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Efficient and automated classification of phases from minimally processed data is one goal of
machine learning in condensed matter and statistical physics. Supervised algorithms trained on
raw samples of microstates can successfully detect conventional phase transitions via learning a
bulk feature such as an order parameter. In this paper, we investigate whether neural networks
can learn to classify phases based on topological defects. We address this question on the two-
dimensional classical XY model which exhibits a Kosterlitz-Thouless transition. We find significant
feature engineering of the raw spin states is required to convincingly claim that features of the
vortex configurations are responsible for learning the transition temperature. We further show a
single-layer network does not correctly classify the phases of the XY model, while a convolutional
network easily performs classification by learning the global magnetization. Finally, we design a deep
network capable of learning vortices without feature engineering. We demonstrate the detection of
vortices does not necessarily result in the best classification accuracy, especially for lattices of less
than approximately 1000 spins. For larger systems, it remains a difficult task to learn vortices.

I. INTRODUCTION

The remarkable success of artificial neural networks
in the tasks of image recognition and natural language
processing has prompted interdisciplinary efforts to
investigate how these new tools might benefit a broad
range of sciences. One of the most intriguing areas
of application is condensed matter physics, where the
exponentially large Hilbert space of a quantum many-
body state provides an immense data set. In fields such
as computer vision, it has been demonstrated that neural
networks have the ability to extract physical features
from highly complex datasets [1–4]. This gives hope that
machine learning techniques may provide a tool to probe
regions of the many-body Hilbert space that are currently
intractable with other algorithms.

In the realm of classical statistical physics, supervised
and unsupervised learning have been applied successfully
to classify symmetry broken phases [5–8]. In some cases,
it is possible to deduce that the network has learned an
order parameter or another thermodynamic quantity [5,
6, 8]. This interpretability is one major advantage of data
sets derived from statistical physics, and can contribute
to the theoretical understanding of the behavior of neural
networks in real world applications.

Motivated by the successful application of supervised
learning to conventional symmetry breaking transitions,
it is natural to ask whether neural networks are capable
of distinguishing unconventional phase transitions driven
by the emergence of topological defects. The prototypical
example for such a system is the two-dimensional
XY model, which exhibits a Kosterlitz-Thouless (KT)
transition [9]. Several unsupervised learning strategies
have been applied to this model previously, for
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example, it was found that principle component
analysis (PCA) [10] performed on spin configurations
captures the magnetization which is present in finite-
size lattices [11–13]. Even when trained directly on
vorticity, PCA is unable to resolve vortex-antivortex
unbinding, which is attributed to the linearity of this
method [12]. Similarly, variational autoencoders [14],
a popular tool for unsupervised learning based on
Bayesian inference, perform classification by learning a
bulk magnetization [11, 13, 15].

In contrast, efforts in supervised learning have been
more successful, although none have been applied
directly to the XY model. In Ref. [16], a convolutional
network trained on winding numbers correctly classified
interacting boson phases separated by a KT transition.
However, this same method failed when trained directly
on raw configurations. A related problem was explored
in Ref. [17], where the authors trained a convolutional
network directly on Hamiltonians of one-dimensional
topological band insulators labeled by their global
winding number. By inspecting the trained weights
the authors deduced that the network had learned to
calculate the winding number correctly.

In this paper, we apply several supervised machine
learning strategies to the task of identifying the KT
transition in the two-dimensional XY model. We ask
whether it is possible for a neural network, trained
only on raw spin states labeled by their phases,
to learn a representation that can be interpreted
as the local vorticity of the spin variables. First,
we compare supervised learning algorithms involving
feedforward and convolutional neural networks applied
to both unprocessed (raw spin configurations) as well as
processed input data (vorticity). We then use both types
of input data in the semi-supervised confusion scheme
from Ref. [7]. Lastly, we explore to which degree feature
engineering of the raw spin configurations is required,
and whether the network can learn to process the
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data into something resembling vortices using additional
convolutional layers.

Although is it possible to learn vortices, the network
can also perform its classification task to reasonable
accuracy by finding a local optimization minimum which
is unrelated to topological features. We conclude with a
discussion on the challenging task of seeing the vortex-
antivortex unbinding transition in the two-dimensional
XY model using machine learning techniques.

II. BACKGROUND

The classical XY model consists of unit spins with
nearest neighbor interactions given by

HXY = −J
∑
〈ij〉

cos (θi − θj) , (1)

where 〈ij〉 indicates that the sum is taken over nearest
neighbors and the angle θi ∈ [0, 2π) denotes the spin
orientation on site i. Although the Mermin-Wagner
theorem states that a long-range ordered (LRO) phase
cannot exist in two dimensions due to the coherence of
massless spin waves [18], the formation of topological
defects (i.e., vortices/antivortices) in the XY model
results in a quasi-LRO phase [9, 19]. The transition
between the low-temperature quasi-LRO phase with
an algebraically decaying correlation function and the
high-temperature disordered phase with an exponentially
decaying correlation function is a KT transition and the
associated temperature is denoted as TKT. Transitions
of this universality class can be found in a variety of
systems, with one of the most famous being the superfluid
transition in two-dimensional helium [20–22].

The topological defects in the XY model are quantified
through the vorticity v, defined as

v ≡
∮
C

∇θ · d~̀= 2πk, k = ±1,±2, ... , (2)

where C denotes any closed path around the vortex core
and k is the winding number of the associated spins. A
vortex is defined by positive winding number, k = 1, and
an antivortex by k = −1. On a lattice, the integral may
be approximated by the sum of the angle differences over
a plaquette. An example of a vortex and antivortex is
shown in Fig. 1.

Below TKT, vortex-antivortex pairs form due to
thermal fluctuations, but they remain bound to minimize
their total free energy. At TKT, the entropy contribution
to the free energy equals the binding energy of a pair,
triggering vortex unbinding which drives the KT phase
transition. The essential singularity of the free energy at
TKT means that all derivatives are finite at the transition.
For example, the specific heat is observed to be smooth
at the transition, with a non-universal peak at a T > TKT

which is associated with the entropy released when most
vortex pairs unbind [23]. While the thermodynamic limit

vortexantivortex

Figure 1. A example of a vortex and antivortex in the XY
model on the lattice. A vortex has winding number k = 1,
while an antivortex has k = −1.

of the XY model has strictly zero magnetization for all
T > 0, a non-zero value is found for systems of finite size
(see Fig. 2b) [24, 25].

One method to calculate TKT from finite-size data is
to exploit the Nelson-Kosterlitz universal jump [26, 27].
This is determined from where the helicity modulus,
Υ, crosses 2T

π . The helicity modulus, also called spin
wave stiffness or spin rigidity, measures the response of
a system to a twist in the boundary conditions (i.e.,
torsion). From the linearized renormalization group
(RG) equations, one can derive the finite-size scaling

behavior of the critical temperature T̃KT on a L×L lattice
to be

T̃KT(L) ≈ TKT +
π2

4c(logL)2
, (3)

with a constant c [26]. Fig. 2a shows the helicity
modulus Υ and the scaling of TKT derived from Monte
Carlo simulations. From our generated samples, we find
TKT = 0.899±0.06, which is consistent with the literature
value of TKT = 0.893 [24, 25, 28]. As shown in Fig. 2b,
the magnetization evaluated at the critical point, M |TKT ,
is of significant magnitude, and scales with L−1/8 as
expected [24], to within a 4% error.

In the next section, we explore which neural
networks can accurately distinguish the phases above
and below the thermodynamic temperature TKT. We
employ two standard network architectures motivated
by canonical problems in machine learning (such as
classification of the MNIST dataset) using XY spin
configurations for finite-size systems as input data.
Based on previous observations that conventional phase
boundaries estimated by supervised learning follow
established finite-size scaling [5], we compare the scaling

of T̃KT predicted by our neural networks with the
(logL)−2 form above.

III. METHODS & RESULTS

We study the binary classification of the two phases
of the XY model, labeling configurations as belonging
to either the low T < TKT or high T > TKT temperature
phases. Our goal is to confirm whether simple supervised
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Figure 2. Estimators of the XY model on a L × L lattice with periodic boundary conditions computed via Monte Carlo
sampling. (a) shows the helicity modulus for various lattice sizes L. The estimated critical point T̃KT is determined by the

Nelson-Kosterlitz universal jump where the helicity modulus, Υ, intersects the line 2T
π

. The inset shows how T̃KT scales with

(logL)−2 towards the thermodynamic TKT shown by the black dashed line. (b) shows the non-zero magnetization present in

the finite-size XY model. The magnetization vanishes as L− 1
8 in the thermodynamic limit with the scaling shown in the inset.

learning with neural networks is capable of correctly
classifying spin configurations according to these labels.
In particular, we wish to interpret whether the network
relies on the (finite-size) magnetization, or on topological
defects. Further, we inquire as to what specific network
architecture is required to achieve this goal and what
features different architectures may utilize.

We employ standard Monte Carlo simulation methods
to generate spin configuration of the XY model [29, 30].
For the training set, we generate 1000 configurations per
temperature, with 64 temperatures ranging from 0.1 to
3.0, for lattice sizes L = 8, ..., 64 in increments of 8. The
test set is generated separately, with 100 configurations
per temperature. From the training data, we randomly
select 10% for cross-validation, in order to decrease the
chance of overfitting and to identify a definitive stopping
point for training using early stopping [31–33].

The network is trained to minimize the loss function
L(ypred, ytrue), where ytrue represents the true binary
labels and ypred the predicted ones. We take the loss
function to be the standard cross entropy

L(ypred, ytrue) = −
∑
i

ytruei log ypredi . (4)

The parameters of the network (weights and biases) are
then optimized through backpropagation to minimize
the loss function on the training data [2]. Each
network is trained until the loss function evaluated on
the validation set fails to decrease after 50 training
epochs. Early stopping with cross-validation is
commonly used to choose the network parameters with
minimal generalization error [32]. We implement the
networks with the Keras library using the TensorFlow
backend [34, 35].

We employ two different standard network
architectures: a one-layer feedforward network (FFNN)
and a deep convolutional network (CNN). The FFNN
consists of one hidden layer of 1024 sigmoid activation

units and one sigmoid output unit. The CNN starts
with a two-dimensional convolutional layer consisting
of 8 filters of size 3 × 3 with rectified linear (ReLu)
activation functions. The output from this layer is
passed to another identical convolution layer with 16
filters before applying 2× 2 maxpooling. The network is
then reshaped and fed into a fully connected layer with
32 ReLu units and passed to a single sigmoid output
unit. Because there is a total of 1024L2 + 2049 trainable
parameters in the FFNN, it can be difficult to train
as compared to the 128L2 − 1024L + 3361 parameters
in the CNN. This is because the CNN explicitly takes
advantage of the two-dimensional structure of the input
to vastly improve performance. This architecture is
one of the simplest that can attain over 99% accuracy
on the standard MNIST dataset. In our experience,
changing the hyperparameters had negligible effect on
the accuracy.

A. Finite-size scaling of supervised learning

One goal in modern machine learning is to minimize
the amount of feature engineering required. In our case,
this corresponds to treating the raw spin configurations
as direct inputs to the neural networks. For the XY
model, this data is formatted as angle values, θi ∈ [0, 2π),
on an L× L lattice with periodic boundary conditions.

For a given spin configuration, the output value of
the final neuron in the network gives the probability
of the configuration belonging to the low- (or high-
) temperature phase. Due to thermal fluctuations,
it is difficult to accurately classify states near the
critical point. In accordance with intuition about phase
transitions, we take the point where the probability is
exactly 0.5 to be the inferred critical temperature T̃KT.
This is further established in Ref. [[5]] where the authors
show that this point scales with the correct correlation
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Figure 3. Finite-size scaling of the predicted TKT for FFNN and CNN trained on either (a) raw spin configurations, or (b)
the vorticity. In either case the FFNN performs worse than the CNN according to the test classification accuracy (insets). The
critical temperature is determined by the point where the sigmoid output, as a function of temperature, crosses 0.5. Each data
point and variance is obtained by training 10 networks with stochastic gradient descent until the validation loss function fails
to improve after 50 epochs (early stopping).

length critical exponent and predicts the thermodynamic
critical temperature accurately for the Ising model. In
that case, training a FFNN with a single hidden layer
of 100 sigmoid units was sufficient (100L2 + 202 total
parameters) to achieve high classification accuracy and
correctly predict the critical temperature.

Similarly, we study the performance of both a FFNN
and a CNN in predicting TKT for the XY model. To get an
estimate for the statistical variance, the training process
is repeated ten times with different validation sets.

As illustrated in the inset of Figure 3a, the FFNN has
low classification accuracy (i.e., percentage of correctly
classified configurations) for L > 48. This results in

the very poorly predicted critical temperature, T̃KT, in
the main plot. In contrast, the accuracy of the CNN
continually improves as L increases. However, as evident
from Fig. 3a, there is no clear finite-size scaling trend
in the predicted TKT. To interpret this we note that
for each system size, the network is supervised on the
thermodynamic value of TKT. Thus, we speculate that
each network could simply be learning to discriminate
phases based on a robust, global feature which takes a
unique value above and below TKT for any L.

Based on previous experience, a global magnetization
is a feature very easily detected in a supervised learning
scheme [5, 6, 8]. Since the finite-size configurations of the
XY model themselves contain a non-zero magnetization
at T > 0 (see Fig. 2b), it is reasonable to hypothesize
that the CNN simply learns this threshold value of the
magnetization for each system size separately. Because
of the Mermin-Wagner theorem, however, it is known
that a global magnetization is not a relevant feature for
TKT in the thermodynamic limit. Thus, in this case,
some amount of feature engineering is crucial to achieve
our goal of detecting a phase transition mediated by
topological defects.

In the next step, we preprocess the spin configurations
into the associated vorticity and train the networks on

these configurations. To calculate the vorticity, one
computes the angle differences ∆θij ∈ [−2π, 2π] between
each pair of neighboring spins i and j on a plaquette and
converts these to the range (−π, π]. This can be done by
applying the sawtooth function,

saw(x) =


x+ 2π, x ≤ −π,
x, −π ≤ x ≤ π,
x− 2π, π ≤ x,

(5)

to each ∆θij . The sum of the rescaled angle differences
gives the vorticity from Eq. (2).

Trained on the vortex configurations, Fig. 3b shows
that both the FFNN and CNN achieve high accuracy
and scale with L towards the correct value of TKT.
However, once again we observe that the FFNN begins to
perform poorly for L > 32, whereas the CNN continually
improves. We note that the scaling seems consistent with
Eq. (3), particularly for the CNN. However, from this
scaling alone, we cannot determine precisely what the
CNN learns. For example, it could potentially classify the
phases based on the sum of the squared vorticity (which
is approximately zero below TKT), or it might represent a
more complicated function such as the average distance
between vortex-antivortex pairs. Regardless, the scaling
behavior may serve as a useful diagnostic to determine
whether a given network is learning bulk features or
topological effects.

B. Learning by confusion

We further investigate the difference between training
on spin configurations and vortex configurations by
employing a confusion scheme [7, 36]. Learning by
confusion offers a semi-supervised approach to finding the
critical temperature separating two phases by training
many supervised networks on data that is deliberately
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Figure 4. The learning by confusion scheme for a CNN applied to: (a) raw spin configurations, (b) vorticity configurations.
The test accuracy is expected to form a ∨∨ shape with the center peak at T ∗ = TKT. In (c), the peak in specific heat (Cv) is
compared to the peak of the test accuracy for a system of size L = 64. The dashed vertical line shows the thermodynamic TKT.

mislabeled. The binary label ‘0’ is assigned to a
configuration if its temperature is less than a proposed
T ∗ and ‘1’ otherwise. A new network is trained on
each new labeling of the data, (i.e., for each T ∗). It
is expected that the highest accuracy is achieved when
the labeling is close to the true value, and, trivially, at
the end points. This results in a ∨∨ shape when plotting
the test accuracy as a function of T ∗ [7]. The peak on
either endpoint can be attributed to the network being
trained and tested exclusively on one class, in which case
it will always place test data into that class. The key
assumption in the confusion scheme is the existence of a
true physical labeling of the data which the network is
capable of learning more accurately than false labellings.

Since we have shown that the CNN is more successful
at classification than the FFNN, we only consider the
CNN for the present confusion scheme. The results of
training on raw spin and vortex configurations are shown
in Fig. 4. Learning on the raw spins results in a −∨
shape rather than the expected ∨∨. As mentioned above,
the finite-size XY model has a non-zero magnetization
for T < TKT and this algorithm can easily classify any
division T ∗ < TKT by a threshold magnetization. This
supports our hypothesis from section III A that trained
on raw spins, a CNN learns the magnetization.

When trained on vortices, the expected ∨∨ shape
emerges, although it is skewed because we choose our
training data from a nonsymmetric region around TKT.
Despite having a powerful deep network, it is unable to
learn any arbitrary partition and performs best near TKT.
This may be attributed to the fact that for low T , the
vortex configurations are fundamentally similar; there
are few vortices and they are logarithmically bound. This
is in contrast with the raw spin configurations which may
possess distinguishing features like the magnetization.
Near TKT, the network can distinguish the phases with
high accuracy because of the true physical partition
due to vortex unbinding. At high T ∗ the vortex
configurations look sufficiently random that the network
again misclassifies for an arbitrary partition.

We also observe significant finite-size effects in the
∨∨ and −∨ shape, both broadening and shallowing with
increasing L. The finite-size scaling behavior of the

peak does not trend towards TKT in the vortex case, but
rather always stays above it, similar to the specific heat
peak (see Fig. 4c). Surprisingly, in Fig. 4c, we see the
confusion scheme achieves higher accuracy at T ∗ ≈ 1
than TKT = 0.89, which indicates that the false T ∗ ≈ 1
phase boundary is easier for the network to learn than the
temperature T̃KT predicted by the universal jump. While
this effect might disappear in the thermodynamic limit,
it is still troubling. Matters are even worse for training
on raw spins since all T ∗ < TKT have accuracy greater
than 98.5% for L = 64, so it is even unclear where T̃KT

is.
For finite-size systems, the test accuracy curve will

never go flat. The reason is that a single spin
configuration does not unique belong to a particular
temperature, but rather it occurs probabilistically for all
temperatures (although perhaps infinitesimally). This
will always results in some classification error. In
particular, for isotropic or highly thermal regions, it is
impossible to accurately correctly classify states, and
therefore a ‘V’ shape occurs. For other regions, the curve
will go flat in the thermodynamic limit. Interestingly
the confusion scheme inadvertently tells us information
about the variances in possible temperatures of a state.

The confusion scheme for the XY model offers insight
into what our CNN prefers to learn. In the case of
the raw spin configurations, we infer that it learns the
finite magnetization of the spin configurations instead of
topological features. Near TKT, the network trained on
vortices achieves slightly higher accuracy (see Fig. 4c);
therefore, in this case, the network would benefit from
learning vortices. Despite this argument, we stress that
we have no strong evidence that our CNN is even capable
of finding vortices. To address this, in the next section we
propose a custom network designed for vortex detection
and test if it works in practice.

C. Custom architecture for learning vortices

In the previous sections, we compared networks trained
on the raw spin configurations to those trained on vortex
configurations which were constructed manually (i.e.,
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feature-engineered). We now explore the possibility
of a custom network architecture designed specifically
for learning vortices as an intermediate representation,
before performing classification. It is one of the
remarkable features of deep neural networks that each
layer may represent a new level of abstraction [3, 4,
37]. For example, in facial image recognition, the first
convolution layer may extract edges, while the final layer
encodes complex features such as facial expressions [1].
We aim to design a network which may similarly be
interpreted as representing vortices in an intermediate
layer.

Below, we derive the appropriate weights for a three-
layer network which computes the vorticity from input
spin configurations. The entire network is visualized
in Fig. 5. The first layer, which acts on the input
angle values, θi, is a convolution layer with four 2 × 2
convolution filters given by

K1 =

[
−1 1
0 0

]
, K2 =

[
0 −1
0 1

]
, (6)

K3 =

[
1 0
−1 0

]
, K4 =

[
0 0
1 −1

]
.

The effect of these filters is to compute the nearest
neighbor angle differences, ∆θij , within each plaquette.
The next layer we apply is hard-coded to map the angle
differences, ∆θij ∈ [−2π, 2π], into the range [−π, π).
This is done by applying the sawtooth function from
Eq. (5) to each element in the (L,L, 4)-dimensional
array. The final processing layer computes a weighted
sum of the four angle differences by applying a single
1 × 1 convolution filter. Uniform weights with zero
biases would compute the vorticity exactly up to a
multiplicative constant.

While the network described above is capable of
representing vortices within an internal layer (vorticity
layer in Fig. 5), it might fail to do so in practice. To
explore this we consider three possible variations of the
initializations of the network parameters.

The first variation consists of fixing the weights (and
biases) in the first three layers such that the network
computes the vorticity exactly. This is, of course,
engineering the relevant features by hand; however, it
provides a useful benchmark. The second variation is
performed by initializing the weights exactly to those
of the fixed network, then relaxing the constraints as
training is continued. This step shows whether the
original (vortex) minimum is stable. The third variation
is simply the naive choice where the network parameters
are initialized randomly.

For all three variations, we train for binary
classification by minimizing the cross-entropy loss from
Eq. (4). Each network is trained 10 times with different
validation sets. As per Section III A, we implement early
stopping to terminate training once the loss function on
the validation set fails to improve after 50 epochs. We
train on lattice sizes from L = 8, ...72 in increments of 8.

Input
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⊗w1 ⊗w2 ⊗w3 ⊗w4

v ...

... . . .

Vorticity

Figure 5. Visual representation of how the custom network
architecture can compute the vorticity. We denote the
convolution operation with ⊗, and ignore biases for the
purpose of the diagram. Applying the four 2 × 2 filters, Ki,
partitions the data into four L×L arrays where each element
is an angle difference in one lattice direction, ∆θij . The angle
differences are then converted into the range ∆θij ∈ [−π, π)
by applying the sawtooth function from Eq. (5). A single 1×1
convolution filter with weights w = [1, 1, 1, 1] and zero biases
then sums the four shifted angle differences into the vorticity.

We can understand the three variations by looking at
the loss function evaluated on the test set as in Fig. 6.
For small L, the loss function of the fixed network is much
larger than the others, indicating that it is not beneficial
to represent the vortices for L < 16. In this small-lattice
region, learning vortices hinders classification. However,
near L ∼ 32 the fixed network outperforms the other
two. Hence, we conclude that only for the large-lattice
region, L > 32, is it beneficial for a network to learn
an intermediate representation of the vorticity. This
also agrees with the findings in Ref. [12] in which the
topologically-invariant winding number could be learned
for systems of size L > 32.

We can check what each network learns by looking
at the histogram distribution of the outputs of the
vorticity layer in Fig. 5. For the fixed network, we
would see exactly integral quantities corresponding to the
quantized vorticity. For the vortex-initialized network,
Fig. 7 shows that for small L, it does not learn the true
vorticity distribution, but for L ≥ 32 it does. This is
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vorticity is not quantized, indicating that the network did not
learn to compute the local vorticity; however, for large L, the
histogram looks as expected for vortex detection. Conversely,
the distribution in (b) is appears unrelated to vortices for any
L.

consistent with the hypothesis that learning vortices is
only beneficial for L > 32. The randomly initialized
network does not produce a histogram consistent with
the learning of vortices for any system size studied.

Interpreting the behavior of the neural network for
large L is not straightforward. As Fig. 6 shows, the
model with fixed features and fewer trainable parameters
performs better for large L. This can likely be attributed
to a lower-dimensional optimization landscape. We
cannot conclude whether the vortex representation is
a global minimum for the fully adjustable (randomly
initialized) network variation. While it certainly
performs best in fixed computational time, the higher
dimensionality of the adjustable network may have
another global minimum not present in the lower-
dimensional case. We can claim, however, that the vortex
minimum is at least a stable local minimum since a
network initialized to it never escapes, as demonstrated
by the initialized variation for large L in Fig. 6.

Adding a custom regularization term could potentially
alter the optimization landscape to aid the network
in detecting vortices. One method would be to
enforce integral quantities for an intermediate output
of the network, but in our attempts, this results in
the intermediate quantity peaked sharply around zero.
There is also the possibility of adding a regularization
to the initial kernels to learn only nearest neighbors
interactions, but this is overly restrictive and defeats the
purpose of automated machine learning.

IV. CONCLUSION

In this paper, we asked whether it is possible for
a neural network to learn the vortex unbinding at
the KT transition in the two-dimensional classical XY
model. We demonstrated the significant effects that
feature engineering and finite lattice sizes have on the
performance of supervised learning algorithms.

Treating spin configurations as raw images and
training on the thermodynamic value for TKT, we
found that naive supervised learning with a feedforward
network failed to converge to an accurate estimate for
the KT transition temperature for moderate lattice sizes
(L ≈ 32). Conversely, a convolutional network performed
consistently well with increasing L. Since the prediction
of TKT from the convolutional network was insensitive
to L, we inferred that the network extracted features
related to the magnetization, which are present in any
finite-size lattice. This conclusion was further supported
by the observation that in the confusion method any false
phase boundary T ∗ below TKT could easily be learned by
a network when trained on the raw spin configurations.

By preprocessing the spin configurations into vorticity,
both network architectures displayed finite-size scaling
behavior consistent with the thermodynamic value of
TKT. In particular, the performance of the convolutional
network continually improved as the system size
increased, whereas the one-layer network’s performance
plateaued around L = 32. When the confusion scheme
was trained on vortices it did not predict the correct
critical temperature; instead, the test accuracy reached
a maximum near T ∗ ≈ 1. This demonstrates the need
for further study of the confusion scheme for the semi-
supervised learning of phase transitions.

We further explored if such extreme feature
engineering could be relaxed while retaining acceptable
accuracy. We devised a deep-layered structure of weights
that could be constrained to extract vortices from the
raw spin configurations or left free to explore other
minima in the learning process. We found that it is
beneficial for the network to discover vortices only for
lattices with of over 1000 spins. Yet, even for large
system sizes, a randomly initialized network settled into
a local minimum not related to vortices. It is likely that
the optimization landscape of our designed network is
sufficiently rough so that stochastic gradient descent
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would take exponentially long to find a minimum where
the learned features correspond to vortices.

The difficultly that these standard supervised learning
techniques have in discriminating the phases of the
XY model underscores the challenge that unsupervised
learning techniques could face in learning the KT
transition from unlabeled data. Our work emphasizes
the need for further study into how much feature
engineering is required before topological features can be
used reliably for the machine learning of unconventional
phases and phase transitions.
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