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We have developed a formalism of the exact solution to linearized phonon Boltzmann transport equation
(BTE) for thermal conductivity calculation including three- and four-phonon scattering. We find strikingly
high four-phonon scattering rates in single-layer graphene (SLG) based on the optimized Tersoff potential.
The reflection symmetry in graphene, which forbids the three-ZA (out-of-plane acoustic) scattering, allows the
four-ZA processes ZA+ZA
ZA+ZA and ZA
ZA+ZA+ZA. As a result, the large phonon population of the
low-energy ZA branch originated from the quadratic phonon dispersion leads to high four-phonon scattering
rates, evenmuch higher than the three-phonon scattering rates at room temperature. These four-phonon processes
are dominated by the Normal processes, which lead to a failure of the single mode relaxation time approximation.
Therefore, we have solved the exact phonon BTE using an iterative scheme and then calculated the length- and
temperature-dependent thermal conductivity. We find that the predicted thermal conductivity of SLG is lower
than the previously predicted value from the three-phonon scattering only. The relative contribution of the ZA
branch is reduced from 70% to 30%when four-phonon scattering is included, consistent withmolecular dynamics
simulations. Furthermore, we have demonstrated that the four-phonon scattering in multi-layer graphene and
graphite is not strong due to the ZA splitting by interlayer van der Waals interaction. We also demonstrate that
the five-phonon process in SLG is not strong due to the reflection symmetry.

I. INTRODUCTION

Graphene has attracted intense interest for both fundamen-
tal research and practical applications 1–4 due to its unique
structure and extraordinary properties. The two-dimensional
honeycomb structure, zero bandgap and strong sp2 bond en-
dow graphene with unique electronic5,6, thermal 7–9, optical 10
and mechanical 11 behaviors. For instance, the high mobility
and long phononmean free path result in small heat generation
and a high thermal conductivity 8,9,12–14, which is potentially
helpful for heat dissipation in nano devices with shrinking
package sizes 15.

Extensive theoretical studies have been carried out to ex-
plain the high thermal conductivity and to gain insight into
the spectral phonon transport 2,3,16 in single-layer graphene
(SLG). Lindsay and co-workers optimized the classical C-C
interatomic potentials and obtained the phonon dispersions
and anharmonic properties which agree excellently with first
principle calculations based on the density functional theory
(DFT) 17. Molecular dynamics (MD) simulations based on
the optimized potentials yield a thermal conductivity of 1100-
2900 W/mK for graphene at room temperature 18–20, which
agrees better with the experimental values. Nevertheless, the
classical MD simulation results need to be used with caution
due to the ignorance of quantum effects in specific heat and
the phonon distribution function since the room temperature is
far below the Debye temperature of graphene, which is about
1000-2300 K 21. More precisely, Lindsay and co-workers 22,23
solved the linearized BTE based on the third-order interatomic
force constants (IFCs) and obtained a size dependent thermal
conductivity of graphene of 1500-3500 W/mK for 1-10 µm.
They found that although the Normal (N) scattering does not
contribute directly to thermal resistance it can significantly af-
fect the Umklapp (U) scattering and thus plays an important
role in determining thermal conductivity. Besides, they identi-

fied the reflection symmetry in single-layer graphene and found
that it could restrict the phase space for parts of the scattering
between the out-of-plane modes and in-plane modes. As a re-
sult, ZA phonons have significantly long relaxation times and
thus dominate the thermal transport, contributing to over 70%
to the total thermal conductivity. In contrast, MD simulations
only predicted 30% contributions from ZA 3,16,18,24,25.
Although BTE calculations avoid the limitation of the clas-

sical nature in MD simulations, they are still under debate
since they only include three-phonon scattering in the calcula-
tion of phonon relaxation times. The ignorance of four-phonon
scattering has been found to produce significant inaccuracy in
anharmonic bulk materials 26,27. It is interesting to find out the
role of four-phonon scattering in the thermal transport in the
two-dimensional material, graphene. The four-phonon scatter-
ing calculation formalism based on the single mode relaxation
time approximation (SMRTA) has already been presented and
applied to bulk materials in our previous work 26,27. However,
as indicated by Lindsay et al. 22,23, the SMRTA improperly
takes N processes as a direct thermal resistant source and thus
leads to an overestimation of scattering rates especially in the
materials like graphene in which the N processes dominate.
Thus, an iterative scheme has been developed to exactly solve
the linearized phonon BTE to replace the SMRTA 16,28. To ad-
dress the importance of four-phonon scattering, it is necessary
to include four-phonon scattering into the iterative scheme.
However, the calculation of the SMRTA four-phonon scatter-
ing is already a large challenge 26,27, involving it into the iter-
ative scheme could increase the challenge to an inaccessible
level.
The manuscript is organized as follows. In Sec. II, we

present the iterative method to exactly solve the linearized
phonon BTE that includes four-phonon scattering. In Sec. III,
we describe the setup of our calculations and demonstrate the
technical details in the methods of enhancing the efficiency of
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the calculations without losing any accuracy. In Sec. IV, we
give the results and discussions including the role of the reflec-
tion symmetry in four-phonon scattering (IVA), the ultra-high
four-phonon scattering rates in SLG (IVB), the dominant N
processes in three- and four-phonon scattering (IVC), the ther-
mal conductivity reduction after introducing the four-phonon
scattering given by the iterative scheme (IVD), the relative
thermal conductivity contribution of each branch (IVE), and
further discussions on the four-phonon scattering inmulti-layer
graphene and graphite as well as the five-phonon process in
SLG (IVF). The conclusions are given in Sec. V. In Appendix
A, we show the details of the derivation of the solution to
linearized phonon BTE. In Appendix B, we summarize the
important Hamiltonians that determine the phonon scattering
probabilities from the literature.

II. EXACT SOLUTION TO LINEARIZED PHONON
BOLTZMANN TRANSPORT EQUATION

In the perturbation theory, the steady-state phonon BTE
describes the balance of the phonon population between the
diffusive drift and the scattering as 29–31:

vλ · ∇nλ =
∂nλ
∂t
|s, (1)

where λ labels the phonon mode (k, ν) with k representing the
wave vector and ν representing the dispersion branch, vλ is the
group velocity, and nλ is the phonon occupation number. In
Ref. 26, we have obtained the phonon relaxation time solution
to Eq. (1) within the framework of the SMRTA by including
the three-phonon and four-phonon scattering rates in the scat-
tering term on the right hand side of Eq. (1). However, when
N processes dominate the phonon transport, which reaches
a collective regime with non-equilibrium distribution 32, the
SMRTA is not appropriate anymore. Such a phenomenon re-
sults from the fact that the N processes contribute indirectly
to the thermal resistance by influencing the U processes. And
thus, a direct summation of the N and U scattering rates in
the SMRTA is an inaccurate description of the thermal resis-
tance. At this stage, an exact solution to the linearized phonon
BTE 22,28,33 beyond the SMRTA is required.
For generality, we include the three-phonon, four-phonon,

isotope, and boundary scattering processes in the scattering

term on the right hand side of Eq. (1). With the detailed
derivation given in the AppendicesA and B, the final solution
of the spectral phonon relaxation time is

τλ = τ
0
λ(1 + Ξ3,λ + Ξ4,λ + Ξiso,λ). (2)

Here τ0
λ is the SMRTA based phonon relaxation time 26 with
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which consists of the SMRTA based individual three-phonon,
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1
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iso,λ

=
∑
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Liso, (6)

1
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=
2|vλ,x |

L
+

2|vλ,y |
W

1 − p
1 + p

, (7)

where n0
λ = [exp(~ωλ/kBT)−1]−1 is the phononBose-Einstein

distribution function. In Eq. (4), the two terms on the right
hand side represent the processesλ→ λ′+λ′′ andλ+λ′→ λ′′,
respectively. In Eq. (5), the three terms on the right hand side
represent the processes λ→ λ′+λ′′+λ′′′, λ+λ′→ λ′′+λ′′′

and λ+ λ′+ λ′′→ λ′′′, respectively. In Eq. (6), the right hand
side indicates the elastic scattering process λ→ λ′. In Eq. (7),
L and W represent the length and width of the material in the
x and the y directions, respectively, assuming that the heat
transport is along x direction. 0 ≤ p ≤ 1 is the specularity
parameter with p = 0 indicating the extremely rough boundary
and p = 1 indicating the mirror-like boundary. Ξ3,λ, Ξ4,λ, and
Ξiso,λ are defined as
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∑
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Ξiso,λ =
∑
λ′

τλ′ξλλ′Liso, (10) and ξλλ′ , ξλλ′′ and ξλλ′′′ are defined as

ξλλ′ ≡
ωλ′

ωλ

vλ′ ·∇T
vλ ·∇T

=
ωλ′vλ′x
ωλvλx

, (11)
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ξλλ′′ ≡
ωλ′′

ωλ

vλ′′ ·∇T
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=
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, (12)
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, (13)

where vλx is the phonon group velocity component in the heat
transport x direction. Since both the left and the right hand
sides contains the unknown τλ, Eq. (2) is solved iteratively
and thus is also called the iterative scheme. The scattering
probability matrices

L± =
π~

4N

���V(3)± ���2∆± δ(ωλ±ωλ′−ωλ′′)
ωλωλ′ωλ′′

, (14)

L±± =
π~

4N
~

2N

���V(4)±±���2∆±± δ(ωλ ± ωλ′ ± ωλ′′ − ωλ′′′)ωλωλ′ωλ′′ωλ′′′
, (15)

Liso =
π

2N
ωλωλ′

n∑
b

gb |eλb · e
λ′∗
b |

2δ(ωλ − ωλ′), (16)

are given by the Fermi’s Golden Rule based on the corre-
sponding Hamiltonians shown in AppendixB. N is the to-
tal number of k-points or primitive cells. The Kronecker
deltas ∆± = ∆k±k′−k′′,G and ∆±± = ∆k±k′±k′′−k′′′,G describe
the momentum selection rule (MSR) and have the prop-
erty that ∆m,n = 1 (if m = n), or 0 (if m , n), where
G is a reciprocal lattice vector with G = 0 implying the
Normal (N) process and G , 0 the Umklapp (U) pro-
cess. The delta functions in Eq. (14), (15) and (16) describe
the energy selection rules (ESRs) ωλ ± ωλ′ − ωλ′′ = 0,
ωλ ±ωλ′ ±ωλ′′ −ωλ′′′ = 0, and ωλ −ωλ′ = 0, respectively. In
Eq. (16), gb =

∑
i fib(1 − mib/m̄b)

2 measures the mass disor-
der, where i indicates the isotope types, fib is the fraction of
the isotope i in the lattice sites of the basis atom b, mib is the
mass of the isotope i, m̄b is the average atom mass of the basis
b sites. The transition probability matrices V (3)± and V (4)±± are

V (3)± =
∑

b,l′b′,l′′b′′

∑
αα′α′′

Φ
αα′α′′

0b,l′b′,l′′b′′
eλ
αb

e±λ
′

α′b′
e−λ

′′

α′′b′′
√

m̄bm̄b′m̄b′′
e±ik

′·rl′ e−ik
′′·rl′′, (17)

V (4)±± =
∑
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∑
αα′α′′α′′′

Φ
αα′α′′α′′′

0b,l′b′,l′′b′′,l′′′b′′′
eλ
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′

α′b′
e±λ

′′
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′′ ·rl′′ e−ik

′′′ ·rl′′′, (18)

where b, l, and α label the indexes of the basis atoms, the
unit cells, and the directions, respectively. Φαα′α′′0b,l′b′,l′′b′′ and
Φαα

′α′′α′′′

0b,l′b′,l′′b′′,l′′′b′′′ are the third-order and the fourth-order inter-
atomic force constants (IFCs). eλ

αb
is the phonon eigenvector

component. rl is the position vector of the lth unit cell. The
phonon frequencies ωλ and eigenvectors e are determined by
diagonalizing the dynamical matrix

Dαα′

bb′ (k) =
1

√
mbmb′

∑
l′

Φ
αα′

0b,l′b′e
ik·rl′, (19)

where Φαα′0b,l′b′ is the 2nd order IFC.
The thermal conductivity is given by

κx =
1
V

∑
λ

v2
x,λcλτλ (20)

where V is the volume, cλ = ~ωλ∂n0
λ/∂T is phonon specific

heat per mode, and the summation is done over all the 3Nnb
modes with nb representing the number of basis atoms in a
primitive cell.

The formalism is applicable for one, two and three-
dimensional crystals, and here we take graphene as an example

for demonstration. The calculation for three-dimensional ma-
terials are more time-consuming.
The exact BTE solves all the phonons’ scatterings simul-

taneously beyond the SMRTA. All the phonons are in their
natural states, and their collective behavior is naturally cap-
tured. In SMRTA, a phonon mode is depopulated while all
the final states are repopulated isothermally after a scattering
process. Therefore, the phonons seem independent to each
other. In contrast, in the exact BTE, each phonon’s final state
is coupled with all the other phonons’ initial states. The results
of former scattering events can affect the current scattering of
all the other phonons. This can be seen from Eqs.(8)-(11),
in which all the phonon modes are coupled with each other
and the equations has to be solved via iteration. Especially
when N process dominates (the momentum is conserved after
scattering events), there are a large portion of phonon kicking
each other to move forward continually. Such influence re-
sults in a collective motion of phonons, or so called relaxon34.
We note that some interesting works have been done on the
cross-correlation terms of the phonon normal modes in Green-
Kubo method35,36, and they can also determine the collective
phonons’ contribution. However, their method is different
from the exact solution to BTE as the latter can separate clearly
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the thermal conductivity contribution of each phonon branch
while the former couples different modes’ contributions to-
gether. Nevertheless, it is of great interest to further explore
their relations.

III. CALCULATION DETAILS

The IFCs Φαα′0b,l′b′ , Φ
αα′α′′

0b,l′b′,l′′b′′ and Φ
αα′α′′α′′′

0b,l′b′,l′′b′′,l′′′b′′′ are calcu-
lated by using the center finite difference method based on
the optimized Tersoff potential 17, which has been shown to
describe the anharmonic and other properties as accurately as
DFT calculations for graphene 17. In our work, the size of the
k-mesh is 40×40. The lattice constant is taken as 2.492 Å 17.
The dispersion relation in high-symmetric directions (Γ-M-K)
is shown in Fig. 1, which are identical to that given by Ref. 17.

Each fourth-order IFC (4-IFC) value requires double amount
of computations of each third-order IFC (3-IFC). In Eqs. (17)
and (18), the total required numbers of the 3-IFCs Φαα′α′′0b,l′b′,l′′b′′

and 4-IFCs Φαα′α′′α′′′0b,l′b′,l′′b′′,l′′′b′′′ are 27N2n3
b
and 81N3n4

b
, respec-

tively. V (3)± and V (4)±± are phonon mode dependent and have the
dimensions of 3Nnb×3Nnb and 3Nnb×3Nnb ×3Nnb , respec-
tively. To sum up, the computational cost of the four-phonon
scattering rate is about 9N2n2

b
of the three-phonon scattering

rate. In our work N = 1600, the required amount of memory
and time in the calculation of the four-phonon scattering rate is
about 9 × 107 times of the three-phonon scattering rate which
seems impossible.

Several ways have been used to reduce the computational
cost without losing accuracy. First, the IFC matrices contain
a large number of zero elements which can be excluded in
advance to reduce the computational cost. In our calculations,
the ratios of the numbers of nonzero elements in the 3-IFC
matrix and 4-IFC matrices are only about 10−7 and 10−11 re-
spectively. Second, the IFC matrices are symmetric about the
indices, i.e., Φxyzx

1234 = Φ
xxyz
1423 , which can further reduce the

computational cost. This technique benefits the first princi-
ples approach more, where the calculation of the IFCs is the
most time-consuming part. Third, in the calculations of L±
and L±± in Eqs. (14,15), the computational cost can be largely
reduced by excluding in advance the combinations that do not
satisfy the MSR and ESR. For graphene, the computational
cost can be further reduced by the reflection symmetry selec-
tion rule (RSSR), which is discussed in the following section.
In addition, in the calculation of the relaxation times, the com-
putation is reduced by about 3/4 by that fact that the k points
in the first quadrant in the BZ have the same relaxation times
with the other three quadrants.

Equation (2) is actually a system of 3Nnb linear equations,
which is solved by iterations. During the iteration the results
can easily diverge37. In our work, we use the Gauss-Scidel
method to do the iteration which is found to converge better
and faster than the Jacobi method.

IV. RESULTS AND DISCUSSIONS

A. Reflection symmetry in three and four-phonon processes

For all the orders of phonon-phonon scattering, Lindsay
et al. found that the RSSR in 2D materials forbids all the
phonon-phonon scattering processes that involve an odd num-
ber of flexural (out-of-plane)modes 22. Thus, the three-phonon
processes may involve 0 or 2 flexural modes, while the four-
phonon processes may involve 0, 2 or 4 flexural modes. Lind-
say et al. has examined numerically that in graphene the
three-phonon scattering rates of the processes that involve odd
numbers of flexural modes are zeros 22. In this work, we have
verified numerically that such four-phonon scattering rates are
zeros as well by the direct computation of Eq. (5).
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FIG. 1: The dispersion relation of graphene given by Eq. (19) using
the optimized Tersoff potential. The green dashed line indicates that
the thermal energy level at room temperature kBT is not far above
the energy ~ω of most phonons, and thus the classical quantities are
not comparable to quantum quantities.

The RSSR is a unique property for 2D materials, and the
study of how many scattering processes are forbidden by the
RSSR is of great interest 22. In Fig. 2, we show the percent-
age of the number of the processes that are forbidden purely
by the RSSR, with MSR and ESR being already satisfied, as
a function of the reduced wave vector (Γ-M). We find that
most (60%-90%) of the three-phonon scattering processes of
the ZA branch are forbidden by the RSSR, which allows ZA
phonons high three-phonon relaxation times and a large con-
tribution to the thermal conductivity as described in Ref. 22.
Compared to the three-phonon scattering, less (about 40%)
four-phonon scattering processes of the ZA branch is forbid-
den by the RSSR, especially at low frequencies. This may
result in a different conclusion to the relaxation time and the
thermal conductivity contribution of the ZA phonons. Sim-
ilar case is also observed for the TO and LO branches, e.g.,
60%-90% of the three-phonon processes are forbidden while
only 30%-40% for the four-phonon processes. Different trend
is found in the TA and LA branches, in which more percentage
of four-phonon processes is forbidden than the three-phonon
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FIG. 2: The percentages of the numbers of processes that are purely
forbidden by the RSSR. The main figure and the inset show the
acoustic and the optical branches, respectively. Triangles represent
three-phonon processes, and squres represent four-phonon processes.

TABLE I: The four-phonon scattering processes involving the ZA
mode at k∗=(0.25,0,0), which is labeled as ZA0. Note that M point
is at k∗=(0.5,0,0). X stands for the modes other than the ZA branch,
i.e., any combination of TA, LA, TO, LO, and ZO.

ZA0 other 3 modes available combinations scattering rate
ZA0+ 3X 2630398 1.5×10−5 ps−1

ZA0+ ZA + 2X 6013776 7.6×10−4 ps−1

ZA0+ ZA + ZA + ZO 201815 4.6×10−5 ps−1

ZA0+ ZA + ZA + ZA 287777 0.487 ps−1

processes at low frequencies. In addition, at the medium-to-
high frequencies, the three-phonon scattering and four-phonon
scattering are generally forbidden by 50-70% and 35%-50%,
respectively, for all the six branches.

B. High four-phonon scattering rates based on SMRTA

The room-temperature three- and four-phonon scattering
rates, (τ0

3,λ)
−1 and (τ0

4,λ)
−1, as a function of reduced wave vec-

tor from Γ to M are shown in Fig. 3 (a). Astonishingly, we find
that the four-phonon rates are comparable to or even much
higher than the three-phonon rates, even at room temperature,
especially for the ZA, TO and LO branches. For instance, the
three-phonon rates of the ZA branch are typically below 0.08
ps−1 while the four-phonon rates are about 0.42-2 ps−1, which
indicates the relaxation time of ZA mode at room tempera-
ture is about 0.5-2 ps, far below expectation. Both N and U
processes are found to follow the temperature dependence of
(τ0

3,λ)
−1 ∼ T and (τ0

3,λ)
−1 ∼ T2, not shown here26,27. Those

temperature dependences indicate that the four-phonon pro-
cesses play a more important role at higher temperatures. At
700 K, the four-phonon rates of the ZA, TO and LO branches
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FIG. 3: (a) The three-phonon and four-phonon scattering rates, τ−1
3(N ),

τ−1
3(U), τ

−1
4(N ) and τ

−1
4(U) of the six branches with respect to the reduced

wave vector (Γ-M) at 300 K. (b) The weights of U processes for
the three acoustic branches: τ−1

3(U)/τ
−1
3(tot) [black solid triangles],

τ−1
4(U)/τ

−1
4(tot) [pink solid squares].

reach even above 10 ps−1, being 2-3 orders higher than the
three-phonon rates. Those results break the general rule in
bulk materials that four-phonon scattering is more important
in more strongly anharmonic materials 26,27, while graphene is
a relatively strongly harmonic material. Such a phenomenon
indicates a significant difference between 2D and bulk mate-
rials. We note that the branches (ZA, TO and LO) that have
extraordinarily high four-phonon rates are those that are forbid-
den relatively fewer four-phonon than three-phonon processes
by the RSSR as shown in Fig. 2.
To look into the reason for the high four-phonon scattering

rate in computational aspect, we find that although the proba-
bility of each four-phonon scattering process is extremely low,
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FIG. 4: Collective four-phonon transport in graphene. (c) The popula-
tion of the ZA phonons is significantly higher than the other phonons,
especially in the low-frequency region.

the phase space allows a great number of such processes to hap-
pen. Specifically, for each phonon mode the three selection
rules allow about ∼ 102 numbers of three-phonon processes
while allow about 106 − 107 four-phonon processes.

To gain physical insights into the ultra-high four-phonon
scattering rates of the ZA mode, we have looked into the
detailed scattering processes involving it. Taking the ZA
mode at k*=(0.25,0,0), the middle point of ΓM, labeled as
ZA0, as an example, we investigate the scattering rates of all
the possible four-phonon processes as shown in Table I. The
processes are divided into four categories determined by the
number of other ZA phonons involved. For each category, the
number of available four-phonon combinations is considerably
large. Surprisingly, only the category ZA0+ZA+ZA+ZA has
a visible scattering rate, which includes ZA0→ZA+ZA+ZA,
ZA0+ZA→ZA+ZA, and ZA0+ZA+ZA→ZA. This finding in-
dicates that the transport of ZA phonons is dominated by the
four-ZA processes, as shown in Fig.4. Since ZA phonons have
much larger population than the other modes as shown in Fig.4
(c) and the four-phonon scattering rate is proportional to the
square of the population, the four-ZA process has much larger
scattering rate than the other processes. In contrast, the three-
phonon process cannot involve three ZA modes due to the
reflection symmetry, and the three-phonon scattering rate is
only linear to the population, therefore the τ−1

3 of ZA phonons
is low. Sincemost of four-phonon processes areN processes as
discussed in the following text, these four-ZA processes lead
to an collective phonon transport with an hydrodynamical be-
havior 38,39. An earlier work based on molecular dynamics
has found evidence of the importance of the higher-order scat-
tering in graphene 18, which strongly supports our results.

C. Dominant N processes in four-phonon scattering

As suggested by Ref. 22, for materials such as graphene in
which the N process dominates three-phonon scattering, an
iterative method is required to exclude the N process in cal-
culating the phonon relaxation time. Thus, it is necessary to
examine whether the N process dominates the four-phonon
scattering. In Fig. 3 (a), it is clearly seen that the N process
dominates the four-phonon scattering. In Fig. 3 (b), we show
the ratios of the U scattering rates to the total scattering rates,
(τ0

3,U )
−1/(τ0

3 )
−1 and (τ0

4,U )
−1/(τ0

4 )
−1, with respect to the re-

duced wave vector in the six branches at 300 K. Both ratios
increase with increasing reduced wave vector since the scat-
tering of large wave vectors is more likely to reach out of the
first BZ. In comparison, (τ0

4,U )
−1/(τ0

4 )
−1 in graphene is much

lower than (τ0
3,U )

−1/(τ0
3 )
−1, giving a distinct contrast to the bulk

materials in which the U process typically dominates the four-
phonon scattering 26,27. Specifically, (τ0

4,U )
−1/(τ0

4 )
−1 is nearly

zero throughout a broad wave vector range and has a modest
increase near the BZ boundary. As temperature increases, the
portion of Normal process in four-phonon scattering does not
decrease much, although the one in three-phonon scattering
decreases, not shown here. Therefore, the exact solution to
BTE that involves the four-phonon processes is required at all
temperatures.
Since the U processes directly contribute to the thermal

resistance, it is necessary to compare the U rates between the
four-phonon and three-phonon scatterings. As seen in Fig. 3
(a), τ−1

4,U is much higher than τ−1
3,U for the ZA, TO and LO

modes, and lower for other modes. Therefore, it is expected
that the four-phonon scattering can substantially reduce the
thermal conductivities of the ZA, TO and LO branches.

D. Thermal conductivity reduction due to four-phonon
scattering

With the SMRTA scattering rates, we exactly solve the lin-
earized phonon BTE using an iterative scheme. In Fig. 5, we
show the thermal conductivities κ3 and κ34 of 9-µm graphene
at room temperature as a function of the iteration step. κ3 is
calculated by including the three-phonon scattering only, and
κ34 includes both the three and four-phonon scatterings. The it-
erations typically converge after 5-10 steps when four-phonon
is included, and such a fast speed results from the Gauss-Scidel
iteration algorithm. The convergence speed slows down when
the length of the graphene increases, due to the decreases of
the boundary scattering, not shown here. The iterations signif-
icantly increase the predicted thermal conductivity values for
all branches. Our result of κ3,ZA agrees well with the ∼ 2260
W/mK given by Lindsay et al 22. In Fig. 5 (b), the ZA branch
has the most growth among the acoustic branches with regard
to the iteration step. By comparing Fig. 5 (a) and (b), we find
that the thermal conductivity of 9-µm graphene is reduced sig-
nificantly from ∼3383 W/mK to ∼810 W/mK after including
the four-phonon scattering. This reduction mainly comes from
the ZA branch, whose thermal conductivity is reduced from
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FIG. 5: The predicted thermal conductivities of 9-µm graphene at
room temperature as a function of iteration step using the Optimized
Tersoff potential. The SMRTA results are at the iteration step = 0.

κ3,ZA ∼2260 W/mK to κ34,ZA ∼235 W/mK.
The length-dependent thermal conductivities of graphene

at room temperature predicted by different methods are sum-
marized in Figs.6 (a) and (b). We only show the results from
the optimized Tersoff potential and first principles (FP) since
the other potentials do not present an accurate phonon dis-
persion relation 2,22. It is seen that our three-phonon thermal
conductivity κ3 agrees well with the results from literatures.
The inclusion of four-phonon scattering reduces the thermal
conductivity substantially. Both of them converges well with
length, with the former converging starting from ∼ 100 µm
and the latter ∼ 10 µm. The converged values are about 4285
W/mK and 850 W/mK, respectively. Since the fourth-order
force constant of the classical interatomic potential has not
been validated against first principles17, the absolute values of
the thermal conductivity after including four-phonon scatter-
ing should be interpreted qualitatively.

To compare with experiment, we plot the temperature-
dependent thermal conductivity of graphene in Fig. 6 (c).
The large uncertainty of the experimental measurement makes
it hard to validate the predictions from literatures and this
work. Raman technique4,7,8,12–14,44,45 [open triangles] gener-
ally gives higher thermal conductivity than the other experi-
mental methods8,42,43 [solid triangles]. We note that a work
has pointed out that the thermal conductivity measurement of
graphene by Raman technique is not reliable46. If we com-
pare the other measurements with the theoretical prediction,
the κ34 agrees better than κ3. Nevertheless, the agreement is
only within the same order especially at low temperature. The
experimental data at low temperatures are quite low, possibly
due to 1) the contact thermal resistance was assumed to be
temperature-independent in the experiments and 2) the pos-
sible defects and grain boundaries in experimental samples
affect thermal conductivities at low temperatures more than at
high temperatures since the phonon-phonon scatterings at low
temperatures are weak. To have a better comparison, both ex-
periment and theoretical prediction need to be improved. On
the experimental side, the single-crystal single layer graphene
sample requires high quality with negligible defects, bound-
aries or chemical residues, and a reliable method of excluding
the contact resistance needs to be developed. On the theoretical
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FIG. 6: (a) Length-dependent thermal conductivity of single-layer
graphene at 300 K. (b) Length convergence of thermal conductiv-
ity at 300 K. (c) Temperature-dependent lattice thermal conductivity.
The dash lines represent the theoretical predictions from the literature
with three-phonon scattering only. The solid lines with open circles
represent the predictions from this work. In all the predictions, the
natural 1.1% 13C is included with the exact solution to the linearized
BTE. The triangles shown the experimental measured results. Refer-
ences: Lindsay et al. 22,40, Fugallo et al. 41, Xie et al. 42, Xu et al. 8,
Li et al. 43, Faugeras et al. 12, Chen et al. 44, Lee et al. 45.
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FIG. 7: The phonon population of SLG calculated via Bose-Einstein
and Boltzmann distributions at 300 K.

side, the fourth order interatomic force constants obtained from
the Optimized Tersoff potential need to be validated against
first principles based on density functional theory. These are
beyond our scope, but certainly worth to investigate.

We note that the thermal conductivity of SLG calculated
by Gill-Comeau and Lewis 35,36 and Fan et al. 47,48 recently by
the optimized Tersoff potential using MD simulations is about
2000-3000W/mK, which is much higher than the present BTE
results with four-phonon scattering included. We attribute the
difference to the usage of different phonon distribution func-
tions. As shown in Fig.7, the phonon populations differ sig-
nificantly between the two distributions. We note that some
quantum corrections 18,25,35,36 have been made to correct the
difference in specific heat, however, the impact on phonon
scattering was not included. As the scattering rates depend
strongly on phonon population, we expect the two distribu-
tions give significantly different phonon scattering rates. To
probe such an effect, somework 49 has used the Boltzmann dis-
tribution in the three-phonon scattering formalism to calculate
the phonon scattering rates. However, as a previous work26
has proved, the three-phonon (and four-phonon) scattering for-
malism is only valid for the Bose-Einstein distribution as its
derivation depends on the Bose-Einstein distribution. It is un-
reasonable to use Boltzmann distribution in a formula that is
derived only for Bose-Einstein distribution, especially at low
temperatures. Also, it is unreasonble to conclude from Fig.7
that the Boltzmann distribution gives more scattering due to
the larger phonon population since the scattering formalism
itself is not valid.

E. Thermal conductivity contribution from each branch

The relative κ contributions from different branches pre-
dicted by the three and four-phonon scatterings are compared
in Table II. It has long been in debate which branch dominates
the thermal transport, with the detailed discussion found in the
review2. The relative contribution of the ZA branch is reduced
from 60% to 30% after including four-phonon scattering. The

TABLE II: The comparison among the different methods on the
predicted relative contribution from individual branch to κ of SLG
at room temperature. The results from equilibrium MD (EMD) and
non-equilibrium MD (NEMD) from Ref.a48 are included.

𝜅% 

3-phonon only 3, 4-phonon EMD NEMD 

SMRTA 
Exact 
BTE 

SMRTA 
Exact 
BTE 

NMA 
Green-

Kuboa 
Decom- 

positiona 

ZA% 52% 60% 17% 31% 30% 
71% 52% 

ZO% 8% 4% 11% 8% 7% 

TA% 22% 20% 41% 32% 27% 
29% 48% 

LA% 17% 16% 31% 28% 35% 
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FIG. 8: The phonon population in bilayer graphene (BLG) and
graphite. Inset shows the ZA splitting in bilayer graphene (similarly
in graphite). Phonon dispersion is calculated from the intra-layer op-
timized Tersoff potential together with the interlayer Lennard-Jones
potential with parameters same as Ref.50.

contribution of TA and LA branches increase to around 30%.
These results are compared to those fromMD simulations. We
note that different MD simulations give substantially different
interpretations for the branch contributions. Nevertheless, as
being stated above, MD simulations assume the Boltzmann
distribution which may significantly vary the phonon scatter-
ing mechanisms, and thus the comparison between BTE and
MD should not be taken seriously at temperatures below the
Debye temperature.

F. More discussions

Since we have found the ultra-high four-phonon scatter-
ing rates in SLG, two natural questions are: 1) Does the
four-phonon scattering play an important role in multilayer
graphene and graphite? 2) Is the five-phonon scattering impor-
tant in SLG? To address the first question, we plot the phonon
dispersion in the inset of Fig. 8. Due to the interlayer van der
Waals interaction, the ZA mode of graphene is spitted into the
ZA and ZO′ modes, with the latter representing a breathing
mode between adjacent layers. We find that even such a small
spitting can result in a large reduction of the phonon popula-
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tion as shown in Fig. 8. Due to the splitting, the phase space
of the four-ZA process becomes 1/16 of the SLG, and thus the
four-phonon scattering becomes unimportant. This explains
the fact that the three-phonon thermal conductivity prediction
of graphite agrees well with experiment41,50. Regarding the
second question, we need to refer to the reflection symme-
try. Restricted by the ASSR, the five-phonon process can at
most involve four ZA modes, same as four-phonon scattering.
Without increasing the population, the higher order makes the
five-phonon scattering negligible.

V. CONCLUSIONS

We have shown that the four-phonon scattering formalism
can be incorporated into the exact solution to BTE. We take
graphene as an example to demonstrate our method and have
obtained well-converged results. We find that the four-phonon
scattering rate in graphene is surprisingly high due to the fact
that the reflection symmetry allows significantly more four-
phonon processes than three-phonon processes. In particu-
lar, the allowed four-ZA processes together with the quadratic
phonon dispersion push the four-phonon rates of the ZAbranch
to an unprecedented level. Since these scatterings are domi-
nated by the Normal processes, the exact solution to BTE is
required beyond the single mode relaxation time approxima-
tion. We find that the thermal conductivity of graphene is
significantly reduced when the four-phonon scattering is in-
cluded. We expect such high four-phonon scattering rates also
exist in single layer BN and other possible planar 2Dmaterials,
which have similar phonon dispersion and reflection symme-
try with SLG. To have a rational comparison with experiment,
more accurate experimental measurements and accurate DFT
force constants are required. Our work advances the thermal
transport calculation by incorporating four-phonon scattering

into the exact solution to BTE. Our finding is striking in the
thermal transport in 2D materials with reflection symmetry,
and provides a critical revisit to the exact thermal conductivity
value of single-layer graphene.
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Appendix A: Derivation of the Solution to linearized phonon
BTE

Starting fromEq. (1), due to a small temperature gradient, nλ
has a small derivation n′λ from its equilibrium Bose-Einstein
distribution n0

λ = [exp(~ωλ/kBT) − 1]−1 so that nλ = n0
λ +

n′λ. By assuming that n′λ is independent of temperature 30:
(∂nλ/∂T) ' (∂n0

λ/∂T), we have

vλ · ∇T
∂n0

λ

∂T
=
∂n′λ
∂t
|s, (A1)

with the help of ∇nλ = (∂nλ/∂T)∇T . The scattering term
∂n′λ
∂t |s is the decay rate of the perturbation n′λ due to the scatter-
ing processes, such as phonon-phonon, phonon-impurity, and
phonon-boundary scattering.
Based on the perturbation theory, the right hand

side of Eq. (A1) is rewritten as, considering the three-
phonon 16,29–31,51, four-phonon 26, isotope 52 and bound-
ary 53–55 scattering,

∂n′λ
∂t
|s = −

∑
λ′λ′′

{
1
2
[
nλ(1+nλ′)(1+nλ′′)−(1+nλ)nλ′nλ′′

]
L−+

[
nλnλ′(1+nλ′′)−(1+nλ)(1+nλ′)nλ′′

]
L+

}
−

∑
λ′λ′′λ′′′

{
1
6
[
nλ(1+nλ′)(1+nλ′′)(1+nλ′′′)−(1+nλ)nλ′nλ′′nλ′′′

]
L−− +

1
2
[
nλnλ′(1+nλ′′)(1+nλ′′′)−(1+nλ)(1+nλ′)nλ′′nλ′′′

]
L+−

+
1
2
[
nλnλ′nλ′′(1+nλ′′′)−(1+nλ)(1+nλ′)(1+nλ′′)nλ′′′

]
L++

}
−

∑
λ′

(nλ−nλ′)Liso − (nλ − n0
λ)

1
τ0
b,λ

. (A2)

The first summation on the right hand side represents the three-
phonon scattering rate of the mode λ, with the first term ac-
counting for the splitting process λ→ λ′ + λ′′ and the second
the combination process λ + λ′ → λ′′. The physical mean-
ing of the first term is the difference between the transition
probabilities of λ → λ′ + λ′′ and λ ← λ′ + λ′′, and thus
indicates the net decay rate of nλ due to the splitting process.
Similarly, the second term illustrates the transition probability

difference between λ + λ′→ λ′′ and λ + λ′← λ′′, indicating
the net decay rate of nλ due to the combination process. L±
contains the information of the intrinsic transition probability
and the transition selection rules for energy and momentum,
ωλ ± ωλ′ − ωλ′′ = 0 and k ± k′ − k′′ = G, where G is a
reciprocal lattice vector with G = 0 implying the Normal
(N) process and G , 0 the Umklapp (U) process. The sec-
ond summation accounts for the four-phonon scattering of the
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mode λ, with the first parentheses representing the process
λ→ λ′ + λ′′ + λ′′′, the second the process λ + λ′→ λ′′ + λ′′′

and the third λ + λ′ + λ′′ → λ′′′. Similarly, L±± accounts
for the transition probabilities and the selection rules, i.e.,
ωλ ± ωλ′ ± ωλ′′ − ωλ′′′ = 0 and k ± k′ ± k′′ − k′′′ = G, for
those processes. The third summation is the phonon-isotope
scattering rate for λ → λ′ given by Tamura 52, with the se-
lection rules ωλ = ωλ′ and k , k′. The last term on the
right hand side of Eq. (A2) indicates the phonon-boundary
scattering rate. The minus sign before each scattering term
indicates that the perturbation n′λ is decreasing with time, i.e.,
the phonon distribution tends to recover its equilibrium state,
due to the scattering. In contrast to the SMRTA 16,30, which
assumes that only the mode λ has a perturbation, here we as-
sumes a perturbation in all the phonon modes to exactly solve
the phonon BTE 28,29,33,56, that is

nλ=n0
λ+n′λ,n

′
λ=−Ψλ

∂n0
λ

∂(~ωλ)
=Ψλ ·

1
kBT

n0
λ(n

0
λ+1), (A3)

nλ′ =n0
λ′+n′λ′,n

′
λ′ =−Ψλ′

∂n0
λ′

∂(~ωλ′)
=Ψλ′ ·

1
kBT

n0
λ′(n

0
λ′ + 1),

(A4)

nλ′′ =n0
λ′′+n′λ′′,n

′
λ′′ =−Ψλ′′

∂n0
λ′′

∂(~ωλ′′)
=Ψλ′′ ·

1
kBT

n0
λ′′(n

0
λ′′+1),

(A5)

nλ′′′ =n0
λ′′′+n′λ′′′,n

′
λ′′′ =−Ψλ′′′

∂n0
λ′′′

∂(~ωλ′′′)
=Ψλ′′′ ·

1
kBT

n0
λ′′′(n

0
λ′′′+1),

(A6)

where Ψ measures the derivation in the phonon distribution
from equilibrium, weighted with a factor that depends on the
equilibrium distribution of that mode 29. In the final step of
each of the Eqs. (A3-A6), we used the fact that ∂n0/∂(~ω) =
−n0(n0 + 1)/kBT . By substituting Eqs. (A3-A6) into Eq. (A2)
and dropping the higher order terms O(Ψ2) and O(Ψ3), the
scattering term of the linearized phonon BTE is written as

∂n′λ
∂t
|s = −

∑
λ′λ′′

1
kBT

{
(Ψλ+Ψλ′−Ψλ′′)n0

λn0
λ′(1+n0

λ′′)L++
1
2
(Ψλ−Ψλ′−Ψλ′′)n0

λ(1+n0
λ′)(1+n0

λ′′)L−

}
−

∑
λ′λ′′λ′′′

1
kBT

{
1
6
(Ψλ−Ψλ′−Ψλ′′−Ψλ′′′)(1+n0

λ)n
0
λ′n

0
λ′′n

0
λ′′′L−− +

1
2
(Ψλ+Ψλ′−Ψλ′′−Ψλ′′′)(1+n0

λ)(1+n0
λ′)n

0
λ′′n

0
λ′′′L+−

+
1
2
(Ψλ+Ψλ′+Ψλ′′−Ψλ′′′)(1+n0

λ)(1+n0
λ′)(1+n0

λ′′)n
0
λ′′′L++

}
−

∑
λ′

1
kBT
(Ψλ−Ψλ′)n0

λ(1 + n0
λ)Liso −

1
kBT
Ψλn0

λ(1 + n0
λ)

1
τ0
b,λ

. (A7)

Here we have taken the advantage of the facts:
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λ→λ′+λ′′ : (1 + n0
λ′)(1 + n0

λ′′) − n0
λ′n

0
λ′′ =

n0
λ′n

0
λ′′

n0
λ

= 1 + n0
λ′ + n0

λ′′, (A8)

λ+λ′→λ′′ : n0
λ′(1 + n0

λ′′) − (1 + n0
λ′)n

0
λ′′ =
(1 + n0

λ′)n
0
λ′′

n0
λ

= n0
λ′ − n0

λ′′, (A9)

λ→λ′+λ′′+λ′′′ : (1 + n0
λ′)(1 + n0

λ′′)(1 + n0
λ′′′) − n0

λ′n
0
λ′′n

0
λ′′′ =

n0
λ′n

0
λ′′n

0
λ′′′

n0
λ

, (A10)

λ+λ′→λ′′+λ′′′ : n0
λ′(1 + n0

λ′′)(1 + n0
λ′′′) − (1 + n0

λ′)n
0
λ′′n

0
λ′′′ =

(1 + n0
λ′)n

0
λ′′n

0
λ′′′

n0
λ

, (A11)

λ+λ′+λ′′→λ′′′ : n0
λ′n

0
λ′′(1 + n0

λ′′′) − (1 + n0
λ′)(1 + n0

λ′′)n
0
λ′′′ =

(1 + n0
λ′)(1 + n0

λ′′)n
0
λ′′′

n0
λ

. (A12)

Equations (A8-A12) are obtained in similar way. For example,
Equation (A8) is derived by substituting the ω of the Bose-
Einstein distribution e~ω/kBT = 1 + 1/n0

λ into the energy con-
servation law (selection rule) ω = ω′ + ω′′, giving the result
1 + 1/n0

λ = (1 + 1/n0
λ′)(1 + 1/n0

λ′′).
The final expression of the right hand side of the original

phonon BTE Eq. (A1) is obtained by defining the form 33 of
Ψ = −hωτv · ∇T/T and putting it into Eq. (A7) for all the

modes λ, λ′, λ′′, and λ′′′, while the left hand side of Eq. (A1)
is transformed by the fact of

∂n0
λ

∂T
=

1
T
~ωλ
kBT

n0
λ(n

0
λ + 1). (A13)

Thus, the phonon BTE Eq. (A1) is transformed as

1 =
∑
λ′λ′′

{
(τλ+τλ′ξλλ′−τλ′′ξλλ′′)

n0
λ′(1 + n0

λ′′)

1 + n0
λ

L+ +
1
2
(τλ−τλ′ξλλ′−τλ′′ξλλ′′)

n0
λ′(1 + n0

λ′′)

1 + n0
λ

L−

}
+

∑
λ′λ′′λ′′′

{
1
6
(τλ−τλ′ξλλ′−τλ′′ξλλ′′−τλ′′′ξλλ′′′)

n0
λ′n

0
λ′′n

0
λ′′′

n0
λ

L−− +
1
2
(τλ+τλ′ξλλ′−τλ′′ξλλ′′−τλ′′′ξλλ′′′)

(1+n0
λ′)n

0
λ′′n

0
λ′′′

n0
λ

L+−

+
1
2
(τλ+τλ′ξλλ′+τλ′′ξλλ′′−τλ′′′ξλλ′′′)

(1+n0
λ′)(1+n0

λ′′)n
0
λ′′′

n0
λ

L++

}
+

∑
λ′

(τλ − τλ′ξλλ′)Liso +
τλ

τ0
b,λ

, (A14)

and further as

1 =
τλ

τ0
3,λ
−Ξ3,λ +

τλ

τ0
4,λ
−Ξ4,λ +

τλ

τ0
iso,λ

−Ξiso,λ +
τλ

τ0
b,λ

. (A15)

Then, the solution of τλ is obtained as shown in Eq. (2), with
the sub-equations (3-18). Substituting τλ into Eq. (A3), the
solution of the linearized phonon BTE is expressed as

nλ = n0
λ −
~ωλ
kBT

n0
λ(n

0
λ + 1)

vλ · ∇T
T

τλ. (A16)

Appendix B: Hamiltonians for three-phonon, four-phonon and
isotope scattering

The start point of the derivation of the transition probabili-
ties is the Hamiltonian of the solids 51,52

Ĥ = Ĥ0 + Ĥa + Ĥiso + · · ·

= Ĥ0 + Ĥ3 + Ĥ4 + · · · + Ĥiso + · · · , (B1)
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where

Ĥ0 =
∑
λ

~ωλ(a
†

λaλ + 1/2), (B2)

Ĥ3 =
∑
λλ′λ′′

H(3)λλ′λ′′(a
†

−λ + aλ)(a
†

−λ′ + aλ′)(a
†

−λ′′ + aλ′′), (B3)

Ĥ4=
∑

λλ′λ′′λ′′′

H(4)λλ′λ′′λ′′′(a
†

−λ+aλ)(a
†

−λ′+aλ′)(a
†

−λ′′+aλ′′)(a
†

−λ′′′+aλ′′′),

(B4)

Ĥiso =
∑
λλ′

H(iso)λλ′ (a
†

−λ + aλ)(a
†

−λ′ + aλ′), (B5)

H(3)λλ′λ′′ =
~3/2

23/2 × 6N1/2∆k+k′+k′′,G
V (3)λλ′λ′′

√
ωλωλ′ωλ′′

, (B6)

H(4)λλ′λ′′λ′′′ =
~2

22 × 24Nc
∆k+k′+k′′+k′′′,G

V (4)λλ′λ′′λ′′′
√
ωλωλ′ωλ′′ωλ′′′

, (B7)

H(iso)λλ′ = −
1

4N

∑
l,b

∑
kI

∆ml,b
√
ωλωλ′∆k+k′+kI ,Geλb · e

λ′

b e−ikI ·rl ,

(B8)

V (3)λλ′λ′′ =
∑

b,l′b′,l′′b′′

∑
αα′α′′

Φ
αα′α′′

0b,l′b′,l′′b′′
eλ
αb

eλ
′

α′b′
eλ
′′

α′′b′′
√

m̄bm̄b′m̄b′′
eik
′·rl′ eik

′′·rl′′,

(B9)

V (4)λλ′λ′′λ′′′ =
∑

b,l′b′,l′′b′′,l′′′b′′′

∑
αα′α′′α′′′

Φ
αα′α′′α′′′

0b,l′b′,l′′b′′,l′′′b′′′

·
eλ
αb

eλ
′

α′b′
eλ
′′

α′′b′′
eλ
′′′

α′′′b′′′
√

m̄bm̄b′m̄b′′m̄b′′′
eik
′ ·rl′ eik

′′ ·rl′′ eik
′′′ ·rl′′′ . (B10)
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