similar to those in Figs. 1(a) and 2(a). Fig-

ure 3(b) shows just below the onset of a higher-order state. In Fig. 3(c), a three-lobe ripple

mode appears. Figures 3(d) and 3(e) show mixtures of both petals and ripples. Numerical

simulations discussed below suggest that petals and ripples coexist at this power due to

interactions between these states. As shown in Fig. 3(f), when the system was pumped

very hard, the lowest-order condensate mode has the lowest threshold and dominantly oc-

cupied over all other modes. This power tunability of mode switching not only allows us

to distinguish different high-order modes, but also suggests that polariton condensates in

the annular trap can be implemented in device applications for a stable multistate switch.

With finer control of the pump power and diameter, we believe more states can be accessed

independently.
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FIG. 4. (a) Phase diagram of condensate modes in an annular trap. Different colors correspond to

different types of state (separated approximately by black lines, which are continuous although the

data set is discrete): pure ripples are in purple, ripples mixed with petals are in blue, pure petals

are in red, petals mixed with ripples are in red-orange, filled plateau states are in orange-yellow,

and single mode condensate is in yellow, as depicted in the color bar. The white region represents

uncondensed polaritons. The two color bars represent the two halves of the figure, separated by the

vertical dashed line (the accompanying yellow line is an artifact of color averaging). Representative

spatial distributions indicated by white dots in (a) are shown in (b)-(e).

In order to fully characterize the phase boundaries between different quantum states, we

recorded the real-space polariton density distributions with excitation ring diameters ranging

from 21µm to 54µm and the laser pump powers ranging from 50mW to 1W (18mW to

360mW at the sample due to the overall efficiency from optics and SLM). Because of the

stability of the distributions and the superlinear increase in the emission intensities as shown
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in Fig. 3, we were able to classify different quantum states at different pump conditions.

The resulting phase boundaries are shown in Fig. 4(a). In this plot, different colors are

assigned to different types of states with distinct spatial distributions: the white region

represents uncondensed polaritons; purple and blue stand for pure ripples and ripples mixed

with petals, respectively; pure petals are shown in red, while petals mixed with ripples

are in red-orange; filled plateau states, where polaritons fill in the entire trap area with

relatively even density distribution (but with negligible densities at and outside the pump

region), are represented by the yellow-orange region. Based on our numerical simulations,

mixed modes are a direct consequence of the interaction between high-order modes with

very close thresholds, rather than being artifacts from time-integrated measurements. The

lowest-order single-mode condensate states, coded as yellow, occupy the top left region of the

phase diagram. The artificial yellow vertical line at 33µm pump diameter is due to averaging

of the different color settings [left and right color bars in Fig. 4(a)], which shows that ripple

modes are favored below 33µm, while petal modes are formed first above 33µm. Black lines

show approximate phase boundaries, which are continuous although the data set is discrete.

Both petals and ripples exist in a narrow range of the phase diagram because of an abrupt

increase in polariton densities within a small increase of pump power. This indicates that

switching among polariton condensate states in the optical trap is very sensitive, i.e., a very

low power is needed to switch between the high-order states.

Based on this phase diagram, we can identify that for a given pump power, ripples and

petals will show up successively as the lowest-threshold modes by increasing the size of the

ring, and the phase boundary for the lowest-threshold modes is approximately linear, both of

which will be explained in the following theory section. The condensate mode can be easily

tuned by changing the pump diameter and/or the pump power, as shown in Figs. 4(b)-4(e).

The measured phase boundaries should serve well to calibrate the implementation of an

exciton-polaritonic multistate switch by making use of the high-order quantum states.

IV. THEORY AND NUMERICAL SIMULATION OF PATTERN FORMATION

The dynamics of polariton condensate under incoherent pumping can be described using

a Gross-Pitaevskii equation (GPE) for the condensate wavefunction Ψ(r, t), together with

a dynamical equation for the density of the pump-generated exciton reservoir nR(r, t), a
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complex system of coupled nonlinear partial differential equations (PDEs). For pumping

below threshold however, where no stable condensate mode exists, it suffices to study the

GPE linearized in the condensate density; using further the steady state result for the

reservoir density, this leads us to the linear dynamical equation (for details, see Appendix A):

i
∂Ψ

∂t
=

[

−
∇2

2m
+

gR
γR

Pf(r) +
i

2

(

R

γR
Pf(r)− γc

)]

Ψ

≡ HL(P )Ψ (1)

where HL(P ) is the linear, non-Hermitian generator describing condensate dynamics. Its

non-Hermiticity arises from polariton decay (rate γc) and gain through stimulated scatter-

ing from the pump-generated reservoir (rate R), while the real-valued potential represents

reservoir-condensate repulsion (∝ gR). P and f(r) are, respectively, the strength (related

to exciton generation rate) and spatial profile of the pump. Eigenmodes of HL(P ) represent

fluctuations around the uncondensed state at pump power P , and the imaginary parts of

their eigenvalues describe the net polariton gain27. For the nth mode, beyond a power Pn its

eigenvalue acquires a positive imaginary part: gain overcomes polariton loss and the fluctua-

tions are unstable, corresponding to a condensing mode with frequency given by the real part

of its eigenvalue. By varying the pump power, a set of such spatial modes {ϕn(r;Pn, ωn)}

can be obtained, with linearized power thresholds {Pn} and real frequencies {ωn}.

This linearization is exact until condensation first occurs, and thus the linearized mode

with lowest threshold holds special significance: it is the actual mode first seen upon con-

densation. Naturally, the following question arises: what determines the spatial mode with

lowest condensation threshold? Using a continuity equation for the condensate density de-

rived from the GPE, it is possible to arrive at a simple formula for the linearized threshold

Pn for condensation of the nth mode28:

Pn

P0

=
1 + γn/γc

Gn

, P0 =
γcγR
R

(2)

where

γn
γc

∝

∫

∂P

~j · d~s , Gn ∝

∫

P

|ϕn(r)|
2f(r)d2r (3)

For a given mode, the threshold is determined by: (i) in-plane loss γn relative to mirror loss

γc, the former being the flux of probability current ~j flowing out across the outer pump edge

∂P [see Fig. 5(a)], and (ii) Gn, a dimensionless measure of the overlap between the mode and
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FIG. 5. (a) Ratio of power thresholds for the lowest threshold ripple mode to the lowest threshold
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threshold mode. Top panel: chosen linear threshold modes (petal and ripple modes), for which, as

a function of pump diameter, we plot (b) linear threshold power P/P0Am where Am is the area of

the largest trap used in the experiment, (c) overlap Gn, and (d) relative loss γn/γc. White dashed

line in the top panel indicates the pump boundary ∂P.

the pump within the region P enclosed by this pump edge. We choose
∫

P
|ϕn(r)|

2 = 1; the

resultant scaling of ϕn(r) means both γn/γc and Gn decrease with pump size. Also, f(r) is

normalized such that Pf(r) is the pump density in area P. The mode with lowest threshold

minimizes Eq. (2) by maximizing overlap with the pump to benefit from amplification, while

still having low density near ∂P to reduce the relative loss. Note that for modes with smaller

relative loss γn/γc, the overlap becomes more important in determining the threshold.

We study the linear modes of HL(P ) for a range of pump diameters of the experimental

profile. We plot of ratio of linear thresholds for the lowest threshold petal mode to the

lowest order ripple mode in Fig. 5(a). Below a critical pump diameter (∼28µm in the

simulation and ∼33µm in the experiment), the lowest threshold mode is a ripple mode [green

shaded region in Fig. 5(a)], while beyond this pump diameter, petal modes are favored for
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condensation over ripple modes.

To understand this observation, we study the difference between the two types of observed

condensate modes. We focus on one low order and one higher order mode of each type;

these are shown in the top panel of Fig. 5. The two petal modes are labeled Petal 8 and 14,

indicating the number of lobes in each mode’s spatial distribution; similarly chosen ripple

modes are labeled Ripple 3 and 6. For these modes, we plot their linear thresholds in

Fig. 5(b), and the overlap and relative loss characteristics in Figs. 5(c) and (d) respectively,

all as a function of pump diameter. We find that in general, petal modes have both stronger

overlap with the pump generated reservoir, and stronger in-plane loss; this makes intuitive

sense, since these modes are more localized near the pump boundary. However, we see

that relative loss for all modes decreases with increase in pump diameter, as shown in

Fig. 5(c); physically, this signifies that in-plane loss at the pump edge (which scales with

circumference) becomes increasingly less important relative to the total mirror loss (which

scales with condensate area). Due to this scaling, there exists for each mode a large enough

pump diameter at which its relative loss is small, and hence where its overlap Gn primarily

determines its threshold; in this competition, petal modes have an advantage over ripple

modes.

We can now explain the transition in thresholds seen in Fig. 5(a). For small enough pump

diameters, γn/γc for all petal states is large enough for them to have higher thresholds than

a ripple mode, even though their pump overlap is stronger. As pump diameter increases,

γn/γc decreases; at a critical pump diameter, some petal mode has low enough loss for the

stronger overlap to pull its threshold down below that of the competing ripple mode. For

annular profiles, a transition diameter will always exist due to the scaling of in-plane loss

relative to mirror loss described earlier; the particular diameter depends on details of the

profile. A similar explanation applies for higher order states: these tend to have stronger

overlap but also higher relative loss, so that larger pump diameters are needed until γn/γc

is small enough for the strong overlap to encourage condensation into these modes. Finally,

we note that overlap Gn decreases as pump diameter increases [Fig. 5(b)] since the pump

density Pf(r) in region P goes down for a fixed annular pump width. From Eqs. (2) and (3),

this decrease in Gn increases Pn with pump diameter; we find the simulated lowest threshold

boundary is in good agreement with the experimental phase diagram [Fig. 4(a)].

Going beyond the condensation threshold, where linearization is no longer strictly valid,
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FIG. 6. Simulations including nonlinear interactions and pump depletion, based on a modal ex-

pansion of the Gross-Pitaevskii equation. Plotted is the time averaged condensate density as a

function of increasing pump power from left to right. Note the different color scale in each plot,

indicating increasing condensate density with pump power.

requires full simulation of the coupled nonlinear PDEs over a large spatio-temporal grid;

the large condensate sizes (up to ∼50µm) observed in the current work, together with

polariton wavelengths (∼1µm) that demand fine spatial (and hence temporal) resolution,

make such simulations very computationally expensive here. We circumvent this issue by

expanding the condensate wavefunction in a pump-power-dependent, non-Hermitian basis,

with time-dependent coefficients. Integrating out the spatial dependence then reduces the

full nonlinear GPE and reservoir dynamical equation to a set of coupled ODEs, an effective

nonlinear coupled mode theory for condensate and reservoir dynamics. In comparison to the

usual Fourier split-step spatio-temporal integration of the GPE, this represents a substantial

simplification29. For the choice of basis, it makes sense to use the computed linear threshold

modes {ϕn(r;Pn, ωn)} that are in a quantifiable sense the preferred configurations by the

polaritons for a given f(r). We use these modes to construct a complete, biorthogonal, non-

Hermitian basis set {φn(r;P )} that accounts for all the spatial complexity of the linearized

condensate problem. Applying to the specific case of a pump of diameter 26µm, we employ

this coupled mode theory and compute the time-averaged condensate density 〈|Ψ|2〉t. The

results are plotted as a function of increasing pump power from left to right in Fig. 6.

Our simulations reveal mixing of lowest threshold modes beyond threshold, when polariton-

polariton interactions within the condensate become important; in particular, we reproduce

qualitatively similar results to the experimentally observed coexistence of petal and ripple

states shown in Fig. 3. Simulations for even the smallest pump diameter become resource

intensive when many modes start interacting, with increasing pump power.

We emphasize that both the linear theory and its predicted transition diameter from
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ripple to petal modes, as well as the nonlinear simulations depend on precise details of the

experimental system and pump profile, as well as interaction parameters such as reservoir

repulsion strength gR and amplification rate R. Furthermore, the nonlinear theory is also

found to be rather sensitive to the polariton-polariton repulsion strength and reservoir re-

laxation rate γR. Uncertainties in these quantities mean that we can only reasonably expect

to capture qualitative details of the experiment, as shown here.

V. CONCLUSION AND OUTLOOK

We have seen the stable formation of high-order quantum states under non-resonant

excitation, including ripples, petals, and their mixtures, with a well-defined phase diagram

in the pump parameter space. Petals are whispering-gallery modes while ripples are confined

bouncing-ball modes in the trap. The all-optical trapping allows facile switching among these

condensate states in the annular trap, accompanied by superlinear increases in the emission

intensities.

The measured patterns bear some similarity to the multiple modes seen in standard

vertical-cavity surface-emitting lasers (VCSELs), e.g., the petal patterns seen in Ref. [30].

However, in typical lasers and VCSELs, the system hops uncontrollably between different

modes, leading to unwanted noise (e.g., Ref. [31]). The nonlinear interactions in the polariton

condensate system stabilize the modes to resist multimode behavior. This means that this

system acts effectively as multistable optical switch, in which transitions between states can

be controlled by small changes of the input light beam.
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Appendix A: Gross-Pitaevskii equation and linearization

We use a generalized Gross-Pitaevskii equation (GPE) to describe the dynamics of mi-

crocavity exciton-polaritons under incoherent pumping. In this standard approach32, the

nonlinear interactions of polaritons within the condensed fraction are treated at the mean-

field level, while pumping and losses are introduced as complex-valued terms, so that the

generalized GPE for the dynamics of the condensate wavefunction Ψ(r, t) has the form:

i
∂Ψ

∂t
=

[

−
∇2

2m
+ gRnR +

i

2
(RnR − γc) + g|Ψ|2

]

Ψ (A1)

where for clarity we have suppressed the (r, t) dependence of the polariton wavefunction

and the density nR of the pump-generated exciton reservoir. This reservoir gives rise to a

repulsive term describing the interaction of condensate polaritons with reservoir excitons,

with strength gR, together with an amplification of the condensed fraction via stimulated

scattering from the reservoir at rate R. This latter gain contribution together with the

inclusion of polariton mirror loss at rate γc make the effective generator describing condensate

dynamics non-Hermitian in this case. Finally, the polariton-polariton repulsion within the

condensate appears as the nonlinear term ∝ g at the mean-field level. The dynamics of the

pump-induced reservoir must also be accounted for by a dynamical equation of the form:

∂nR

∂t
= Pf(r)−RnR|Ψ|2 − γRnR (A2)

P and f(r) are the pump strength and spatial profile as described in the main text, the

source of the exciton reservoir. The aforementioned scattering from the exciton reservoir
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FIG. 7. Flow of (complex) eigenvalues of the linear non-Hermitian generator HL(P ) as a function
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power is increased. The lowest threshold mode is indicated in blue. It reaches the real line for the

smallest pump power, and has a real frequency ωn equal to the imposed outgoing frequency Ω.

into the condensate at the rate R causes a depletion of the reservoir, which is encapsulated

in the second term on the right hand side. Reservoir losses that occur via mechanisms other

than scattering into the reservoir (e.g. recombination losses) are described by γR.

For pumping below the condensation threshold, the system has a steady state with a pump

generated exciton density and an uncondensed polariton state. The steady state reservoir

density in this regime can be obtained after linearizing Eq. (A2) by dropping nonlinear terms

of order |Ψ|2; in this steady-state regime the exciton reservoir density adiabatically follows

the pump:

nR(r, t → ∞) =
P

γR
f(r) (A3)

Below threshold, a linearization of the GPE is also valid; we can replace nR(r, t) by its

linearized steady state value, and neglect the nonlinear polariton-polariton interactions ∝ g.

This yields the linearized GPE for condensate dynamics, Eq. (1) of the main text.

We now analyze steady-state condensate formation in the linearized regime. In particular,

if we consider a single frequency steady-state ansätz for the condensate wavefunction:

Ψ(r, t) = ϕn(r)e
−iωnt, (A4)

the linearized GPE in Eq. (1) of the main text becomes:

HL(P )ϕn(r) =

[

−
∇2

2m
+

gR
γR

Pf(r) +
i

2

R

γR
Pf(r)−

i

2
γc

]

ϕn(r) = ωnϕn(r) (A5)
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The condensate wavefunction for a single frequency ωn condensate is therefore the nth

eigenmode of the generator of linearized dynamics, HL(P ). We require ωn to be a purely

real frequency for the steady-state solution to correspond to a nontrivial condensate mode;

we will now discuss how this requirement determines the power threshold for a given spatial

mode. For simplicity, we rewrite the above eigenproblem in the form:

[

−∇2 + sPf(r)
]

ϕn(r) = q2ϕn(r) (A6)

where we have introduced the pump-induced potential s

s

2m
=

1

γR

(

gR +
i

2
R

)

(A7)

and the ‘wavevector’ q(ωn) is defined by

q2(ωn)

2m
≡ ωn +

i

2
γc. (A8)

To determine the eigenmodes of HL(P ), the above eigenproblem must be formulated as an

appropriate boundary value problem (BVP); we make the following choice:

[

−∇2 + sPf(r)
]

ϕn(r) = q2(ωn)ϕn(r) , r ∈ P

−∇2ϕn(r) = q2(ωn)ϕn(r) , r /∈ P (A9)

where P is the region enclosed by the outer edge ∂P of the pump, as defined in the main

paper. Note here that we impose an ‘outgoing’ boundary condition with wavevector q(ωn)

at the pump edge ∂P, as opposed to the more usual case of considering a boundary far from

the pump where the condensate wavefunction is vanishingly small and standard Dirichlet

boundary conditions can be employed. For the large condensate sizes considered here, the

latter approach would require simulating a very large spatial grid, making computation times

inconveniently long. Our approach allows the use of a minimally relevant grid size. This

occurs at a relatively minor expense: the outgoing wavevector imposed via this boundary

condition depends on the unknown eigenvalue ωn, and this BVP therefore needs to be solved

self-consistently. To do so, we fix the outgoing wavevector by choosing an outgoing frequency

Ω:

[

−∇2 + sPf(r)
]

ϕn(r) = q2(ωn)ϕn(r) , r ∈ P

−∇2ϕn(r) = q2(Ω)ϕn(r) , r /∈ P. (A10)
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It is now a straightforward matter to solve this BVP for a range of (increasing) values of the

pump power at a fixed Ω; as a result, one obtains a set of eigenmodes {ϕn(r)} and eigenfre-

quencies {ωn(P )} of HL(P ). These generally complex frequencies {ωn(P )} flow across the

complex plane as the pump-power is varied; an example of this flow is shown in Fig. 7. For a

certain pump power Pn, the nth eigenfrequency ωn crosses the real axis (becomes real). The

imaginary part of ωn represents net loss, so its becoming zero implies that gain overcomes

polariton loss at this pump power, and the associated eigenmode is an unstable fluctuation

around the uncondensed polariton state. Furthermore, if the (now real) frequency is also

equal to the imposed outgoing frequency, that is ωn = Ω, the wavevector q(ωn) is equal

both inside and outside the pump region P. The self-consistency condition is therefore si-

multaneously fulfilled, and the corresponding nth eigenmode ϕn(r;ωn, Pn) represents a true

condensate mode with real frequency ωn and linearized power threshold Pn. By varying the

outgoing frequency Ω, and computing eigenvalues as a function of pump power, a set of such

linear threshold modes {ϕn(r;ωn, Pn)} can be obtained.

Appendix B: Continuity equation and linear threshold formula

From the linearized dynamical equation for the condensate wavefunction, it is possible

to obtain an equation for the dynamics of the condensate density, |Ψ|2. In particular,

∂|Ψ|2

∂t
= Ψ∗∂Ψ

∂t
+ c.c. (B1)

From the generalized GPE [Eq. (A1)], it is easily found that:

Ψ∗∂Ψ

∂t
=

i

2m
Ψ∗∇2Ψ+

{

−igRnR − ig|Ψ|2 +
1

2
(RnR − γc)

}

|Ψ|2 (B2)

and so:

∂|Ψ|2

∂t
=

i

2m

(

Ψ∗∇2Ψ−Ψ∇2Ψ∗
)

+RnR|Ψ|2 − γc|Ψ|2 (B3)

The first term on the right hand side has the form of the divergence of a probability current;

this can be made more explicit by defining the probability current ~j as:

~j =
i

2m

(

Ψ~∇Ψ∗ − c.c.
)

(B4)
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following which the condensate density dynamics is governed by the equation:

∂|Ψ|2

∂t
= RnR|Ψ|2 −∇ ·~j − γc|Ψ|2 (B5)

which has the well-defined form of a continuity equation. In particular, the above equation

can be put into a more practical form by integrating over the area P of the region enclosed

by the outer pump edge,

∂

∂t

∫

P

d2r |Ψ|2 = R

∫

P

d2r nR|Ψ|2 −

∮

∂P

~j · d~s

− γc

∫

P

d2r |Ψ|2 (B6)

where the divergence theorem allows the term involving ~j to be rewritten as a flux integral.

This equation has the simple interpretation: any increase in the total number of polaritons

(∝
∫

P
d2r|Ψ|2) within the pump region comes from amplification via the exciton reservoir,

at rate R. Losses to the polariton number can be attributed to either the mirror loss γc, or

a leakage of the condensate from the pump edge. Since we are integrating within the outer

pump edge ∂P, beyond which by definition no source of polariton production exists, there

can be no incoming probability current that would increase the polariton number within the

pump region.

Now, we narrow our focus to the linearized regime, where the reservoir density nR =

Pf(r)/γR as shown earlier. Furthermore, we consider a single mode solution such that

Ψ(r, t) = ϕn(r;ωn, Pn)e
−iωnt, where ϕn(r;ωn, Pn) is the eigenmode of HL(Pn) that has (real)

eigenfrequency ωn. For simplicity, we suppress the parameters defining ϕn in what follows.

With this ansätz, the condensate density is time-independent and the above continuity

equation reduces to:

R

γR
P

∫

P

d2rf(r)|ϕn|
2 =

∮

∂P

~j[ϕn] · d~s+ γc

∫

P

d2r|ϕn|
2 (B7)

Here, the probability current ~j[ϕn] is now evaluated for the eigenmode ϕn, as in the main

text. Now, defining the condensate density ρn, pump overlap Gn, and in-plane loss γn

respectively as in the main paper,

ρn =

∫

P

d2r |ϕn|
2 (B8)

Gn =
1

ρn

∫

P

d2rf(r)|ϕn|
2 (B9)
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γn =

∮

∂P

~j[ϕn] · d~s (B10)

we can recover the linear threshold formula [Eq. (2) of the main text]:

Pn

P0

=
1 + γn/(ρnγc)

Gn

≡
1 + Γn

Gn

(B11)

with Pn being the linear threshold power for the nth mode and P0 = (γcγR)/R.
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22

http://dx.doi.org/10.1038/nphys2012
http://dx.doi.org/ 10.1103/PhysRevLett.110.186403
http://dx.doi.org/ 10.1103/PhysRevB.88.041308
http://dx.doi.org/ 10.1073/pnas.1401988111
http://dx.doi.org/10.1103/PhysRevB.92.035305
http://dx.doi.org/10.1103/PhysRevLett.107.106401
http://dx.doi.org/10.1103/PhysRevX.3.041015
http://dx.doi.org/ 10.1364/OPTICA.2.000001
http://dx.doi.org/ 10.1073/pnas.1424549112
http://dx.doi.org/ 10.1103/PhysRevLett.118.215301
http://dx.doi.org/10.1038/nphys4148
http://dx.doi.org/10.1103/PhysRevB.93.085313
http://dx.doi.org/ 10.1103/PhysRevLett.106.176401
http://dx.doi.org/10.1103/PhysRevB.88.235314
http://dx.doi.org/10.1103/PhysRevA.37.3067
http://dx.doi.org/10.1103/PhysRevLett.116.066402
http://arxiv.org/abs/arXiv:1311.4847
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