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Motivated by the close relations of the renormalization group with both the holography duality
and the deep learning, we propose that the holographic geometry can emerge from deep learning
the entanglement feature of a quantum many-body state. We develop a concrete algorithm, call
the entanglement feature learning (EFL), based on the random tensor network (RTN) model for
the tensor network holography. We show that each RTN can be mapped to a Boltzmann machine,
trained by the entanglement entropies over all subregions of a given quantum many-body state.
The goal is to construct the optimal RTN that best reproduce the entanglement feature. The RTN
geometry can then be interpreted as the emergent holographic geometry. We demonstrate the EFL
algorithm on 1D free fermion system and observe the emergence of the hyperbolic geometry (AdS3

spatial geometry) as we tune the fermion system towards the gapless critical point (CFT2 point).

I. INTRODUCTION

Holographic duality1–3 is a duality proposed between a
quantum field theory (the boundary theory) and a grav-
itational theory (the bulk theory) in one higher dimen-
sion. In 2006, S. Ryu and T. Takayanagi proposed the
Ryu-Takayanagi (RT) formula4, which relates the entan-
glement entropy of a boundary region to the area of the
minimal surface in the bulk that is homologous to the
same region. The RT formula and its generalizations5–8

point out that entanglement plays a fundamental rule in
holographic duality. One perspective to understand the
entanglement-geometry correspondence is to consider a
tensor network representation of a quantum many-body
state9,10, and view the network geometry as a repre-
sentation of the dual spatial geometry11,12. Many dif-
ferent schemes of tensor network approaches have been
investigated9,10,13–28. Tensor network states with vari-
ous entanglement properties similar to holographic the-
ories have been constructed29–36. In particular, the ran-
dom tensor network (RTN) states31 are shown to sat-
isfy the Ryu-Takayanagi formula4 and the quantum er-
ror correction properties37 in the large bond dimension
limit. The RTN states on all possible graphs form an
overcomplete basis of the boundary Hilbert space32, so
that a generic many-body state of the boundary can be
mapped to a superposition of RTN’s with different ge-
ometry. For states with a semi-classical bulk dual, one
expects the superposition to be strongly peaked around
a “classical geometry”, which provides a best approxima-
tion to entanglement entropy of different regions in the
given state. In other words, finding the best RTN de-
scription of a given many-body state can be considered
as a variational problem similar to a familiar variational
wavefunction approach, except that the criteria of the
optimization is not minimizing energy but reproducing
entanglement features of the state, such as entanglement
entropy and Renyi entropies of various subsystems. For
deeper understanding of holographic duality, such as un-
derstanding how boundary dynamics are mapped to bulk

gravitational dynamics, it is essential to develop a sys-
tematic approach of finding the optimal network geome-
try for generic many-body states.
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FIG. 1: Conceptual connections between holographic duality
and deep learning.

In this paper, we propose that the RTN optimization
problem can be mapped to a deep learning problem38–40,
because the paradigm of neural network based deep
learning is precisely about how to adjust the network
connectivity (geometry) to achieve a certain optimiza-
tion goal. More specifically, we propose a learning ap-
proach, called the entanglement feature learning (EFL),
which learns the entanglement features in the quantum
many-body state and encodes the entanglement struc-
tures in the neural network connectivity. Interestingly,
the deep learning approach provides not only a techni-
cal tool to optimize the RTN, but also a profound con-
nection between tensor networks and neural networks in
terms of their geometric interpretations. Base on this
interpretation, the holographic dual spatial geometry of
a quantum many-body state could emerge as the neural
network geometry from machine learning the entangle-
ment features. In other words, spacial geometry is just
an efficient way to encode entanglement features. The
corresponding tensor network can be viewed as a disen-
tangling circuit that gradually resolves the entanglement
features at different layers, which is the common idea un-
derlying other tensor network holography approaches.36

For simplicity we will consider the second Renyi entropy
S(2)(A) of all subregions A as entanglement features of a
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state. Using the second Renyi entropy of some regions as
the training data, the goal of the neural network is to give
a best prediction to the second Renyi entropy of other re-
gions. As the learning is done, the geometric structure
of the neural network can be interpreted as the emergent
holographic bulk geometry. This draws a direct connec-
tion between holographic duality and the deep learning,
as illustrated in Fig. 1. This connection was also made
in a recent work Ref. 41, based on the similarity in their
relations to the renormalization group11–15,42–46. The re-
lation between neuron networks and tensor networks have
also been discussed recently in Refs. 47–52.

TABLE I: A terminology dictionary of EFL

machine learning EFL

neural network random tensor network

visible units boundary tensors

hidden units bulk tensors

edge weight edge mutual information

training samples entanglement regions

input data entanglement feature

network geometry bulk spatial geometry

In this work, we point out that for “machine learning
holography”, what should be learned are the entangle-
ment features of the quantum many-body states. We
also develop a concrete EFL algorithm that can be im-
plemented in numerics. A terminology dictionary of EFL
is summarized in Tab. I. Our EFL approach is based on
a deep learning architecture known as the deep Boltz-
mann machine (DBM)53–55. Boltzmann machines are a
class of machine learning models that has been intro-
duced condensed matter physics research in many recent
works48–50,52,56–61, in particular Ref. 57 contains a nice
review of Boltzmann Machines for physicists. We show
that each RTN can be mapped to a DBM with the same
network structure, therefore the optimal RTN state can
be found by training the corresponding DBM. However,
there is no efficient method to train a generic DBM, so
we have to make some restrictions to the neural network
architecture in order to make EFL a practical (rather
than theoretical) algorithm. To this end, we will re-
strict to the RTN on planar graphs. It turns out that
the planar RTN already has sufficient expression power
to represent a rich variety of states from area law62–64 to
volume-law65–67 entanglement. We develop an efficient
deterministic learning approach based on the exact solu-
tion of planar graph Ising models. We then demonstrate
the EFL in 1D free fermion systems and show how the
holographic geometry grows deeper in the perpendicu-
lar direction as the boundary fermion state approaches
critical point.

The remainder of this paper is organized as follows.
In Section II, we will first review the construction of the
RTN and its entanglement properties. In SectionIII, we

will propose the EFL algorithm and analyze some of the
technical challenges. In Section IV, we will apply the
EFL on a 1D free fermion model and demonstrate how
the holographic bulk geometry can arise from learning
the entanglement features.

II. RANDOM TENSOR NETWORKS

A. Definition of RTN States

We will briefly review the definition of random tensor
network (RTN) state following the projected entangled
pair state (PEPS) approach.31,32 A RTN state is speci-
fied by an edge-weighted graph G = (V; E , I) comprising
the vertex set V and the edge set E along with a weight-
ing function I : E → R+, such that each edge e ∈ E
is associated with a real and positive edge weight Ie.
On each vertex v ∈ V, we define a local Hilbert space
Hv =

⊗
e∈dvHev, where dv denotes the set of edges ad-

jacent to the vertex v. Hev is subspace on the vertex v
to be connected to the incident edge e (as the small blue
circle in Fig. 2). Let |µev〉 (labeled by µev = 1, 2, ...) be a
complete set of basis states of the Hilbert space Hev.
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FIG. 2: The structure of a RTN state.

We then define a random state |ψv〉 ∈ Hv on each
vertex v (as the big red circle in Fig. 2).

|ψv〉 =
∑
[µv ]

T [µv]
⊗
e∈dv

|µev〉. (1)

The coefficient tensor T is a random tensor, whose tensor
elements are independently drawn from normal distribu-

tions following P (T ) ∝ e−
1
2

∑
[µv ] |T [µv ]|2 . On each edge,

we define an entangled pair state |Ie〉 (as the blue link in
Fig. 2) in the Hilbert space

⊗
v∈∂eHev (where ∂e denotes

the set of two vertices at the end of the edge e),

|Ie〉 =
∑
[µe]

λ[µe]
⊗
v∈∂e

|µev〉. (2)

The entanglement of |Ie〉 across the edge is characterized
by the edge mutual information Ie. Each edge could have
a different Ie in general. If we treat the coefficient λ[µe] =
λµe1µe2 as a matrix, the nth Renyi mutual information can
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be expressed as

I(n)
e =

2

1− n
ln Tr(λλ†)n. (3)

In the following, we will focus on the case of Renyi index

n = 2 and take Ie = I
(2)
e unless otherwise specified. It

is free to choose λ on each edge, as long as the edge
mutual information Ie matches the edge weight Ie of the
graph G. There is also a set of special edges (the thick
edges in Fig. 2) on the boundary of the network. They
are the external edges (physical legs) that connects to the
physical degrees of freedom. On these edges, we assume
that the entangled pair states are maximally entangled,
hence the edge mutual information is 2 lnD∂ with D∂

being the bond dimension of the external leg.
Given the random state |ψv〉 on each vertex v and

the entangled pair state |Ie〉 on each edge e, the RTN
state can be constructed by projecting the entangled pair
states to random vertex states via the following partial
inner product

|G〉 =
⊗
v∈V

⊗
e∈E
〈ψv|Ie〉. (4)

The remaining subspaces (as solid circles in Fig. 2) on
the dangling ends of the external edges are not touched
by the projection. They form the physical Hilbert space
Hphy =

⊗
v∈V∂ H

phy
v in which the RTN state |G〉 is sup-

ported. Here V∂ denotes the set of boundary vertices,
i.e. the subset of V whose vertices are connected to the
external edges. It is worth mentioning that |G〉 should
better be treated as an ensemble of RTN states, instead
of a single specific state, due to the randomness in |ψv〉.
All states in the ensemble are labeled by the same edge-
weighted graph G and share the similar entanglement fea-
ture.

B. Entanglement Features of RTN States

The entanglement feature of a quantum many-body
state refers to the full set of entanglement entropies over
all entanglement subregions. In general, one could in-
clude all orders of Renyi entropies in the definition, but
we will only focus on the 2nd Renyi entropies in the fol-
lowing and leave the generic discussion to the last section.

Given an ensemble of RTN states |G〉 and a subregion
A ⊆ V∂ , the ensemble-typical 2nd Renyi entropy SG(A)
over the subregion A is defined via

e−SG(A) = E
TrA(TrĀ |G〉〈G|)2

(Tr |G〉〈G|)2
, (5)

where E takes the RTN ensemble expectation value
(i.e. averaging over the random states |ψv〉 on all ver-
tices), and Ā = V∂ \ A denotes the complement region
of A. We have explicitly introduced the denominator
Tr |G〉〈G| to ensure the normalization of the RTN den-
sity matrix. An important result of Ref. 31 is to show

that the entanglement entropy SG(A) can be expressed
in term of the free energies of a classical Ising model on
the same graph G in the large bond dimension limit. A
more general treatment away from that limit is provided
in a related work Ref. 68, but in this work we will only
consider the large bond dimension limit.

To specify the Ising model, we first introduce a set of
Ising spins σv = ±1 for all v ∈ V and an additional set
of Ising variables τv = ±1 on the boundary v ∈ V∂ only.
The model is described by the energy functional

EG [σ, τ ] = −
∑
e∈E

Je
∏
v∈∂e

σv − h
∑
v∈V∂

τvσv. (6)

The Ising coupling Je ≡ Ie/4 is set by the edge mu-
tual information Ie of the RTN state. The external field
h ≡ 1

2 lnD∂ is set by the local Hilbert space dimension
D∂ of the physical degrees of freedom (which is also the
bond dimension of the external leg). Only σv spins are
dynamical, and τv are just Ising variables that specifies
the directions of the external pinning field hτv on the
boundary. The configuration of τv is determined by the
choice of the entanglement region A

τv(A) =

{
−1 v ∈ A,
+1 v ∈ Ā.

(7)

Tracing out the dynamical spins σv, the free energy F [τ ]
of the boundary spins τv can be defined via

e−FG [τ ] =
∑
[σ]

e−EG [σ,τ ]. (8)

In the large bond dimension limit (Ie � 1), it was
shown31 that the typical 2nd Renyi entropy of the RTN
state |G〉 is given by the free energy difference

SG(A) = FG [τ(A)]− FG [τ(∅)], (9)

where τ(A) denotes the boundary pinning field configu-
ration specified in Eq. (7) and τ(∅) denotes the configura-
tion of τv = +1 for all v ∈ V∂ . The derivation of Eq. (9) is
reviewed in Appendix A. The physical intuition of Eq. (9)
comes from the interpretation4 of the entanglement en-
tropy as the area of the minimal surface that separates
the region A from Ā in the holographic bulk. Corre-
spondingly, the free energy difference F [τ(A)] − F [τ(∅)]
measures the energy cost of the domain wall that sepa-
rates the part A from Ā in the tensor network (see Fig. 3),
which matches the holographic interpretation of the en-
tanglement entropy in the large bond dimension limit.
Technically, the advantage of RTN over other types of
tensor networks also lies in the fact that the 2nd Renyi
entropy of the RTN state can be efficiently estimated
from the free energy of the corresponding Ising model as
in Eq. (9). For a generic tensor network, calculating its
entanglement entropy requires to diagonalize the reduced
density matrix, which could be much more difficult than
solving the Ising model in many cases.
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FIG. 3: Entanglement entropy as the minimal cut (in black)
through the tensor network that separates the region A (in
red) from Ā (in blue). The Ising domain wall is automatically
the minimal cut in the large bond dimension (low tempera-
ture) limit. Different network structures gives rise to different
scaling behaviors of the entanglement entropy: (a) area law
S(A) ∼ const., (b) logarithmic law S(A) ∼ lnLA, (c) volume
law S(A) ∼ LA.

The set of entanglement entropies {SG(A)|A ⊆ V∂}
constitutes the entanglement feature of the RTN state,
which only depends on the graph G and its edge weights
Ie. The RTN state thus provides us a model to encode
the entanglement feature directly in the network struc-
ture (i.e. the graph geometry). This is the essential idea
behind the tensor network holography. In many previous
approaches, a bulk geometry is first given and a tensor
network is tiled on the background geometry. The result-
ing tensor network state then produces the entanglement
feature on the holographic boundary that is dual to the
holographic bulk geometry. For example, Fig. 3 demon-
strates how different network structures lead to different
scaling behaviors of the single-interval entanglement en-
tropy. However, in this work, we would like to consider
the inverse problem: given the entanglement feature of a
quantum many-body state, how to determine the optimal
holographic geometry? We will show that this problem
can be mapped to a machine learning problem, which we
called the entanglement feature learning (EFL).

III. ENTANGLEMENT FEATURE LEARNING

A. General Algorithm

The goal of EFL is to develop an RTN ensemble that
best matches the entanglement feature of the given many-
body state |Ψ〉. The graph geometry of the RTN is then
interpreted as the dual bulk geometry. In principle, all
graph geometries can be realized on a complete graph
(the graph with all-to-all connections) by adjusting the
edge weights Ie. For example, an edge in the complete
graph can be disconnected by setting its weight Ie =
0 to zero. Therefore optimizing the graph geometry is
equivalent to optimizing the set of edge weights on the
complete graph, and the latter is a typical problem of the
neural network based deep learning. We will apply the
deep learning technique to optimize the random tensor
network connections and obtain the optimal holographic

geometry of the given quantum many-body state.
Given a quantum many-body state |Ψ〉 (to learn), we

first extract its entanglement feature by collecting the
2nd Renyi entanglement entropies SΨ(A) over different
entanglement subregions A

SΨ(A) = − ln Tr
A

(Tr
Ā
|Ψ〉〈Ψ|)2. (10)

Admittedly, calculating the entanglement entropy of a
generic many-body state is difficult. However, let us as-
sume that these data can be in principle collected, for
example by experimental measurements69–72. Then they
can be used to construct the training set:

{(τ(A), SΨ(A))|A ⊆ V∂}, (11)

where τ(A) is the boundary pinning field configuration
defined in Eq. (7), which is just another way to specify
the entanglement region A. Usually it is not practical to
collect entanglement entropies for all possible subregions
A ⊆ V∂ , so only a subset of the entanglement feature
will be used in the EFL (how to sample the subset will
be explained in details later). Once the entanglement
feature is collected, we will make no further reference to
the original quantum state |Ψ〉.

We wish to fit the entanglement feature of the given
state |Ψ〉 by the RTN state |G〉. We would like to empha-
size that we are not intended to find the tensor network
representation of the state |Ψ〉, which could be a much
harder task. We just want to find the optimal tensor
network geometry such that the entanglement features
between |Ψ〉 and |G〉 match as much as possible. In fact,
as the tensors are random in the RTN, the RTN state |G〉
would be very different from (most likely orthogonal to)
the given state |Ψ〉. To learn the tensor network geome-
try from the entanglement feature, there are two possible
learning approaches: supervised learning or unsupervised
learning.

In supervised learning, each training sample is a pair
(τ(A), SΨ(A)) consisting of the Ising configuration τ(A)
as the input object and the entanglement entropy SΨ(A)
as the desired output value. The supervised learning will
seek for a fitting function SG(A) based on the RTN model
with minimal prediction error. The supervised EFL is
essentially a regression problem. We can choose to min-
imize the mean square error loss function, which is com-
monly used for regression problems

L(G) = avg
A⊆V∂

(SG(A)− SΨ(A))2. (12)

The variational parameters will be the edge weights Ie
that parameterize the graph G (and the RTN model).

In unsupervised learning, the training samples τ(A)
are “unlabeled”, but they appear with an empirical prob-
ability distribution

PΨ[τ(A)] ∝ e−SΨ(A). (13)

Such training set can be prepared by Monte Carlo sam-
pling the entanglement region A following the Boltzmann
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weight e−SΨ(A) on the given state |Ψ〉. The goal of the
unsupervised learning is to train a generative model that
could reproduce the samples τ(A) with the probability
distribution close to the empirical distribution as much
as possible. If the goal is achieved, it is believed that the
generative model has capture the hidden features in the
training data. For our purpose, we take the RTN model
as the generative model, which generates the sample τ(A)
with the model probability

PG [τ(A)] ∝ e−SG(A) ∝ e−FG [τ(A)], (14)

or more precisely,

PG [τ ] =
1

ZG

∑
[σ]

e−EG [σ,τ ],

ZG =
∑
[τ ]

e−FG [τ ] =
∑
[σ,τ ]

e−EG [σ,τ ],
(15)

where the energy model EG [σ, τ ] is given by Eq. (6). If we
treat the bulk spins σ as hidden units and the boundary
spins τ as visible units, the model is precisely mapped
to the Boltzmann machine73,74 in machine learning. The
goal is to approximate the empirical distribution PΨ[τ ]
by the distribution PG [τ ] produced by the Boltzmann
machine. To measure how similar the two distributions
are, the Kullback-Leibler divergence is typically used as
the objective function

L(G) =
∑
[τ ]

PΨ[τ ] ln
PΨ[τ ]

PG [τ ]
, (16)

which is minimized if PG [τ ] → PΨ[τ ]. Because the em-
pirical distribution PΨ[τ ] was constructed in Eq. (13) to
encode the entanglement feature of |Ψ〉, if the Boltz-
mann machine managed to reproduce this distribution
after training, the entanglement feature should have been
learnt and encoded in the neural network connectivity,
which gives us a representation of the emergent holo-
graphic bulk geometry.

For both supervised and unsupervised learning, the
training procedure is to minimize objective function
L(G), which is formally a functional of the edge-weighted
graph G. As mentioned before, we can always embed
the graph G in a large enough complete graph and take
the edge weights Ie (or equivalently the Ising couplings
Je = Ie/4) as the variational parameters. Hence, we can
use a gradient descent algorithm over L(G) to find its
minimum according to the following update rule

Ie ← Ie − rl
∂L(G)

∂Ie
, (17)

where rl denotes the learning rate. The whole EFL algo-
rithm is summarized as the computation graph in Fig. 4.
In the training process, the neural network learns the en-
tanglement feature of the input quantum state |Ψ〉. As
the training converges, we open up the neural network

and extract the network connectivity from the param-
eters Ie, which parameterize the optimal edge mutual
information of the RTN as well as the optimal graph ge-
ometry in the holographic bulk.
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da
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Ie

τ(A)

SΨ(A)

FIG. 4: Computation graph of EFL. Arrows indicate the di-
rections that the data flows. The training data is prepared in
the red module.

In this work, we will adopt the supervised learning ap-
proach and leave the unsupervised learning approach for
future investigation. There are still two technical obsta-
cles that we have to overcome to make the EFL really
a practical (rather than theoretical) algorithm for tensor
network holography. In the remainder of this section, we
will analyze the obstacles and provide solutions to them.

B. Deterministic Learning on Planar Graph

The gradient descent method is not practical for train-
ing generic Boltzmann machines with unrestricted con-
nections (i.e. on a complete graph). One major reason
lies in the lack of efficient inference method: the com-
plexity to evaluate the free energy FG [τ ] (or the marginal
distribution PG [τ ]) of the Boltzmann machine grows ex-
ponentially with the number of hidden units. Adding
restrictions to the network structure allows for more ef-
ficient training algorithms, such as the restricted Boltz-
mann machine (RBM).75–77 By stacking RBM layers, one
obtains a deep architecture known as the deep Boltz-
mann machine (DBM),53 which better fits the purpose
of EFL to produce the geometry deep in the holographic
bulk. However, the original proposal to estimate the
learning gradient for the DBM is based on the Monte
Carlo method. It is found that the deep layers typically
receive very weak gradient signals, which can be easily
overwhelmed by the thermal fluctuations introduced by
the Monte Carlo process. The net effect is that the ther-
mal noise will drive the edge weights Ie in the deep layers
to follow a random walk until the activation saturates.
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Therefore the deep layers can not be trained by stochas-
tic learning algorithms. Instead, we need deterministic
learning61 algorithms. The idea is to avoid the Monte
Carlo sampling and evaluate the Ising model free energy
analytically. Several approximate methods have been de-
veloped, including the belief propagation78–80 and the
high-temperature series expansion.81

Instead of approximate approaches, if we restrict the
network geometry to planar graphs, there are exact
learning methods82–84, exploiting the exact solvability
of planar graph Ising models85–87 (by mapping them to
free Majorana fermion problems on related but different
graphs, see Appendix B for details). Naively, it seems too
restricted to study planar graphs, which are very special
among all graphs. However, the RTN on a planar graph
can already model a variety of entanglement features on
the holographic boundary, as demonstrated in Fig. 3. For
example, the volume-law entanglement can be described
by a planar network geometry with flat or positive curva-
ture, because in that case the minimal surface is pushed
to the boundary. Therefore the planar graphs can de-
scribe a large family of states of interest,104 including,
for example, area-law62–64 ground states of local Hamil-
tonians and volume-law65–67 excited eigenstates satisfy-
ing the eigenstate thermalization hypothesis88–90.

Details of the Ising-Majorana fermion mapping is re-
viewed in Appendix B. As a short summary, the free
energy FG [τ ] can be calculated from the Pfaffian of the
lattice adjacency matrix A[J, hτ ] (with edges weighted
by J and hτ) on which the dual fermions live:

FG [τ ] =
∑
e∈E

Je + h
∑
v∈V∂

τv − ln pf A[J, hτ ]. (18)

The computational complexity is of the cubic order of the
graph size. The gradient can also be calculated efficiently
from d(ln pf A) = 1

2 TrA−1dA. Because there is no ther-
mal fluctuation in the gradient signal, the edge weights in
deep layers can be trained towards their optimal values
deterministically. On the other hand, considering the
DBM with planar graph architecture is also physically
plausible for the purpose of the tensor network hologra-
phy, because the planar graph is naturally a discretized
description of the 2D spatial part of the (2 + 1)D holo-
graphic geometry (as the holographic dual to the (1+1)D
quantum many-body state).

C. Architecture and Regularization

Besides the deterministic learning, another technical
challenge of EFL is the redundancy in the graphical rep-
resentation of the entanglement feature. For example,
consider an Ising model with three spins as shown in
Fig. 5(a), described by

E[σ, τ ] = −J1σ1σ2−J2(σ1+σ2)σ3−h(τ1σ1+τ2σ2), (19)

which is parameterized by two Ising couplings J1 and J2.
But the free energy F [τ ] = − ln

∑
[σ] e

−E[σ,τ ] only de-

pends on an effective coupling (obtained by first tracing
out the σ3 spin)

Jeff = J1 +
1

2
ln cosh 2J2. (20)

So there is a trade-off between J1 and J2: as long as
Jeff remains unchanged, adjusting J1 and J2 in the op-
posite way will not change the free energy F [τ ], and thus
will not affect the objective function. As illustrated in
Fig. 5(b), there will be a flat channel along which all
different edge weights are degenerated in the objective
function.
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FIG. 5: Redundancy in a three-vertex graph. (a) The network
structure. (b) The objective function in the J1-J2 plane. A
flat channel indicates the redundant direction.

This phenomenon can be viewed as a discrete analog
of the diffeomorphism redundancy of the gravity theory.
It also poses a problem to the EFL, because each time
the training will end up with a different edge weight con-
figuration along the flat direction, which makes it hard
to compare the network geometries between two training.
Before coming up with a systematic classification of these
redundancies, we have to introduce a “gauge fixing” by
hand. This is done by imposing more restrictions on the
architecture.

In the following we will consider two particular archi-
tectures: the cylindrical and the hyperbolic network as
shown in Fig. 6. In particular, the hyperbolic network in
Fig. 6(b) can be viewed as a variation of the convolutional
deep Boltzmann machine architecture. Both networks
have layered structure. Within each layer, the horizontal
(intra-layer) bonds and the zig-zag (interlayer) bonds can
trade off each other (approximately), similar to the situ-
ation in Fig. 5. To fix this redundancy, we lock the inter-
layer coupling to the intra-layer coupling on the UV side
(i.e. the side closer to the boundary), see Fig. 6. If the
training data is translation invariant along x-direction,
we will also set the coupling uniform within each layer to
respect the translation symmetry.

The learning signal originates from the training data
and is passed down layer-by-layer from the boundary into
the bulk. Suppose at the beginning, all couplings are ini-
tialized to zero. When the training data is presented to
the machine, the first layer learns the local spin corre-
lation in the training samples and develops the coupling
J1 to match the correlation. Due to the interlayer cou-
plings, the spin correlation in the first layer will induce



7

(a) cylindrical network

z

x
��
��
��
��

(b) hyperbolic network

z

x

��
��

��

��

(a) cylindrical network

z

x
��
��
��
��

(b) hyperbolic network

z

x
��
��

��

��

FIG. 6: Two architectures of planar graph DBM: (a) cylin-
drical network and (b) hyperbolic network. Both assume pe-
riodic boundary condition along the x-direction. The bonds
of the same color are locked to the same coupling strength Jz.

the residual spin correlation in the second layer. The
residual correlation is then presented to the second layer
to train the coupling J2 and so on. So the deeper layer
should be designed to resolve the residual correlations
that can not be resolved in the previous layers. Bearing
this physical picture in mind, we propose the following
feasible domain

J1 ≥ J2 ≥ J3 ≥ · · · ≥ 0, (21)

where Jz is the coupling strength in the zth layer. In
the algorithm implementation, the condition Eq. (21) is
checked at each training step. If the condition is vio-
lated, the parameters Jz will be pulled back to the nearest
boundary point of the feasible domain. In the machine
learning terminology, Eq. (21) can be considered as a reg-
ularization that coordinates the training among different
layers and effectively prevents overfitting in the first sev-
eral layers.

IV. NUMERICAL RESULTS

A. Training Set Preparation

Computing the entanglement entropies for a generic
quantum many-body state is difficult. As a proof of con-
cept, we choose the free fermion system to demonstrate
the idea of EFL. Consider N copies of the (1+1)D Ma-
jorana fermion chain,91 described by the Hamiltonian

H =

N∑
a=1

∑
i

i
(
1 +m(−1)i

)
χi,aχi+1,a, (22)

where χi,a is the Majorana fermion operator of the fla-
vor a on the site i, satisfying {χi,a, χj,b} = δijδab. The
Majorana coupling (1 +m(−1)i) has a staggered pattern
along the chain, such that each unit cell contains two
sites. m ∈ (0, 1) and m ∈ (−1, 0) correspond to two dif-
ferent gapped topological phases of the fermions, which
are separated by the quantum phase transition at m = 0.
The critical point m = 0, the fermion become gapless and
the system is described by a (1+1)D conformal field the-
ory (CFT) with central charge c = N/2 (where N is the
fermion flavor number). The central charge c and the

fermion mass m are two parameters that control the en-
tanglement feature of the Majorana chain. We will tune
these two parameters to study their effects on the holo-
graphic geometry.

The entanglement entropy of a free fermion state |Ψ〉
can be efficiently calculated from the fermion correlation
function.92,93 Let CA = 〈Ψ|χχᵀ|Ψ〉|A be the fermion cor-
relation restricted to the entanglement subregion A, the
2nd Renyi entanglement entropy is then given by

SΨ(A) = −1

2
Tr ln

(
C2
A + (1− CA)2

)
. (23)

We can then collect the entropy SΨ(A) over arbitrary
region A. The entanglement cut is always placed between
the unit cells (i.e. the region A always contains complete
unit cells). Therefore the local Hilbert space dimension
in each unit cell is D∂ = 2N = 22c. Correspondingly,
the external pinning field in the Ising model is set by
h = 1

2 lnD∂ = c ln 2.
In the following, we will perform the EFL on the

ground state of the Majorana fermion chain. The lattice
is fixed to the size of 64 sites (i.e. 32 unit cells) with the
periodic boundary condition. The entanglement features
are collected from Eq. (23) and then served to the ma-
chine as the training data. For the 32-unit-cell fermion
chain, there are altogether 232 possible choices of the en-
tanglement region A (as each unit-cell can choose to be
included in the region A or not). Obviously, it is both
unfeasible and unnecessary to collect SΨ(A) for all these
232 regions. We will only collect a subset of them. There
are several options to choose the sampling ensemble of
entanglement regions.

Option (1) is to sample all of them with equal prob-
ability. With this sampling scheme, most of the entan-
glement regions will contains multiple small and discon-
nected intervals. Consequently, this sampling is not effi-
cient at conveying large-scale entanglement features for
large single intervals (which represent the correlations be-
tween far-separated entanglement cuts in the Ising model
language).

Option (2) is to sample only single interval regions. As
the interval length varies, these regions cover different
scales of entanglement features, but the multi-partite en-
tanglement features are missing. We will use this single-
interval data for some testing cases to see if the machine
has the generalization ability to predict multi-interval en-
tropies form single-interval data.

Option (3), the most comprehensive one, is to weight
the entanglement region A by the number of intervals
nA in A, such that the probability distribution p(A) ∼
e−nA/n̄ is controlled by the average interval number n̄.
We may tentatively take n̄ = 2, which provides a nice
balance between the single-interval and the multi-interval
entanglement features. We call this the interval-weighted
sampling scheme for the entanglement regions. As we
have checked in our numerics, the choice of n̄ does not
affect training result much (which may be an indication
of the internal consistency in entanglement features col-
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lected at different interval numbers).

B. Choosing the Central Charge

We first fix the fermion mass tom = 0 and run the EFL
on the hyperbolic network architecture. The visible layer
has 32 units, matching the 32 unit cells of the fermion
chain. Each deeper layer halves the number of units, so
the number of units per layer vanishes after five layers,
and the network can not go deeper. A uniform weight Iz
(or equivalently the Ising coupling Jz = Iz/4) is assigned
to all links in the same layer, where z = 1, 2, · · · , 5 labels
the layer depth.

We adopt the supervised learning approach described
in Eq. (12). The EFL algorithm is implemented105 on the
TensorFlow94 system using Adam95 optimizer. We use
the interval-weighted scheme to sample the entanglement
regions and prepare the training data for this study. As
shown in Fig. 7(a), the (relative) loss L decreases with the
training steps and converges to ∼ 10−3 eventually. Al-
though the learning algorithm is deterministic, noise is
still introduced by the randomly batched training data,
leading to the fluctuations of L. Nevertheless, the noise
in the training data will not wash out the gradient sig-
nals in deep layers, thus the deep network is still trained
efficiently.
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FIG. 7: Typical training curves of (a) the objective function
L and (b) the edge weight Iz in each layer.

Driven by the training data, the edge weight Iz devel-
ops one layer after another as shown in Fig. 7(b). Apart
from the first layer weight I1, the rest of the weights all
converge to the same value controlled by the regulariza-
tion Eq. (21). If the regularization condition is lifted, we
observe that the machine has the tendency to develop
unphysical weights to overfit the data.

We take the final values of the weights Iz and plot
them in Fig. 8(a). As we tune the central charge c of
the fermion chain, the behavior of Iz undergoes a tran-
sition around c = 2. When the central charge is smaller
than that (e.g. c = 1/2, 1), the deep layers will not be
trained. This corresponds to an order-disorder transi-
tion of the Boltzmann machine. Smaller central charge
means weaker entanglement and smaller edge mutual in-
formation in the RTN. Since the edge mutual informa-
tion I maps to the Ising coupling J = I/4, decreasing the

coupling J could drive the system into the paramagnetic
phase. Then the original assumption on the large edge
mutual information fails and the physical picture of rep-
resenting the entanglement entropy by the domain wall
energy in the holographic bulk no longer holds. To esti-
mate the critical coupling Jc on the hyperbolic network,
we first pin the boundary spins to the same direction
and then measure the magnetization of the spin at the
deepest layer to see if the magnetization can propagate
through the system all the way from the boundary to the
deepest layer in the bulk. As shown in Fig. 8(b), we found
an activation behavior in the magnetization curve, which
roughly divides the coupling J into paramagnetic-like or
ferromagnetic-like regimes. Although the transition is
smeared out in the finite-sized system, we can still give
an estimate of the critical Jc ' 0.15 (or Ic ' 0.6) from
the extrapolation of the activation slope. Fig. 8(a) indeed
shows that as Iz drops below the level of Ic, the train-
ing signal disappears and the deep layer weights cease to
develop.
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FIG. 8: (a) Final values of the edge weights Iz on different
central charges. The dashed line marks the level of the critical
weight Ic ' 0.6. (b) The IR spin magnetization under UV
pinning vs the Ising coupling J . The critical Jc ' 0.15 is
estimated from extrapolation the activation slope.

In the AdS/CFT duality, the central charge c of a holo-
graphic CFT2 is universally given by c = 3`/2GN ,4,96

where ` is the AdS radius and GN is the Newton con-
stant in three dimensional gravity. Our approach of
fixing the tensor network architecture and training the
edge weights corresponds to fixing the AdS radius. Then
changing the central charge c effectively changes the grav-
itational constant GN . Large c corresponds to small GN
and hence weakly coupled classical gravity. The classical
holographic geometry can be represented by the classical
network geometry that can be trained by the EFL. As
the central charge c gets small, the gravity crosses over
from classical to quantum and the EFL ceases to produce
a sensible result. Therefore, in the following, we will fix
the central charge at c = 4 on the classical side.

C. Single-Interval Entanglement Entropy

For the critical fermion chain m = 0, it is known that
the single-interval Renyi entanglement entropy (i.e. the
entanglement region A is a single continuous interval)
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follows the logarithmic law S(LA) ∼ lnLA in the thermo-
dynamic limit.97 To see how well the RTN can reproduce
this logarithmic entropy scaling after training, for this
study we serve the machine with only the single-interval
2nd Renyi entanglement entropies taken from a critical
fermion chain of 32 unit cells (calculated from Eq. (23)
using the lattice model). After the training, we ask the
machine to reproduce the entanglement entropies over
the trained intervals and compare the predictions with
the actual values. The result is shown in Fig. 9.
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FIG. 9: Fitting the single-interval 2nd Renyi entropy using
the machine trained on (a) the hyperbolic and (b) the cylin-
drical network architecture. The lattice contains 32 unit cells
and interval length LA is measured in unit cells.

On the hyperbolic architecture, the trained model pro-
vides a good fitting as in Fig. 9(a). However, on the
cylindrical architecture, the fitting gets worse and the
regression error is larger as in Fig. 9(b). This is because
the expression power of the cylindrical network is not
strong enough to capture the logarithmic entropy scaling.
Naively, one may imagine to mimic the hyperbolic geome-
try on the cylindrical network with the weights that grad-
ually decay with the layer depth. However the problem
is that as the edge weight (Ising coupling) gets smaller
than the critical value, the deeper layers will enter the
paramagnetic phase and lose the learning signal. As a
consequence, only the first several layers will be trained
in the cylindrical network typically, which results in an
area law entangled RTN structure (similar to MPS).106

Therefore when the CFT entanglement feature is fed to
the cylindrical Boltzmann machine, the machine will try
to fit the entropy data with an area law curve, which
can be seen from the flat top behavior of the prediction
curve in Fig. 9(b). Thus for CFT states, the hyperbolic
network generally provides a better fit to the logarithmic
entropy scaling compares to the cylindrical network. It
is conceivable that if the machine is allowed to adjust its
architecture during the training, the EFL will generate a
training signal to drive the cylindrical network towards
the hyperbolic network for the CFT states. However, dy-
namically updating network architectures in the training
process is still technically challenging, we will leave this
possibility for future study.

D. Multi-Interval Entanglement Entropy

To test the prediction power of the RTN model, we
train a hyperbolic network using single-interval entan-
glement entropies and ask if the network can predict
multi-interval entanglement entropies. Let us use differ-
ent colors to label the entanglement entropies over differ-
ent numbers of intervals, and plot the predicted entropy
against the actual entropy in Fig. 10. In the training
phase, only the single-interval data is presented to the
machine. After the training, the machine was able to
predict multi-interval entanglement entropies, which was
not in the training set. If the prediction is perfect, then
all the points should fall along the diagonal line in Fig. 10.
We can see the points do line up nicely, especially when
the number of intervals is small. The overall prediction
accuracy is ∼ 95%.
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FIG. 10: Predicted vs actual entropy over multi-interval en-
tanglement regions. Each pair is classified by the interval
number in color. Only the single-interval data was trained.

This demonstrates the prediction power of the RTN
model. However, this may not be very surprising. Since
the multi-interval entanglement entropy is related to the
single-interval ones

S(A ∪B) = S(A) + S(B)− I(A,B). (24)

If the mutual information I(A,B) is small, the multi-
interval entropy is dominated by the additive part S(A∪
B) ' S(A) + S(B), which is relatively easy to capture.
So we will turn to the sub-additive part (i.e. the mutual
information) in the following.

E. Mutual Information

We found that for adjacent intervals, the RTN model
can still fit the mutual information well, as shown in
Fig. 11(a). There is a geometric interpretation of this
type of mutual information in the holographic bulk. Ac-
cording to the Ryu-Takayanagi formula,4 the entangle-
ment entropy S(A) of the interval A is proportional to
the area of the minimal surface γA, which, in the AdS3

space, is also the geodesic line connecting the two bound-
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ary points of the interval A. Therefore the mutual infor-
mation of adjacent intervals A and B corresponds to

I(A,B) = S(A) + S(B)− S(AB)

=
1

4GN
(|γA|+ |γB | − |γAB |).

(25)

γA, γB and γAB form the three sides of a triangle in
the holographic bulk. The mutual information measures
how much is the sum of the two sides greater than the
third side. This indicates that the machine gets a grasp
of the holographic geometry in its neural network, so it
can provide a good prediction of the mutual information
that has classical geometric interpretations.
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FIG. 11: Fitting the mutual information of (a) two adjacent
equal-length intervals and (b) two separated equal-length in-
tervals with the separation region of the same length as the
interval length.

In contrast, for separated intervals, the predicted mu-
tual information is obviously less than the actual value
by quite a large amount, as shown in Fig. 11(b). This is
actually not a problem of our algorithm, but has a deep
physical origin. States with semi-classical dual which sat-
isfies RT formula are necessarily strongly correlated and
contain a lot of multi-partite entanglement. For exam-
ple, it is known that holographic states have large and
negative tripartite information,31,98 in contrast from the
free fermion theory. RTN is designed to describe holo-
graphic states, which have much smaller mutual infor-
mation between separated intervals compared to that in
the free fermions. The free fermion conformal field theory
has many low-dimension operators, which corresponds to
light matter fields in the dual gravity theory. In our ap-
proach, these matter field fluctuations are not taken into
account, which partially explains the the deficit of mutual
information in Fig. 11(b). Also, our approach only cap-
tures the optical classical geometry and does not include
the quantum fluctuation of geometries around the clas-
sical saddle points. How to go beyond the planar graph
EFL and include the fluctuation effect of both matter
fields and geometries is an interesting topic for future
research.

F. Emergent Holographic Geometry

Finally, we turn on the fermion mass m. The fermion
correlation length ξ becomes finite and is given by

ξ−1 =
1

2
ln

1 + |m|
1− |m|

. (26)

In the holographic bulk, the fermion mass caps off the IR
region at the scale zIR ∼ ln ξ. Because the entanglements
are resolved in the UV layers of the RTN at this scale,
the network ceases to grow deeper and the holographic
space ends. As the mass m is turned on, the edge weight
will start to fade away from the deepest layer, as shown
in Fig. 12(a). With increasing mass, the fade-off scale
zIR moves from IR (large z) toward UV (small z), see
Fig. 12(a).
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FIG. 12: (a) The edge weight Iz in each layer, trained from
the fermion model with different mass m. (b) Color plot of
the edge weight Iz as a function of mass m and the layer
depth z. The dashed line is the curve of log2 ξ with ξ taken
from Eq. (26).

We scan over a range of mass m ∈ [0, 0.5]. At each m,
we train the machine and obtain the edge weight Iz. The
result is shown in Fig. 12(b). There is a clear boundary
where the holographic space terminates. This boundary
matches the theoretical expectation zIR = log2 ξ nicely
(we take log2 here because of each deeper layer halves
the number of unit in the hyperbolic network architec-
ture). This demonstrates how the AdS3 spacial geometry
emerges as we gradually decrease the mass m and drive
the boundary system toward the CFT2.

V. DISCUSSIONS AND SUMMARY

In this work, we have restricted the entanglement fea-
ture to the 2nd Renyi entropies. It is actually conceptu-
ally more natural to include all orders of Renyi entropies
over all regions in the entanglement feature.107 Ref. 31
shows that the nth Renyi entropy of the RTN state can
be mapped to the free energy difference of an Sn model
in the large bond dimension limit. In the Sn model, each
vertex v ∈ V hosts a permutation group element σv ∈ Sn,
coupled together via the energy functional

EG [σ, τ ] = −
∑
e∈E

χe

( ∏
v∈∂e

σv

)
−
∑
v∈V∂

χ∂(τ−1
v σv), (27)
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where χe(g) and χ∂(g) are class functions that only de-
pend on the cycle type lαg of the permutation g (i.e. lαg is
the length of the αth cycle in g). More specifically, we
have

χe(g) =
1

2

∑
α

(lαg − 1)I
(lαg )
e ,

χ∂(g) =
∑
α

(lαg − 1) lnD∂ .
(28)

The χe function is parameterized by the edge mutual in-

formation I
(l)
e for Renyi index l = 2, · · · , n. The χ∂ term

describes the boundary pinning field that pins the bound-
ary configuration to another set of permutation group el-
ements τv ∈ Sn. By defining e−FG [τ ] =

∑
[σ] e

−EG [σ,τ ], we

can consider SG [τ ] = FG [τ ]−FG [τ = 1]. If we allow τv to
take all group elements in Sn (not limited to the cyclic
permutations), the function SG [τ ] actually includes the
RTN entanglement entropies over all regions for all Renyi
index up to n. In principle, using the Sn model, entan-
glement entropies of different Renyi indices (up to n) can
all be put together as the training data for the EFL, and
the edge mutual information of all Renyi indices (up to
n) will be trained simultaneously. However, the efficient
training method for Boltzmann machines on Sn models
is still lacking, so the above idea is still not practical yet.

Despite the technical difficulties, the philosophy be-
hind EFL is clear. For a quantum many-body state with
a given tensor factorization of the Hilbert space (which
specify the “real space basis”), one can forget about
operator-specific information such as particular correla-
tion functions, and focus on the local unitary invariant
information. All local unitary invariant properties of the
wavefunction can be considered as entanglement features
of the wavefunction, which include the bipartite entan-
glement properties and also many more multipartite en-
tanglement properties. From the point of view of grav-
itational dual, it is interesting to make an analog with
the black hole no-hair theorem99–102. The non-invariant
features are removed and the geometry only encodes the
local unitary invariant features, in the same way how
the area of the black hole is proportional to its entropy
and is independent from details of the initial state. The
random average in RTN serves as a technical tool to re-
move “hairs” of a many-body state, where the opera-
tor specific information is erased by the random tensor,
leaving only the entanglement features encoded in the
network structure. Consequently, RTN can be poten-
tially a useful framework for characterizing other phe-
nomena in which entanglement features play an essential
role, such as the many-body localization-thermalization
transition,68 which is essentially a transition about entan-
glement structures. The EFL provides us an approach to
construct the RTN and to optimize its structures, which
could be a useful tool for the study of quantum chaotic
dynamics and localization/thermalization.

In summary, the goal of the EFL is to construct an
optimal RTN state that best fits the entanglement prop-
erties of a given quantum many-body state. The problem

similar to the task of feature learning, which extracts the
features hidden in the training data and encode them
into the structure of the neural network. This analogy is
made concrete by mapping the RTN to the Boltzmann
machine and train the machine with the entanglement
entropies over all subregions. As the entanglement fea-
ture is learned, the machine develops a neural network,
whose network geometry can be interpreted as the emer-
gent holographic geometry of the given quantum many-
body state.
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Appendix A: Entanglement Entropy of RTN States

The RTN entanglement entropy defined in Eq. (5) can
be equivalently expressed as

e−SG(A) = E
Tr(|G〉〈G|)⊗2τ̂(A)

Tr(|G〉〈G|)⊗2
, (A1)

where E denotes the average over the RTN ensemble, and
τ̂(A) is the swap operator in the subregion A. It can be
factorized to each boundary vertex as

τ̂(A) =
⊗
v∈V∂

τ̂v, τ̂v =

{
v ∈ A,
v ∈ Ā.

(A2)

The operator τ̂v swaps the replicated local Hilbert space
(Hphy

v )⊗2 on the vertex v ∈ A, otherwise it is an identity
operator acting on the vertex v ∈ Ā.

To evaluate Eq. (A1), we first introduce the rules for
the ensemble average of the random state. Suppose |ψ〉
is a random state in an N -dimensional Hilbert space, be-
cause the random state ensemble is SU(N) symmetric,
due to the Schur’s lama, the ensemble average of |ψ〉〈ψ|
must be proportional to the identity matrix in respect
of the SU(N) symmetry. Under appropriate normaliza-
tion, we can set E|ψ〉〈ψ| = 1. Introducing the graphical
representation of the random state,

|ψ〉 = , 〈ψ| = , (A3)

the formula E|ψ〉〈ψ| = 1 can be represented as

E = . (A4)
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For duplicated case, the formula is generalized to

E
( )⊗2

= E = + =
∑
σ∈S2

σ , (A5)

or E(|ψ〉〈ψ|)⊗2 =
∑
σ∈S2

σ̂, as a result of the SU(N)×S2

symmetry.
Consider a RTN state on a graph with two vertices,

each connected to an external edge (physical leg).

|G〉 =
� �

. (A6)

Assuming the left and the right external edges are as-
cribed to the entanglement regions A and Ā respectively.
Using Eq. (A5), one can evaluate

ETr(|G〉〈G|)⊗2τ̂(A)

=E =
∑
[σ]

σ σ σ σ

=
∑
[σ̂]

w( , σ̂1)w(σ̂1, σ̂2)w(σ̂2, ),

(A7)

where σ̂i ∈ S2 arise from the ensemble average of the
random states in the bulk. The weight function w(σ̂1, σ̂2)
is actually a function of σ̂−1

1 σ̂2, which can be expressed
in terms of the 2nd Renyi mutual information Ie of the
entangled pair state along the edge

w(σ̂1, σ̂2) =

{
1 if σ̂−1

1 σ̂2 = ,

e−Ie/2 if σ̂−1
1 σ̂2 = .

(A8)

If we represent the S2 variable σ̂i by the Ising variable
σi = ±1, the weight function has a more compact form

w(σ1, σ2) ∝ e−Jeσ
−1
1 σ2 where Je = Ie/4. For external

edges, Je is replaced by h = 1
2 lnD∂ where D∂ is the

boundary bond dimension. So Eq. (A7) can be map to
the partition function of an Ising model with fixed bound-
ary condition τ(A),

ETr(|G〉〈G|)⊗2τ̂(A) = e−FG [τ(A)], (A9)

where e−FG [τ ] =
∑

[σ] e
−EG [σ,τ ] and

EG [σ, τ ] = −hτ1σ1 − J12σ1σ2 − hτ2σ2. (A10)

It is straightforward to generalize the energy functional to
generic graphs, given in Eq. (6). Correspondingly, Eq. (7)
is just a rewritten of Eq. (A2) in terms of the Ising vari-
ables.

In the large bond dimension limit (large Ie), the en-
semble average of the fraction in Eq. (A1) can be approx-
imated by average of the numerator and the denominator
separately.

e−SG(A) 'ETr(|G〉〈G|)⊗2τ̂(A)

ETr(|G〉〈G|)⊗2

=e−F [τ(A)]+F [τ(∅)].

(A11)

Hence we have arrived at SG(A) ' F [τ(A)] − F [τ(∅)],
verifying the result in Eq. (9). Ref. 31 has shown that
the approximation of distributing the ensemble average
into the fraction is valid in the large Ie limit by analyzing
the fluctuation. A more careful treatment away from the
that limit is provided in Ref. 68.

Appendix B: Planar Graph Ising Model

In this appendix, we will review the systematic ap-
proach to calculate the free energy F of the Ising model
on a planar graph G = (V, E), following Ref. 86,87.

Z = e−F =
∑
[σ]

e−E[σ], E[σ] = −
∑
e∈E

Je
∏
v∈∂e

σv. (B1)

First of all, every planar graph can be triangulated
by adding virtual edges, across with the Ising coupling
Je = 0 is simple zero. If the boundary spins are also
coupled to external Zeeman field hv, one can consider
introducing a fictitious spin at infinity and coupling all
the boundary spins to the fictitious spin with the cou-
pling strength set by hv. This effective doubles the sys-
tem by its Z2 symmetry (the Ising spin flip symmetry)
counterpart, which only brings a factor 2 to the partition
function but does not affect the free energy calculation.
With the tricks of virtual edges and the fictitious spin,
we only need to consider the Z2 symmetric Ising model
on the triangulated planar graph.

Every triangulated planar graph has a dual trivalent
graph G̃ = (Ṽ, Ẽ), as shown in Fig. 13(a), on which the
Ising model is mapped to a loop model. Each Ising do-
main wall is interpreted as a loop on the dual lattice.
Introduce the Z2 variable lẽ on the dual edges ẽ, such
that lẽ = 1 corresponds to a loop through the edge ẽ and
lẽ = 0 corresponds to no loop. The partition function
Eq. (B1) can be mapped to82

Z =
∑
[σ]

∏
e∈E

eJe
∏
v∈∂e σv

=Z0

∑
[l]

∏
ẽ∈Ẽ

w1−lẽ
ẽ

∏
ṽ∈Ṽ

δZ2

( ∑
ẽ∈dṽ

lẽ

)
,

(B2)

where the weight is wẽ = e2Je (where e the edge in the
original graph that is dual to the edge ẽ in the dual graph)
and the factor Z0 = e−F0 is given by F0 =

∑
e∈E Je. The

delta function δZ2
over the Z2 group imposes the close

loop constraint. Unlike conventional loop models, here
each segment of the loop (the domain wall) is given a
trivial weight 1, while the edge without the loop is given
a greater weight wẽ ≥ 1 (for Je ≥ 0) instead. In this
way the domain wall is still relatively suppressed in the
partition function. The overall factors generated in this
weight rescaling are all absorbed into Z0.

Further expanding each trivalent site into a triangle,
as shown in Fig. 13(b), the loop model can be mapped
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FIG. 13: (a) The original graph (in orange) and its dual graph
(in green). Each edge e in the original graph is dual to a
unique edge ẽ in the dual graph, such that e and ẽ intersect.
(b) The extended graph (star lattice) by expanding each site
to a three sites in a triangle.

to a dimmer model,82 where the loop configuration is re-
placed by the transition graph of dimmer configurations.
Let Ω be the set of all dimmer coverings (perfect match-
ings) of the extended graph G′ in Fig. 13(b), the partition
function Eq. (B2) becomes

Z = Z0

∑
M∈Ω

∏
e′∈M

we′ (B3)

In the dimmer model, each thick edge covered by the
dimmer is weighted by we′ = e2Je . The remaining thin
edges all share we′ = 1.
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FIG. 14: Systematic assignment of the Kasteleyn orientation
on planar graph. (a) Start from an arbitrary vertex (mark by
the red dot) and build a spanning tree. (b) Close the loops
respecting the clockwise-odd rule.

The partition function of the dimmer model Eq. (B3)
can be formulated as a path integral of free Majorana
fermions, with fermion spin structure specified by the
Kasteleyn orientation.87,103 The insight is that every non-
zero term in the Majorana fermion path integral corre-
sponds to a perfect matching on the graph G′ (on which
the dimmer model is defined). To place the fermion sys-
tem on the graph G′, each edge must be assigned an ori-
entation, such that for every face (except possibly the ex-
ternal face) the number of edges on its perimeter oriented
in a clockwise manner is odd, known as the clockwise-odd
rule. Any orientation satisfying the clockwise-odd rule is
a Kasteleyn orientation, which ensures all dimmer con-
figurations to be mapped to even fermion parity states.
The Kasteleyn orientation can be assigned systematically
on planar graphs by first choosing an arbitrary vertex in
the graph and build a spanning tree from that vertex,
then closing the loops respecting the clockwise-odd rule,
as demonstrated in Fig. 14.

With the Kasteleyn orientation assigned, we can con-
struct the weighted adjacency matrix A of the graph
G′ = (V ′, E ′), such that ∀i, j ∈ V ′: Aij = 0 if 〈ij〉 is
not an edge in E ′, Aij = wij if the orientation on edge
〈ij〉 runs from i to j, and Aij = −wij otherwise. The
partition function can then be shown to be

Z = Z0

∫
D[χ]e−

1
2χ

ᵀAχ = Z0 pf A. (B4)

So the free energy of the Ising model can be calculated
from

F = F0 − ln pf A, (B5)

where F0 =
∑
e∈E Je and A is the adjacency matrix of

the Kasteleyn oriented extended dual graph G′.

1 E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998), hep-
th/9803131.

2 S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Physics
Letters B 428, 105 (1998), hep-th/9802109.

3 J. Maldacena, International Journal of Theoretical
Physics 38, 1113 (1999), hep-th/9711200.

4 S. Ryu and T. Takayanagi, Physical Review Letters 96,
181602 (2006), hep-th/0603001.

5 V. E. Hubeny, M. Rangamani, and T. Takayanagi, Jour-
nal of High Energy Physics 7, 062 (2007), 0705.0016.

6 T. Faulkner, A. Lewkowycz, and J. Maldacena, Journal
of High Energy Physics 2013, 74 (2013).

7 X. Dong, Journal of High Energy Physics 2014, 44 (2014).
8 X. Dong, Nature communications 7 (2016).

9 G. Vidal, Physical Review Letters 99, 220405 (2007),
cond-mat/0512165.

10 G. Vidal, Physical Review Letters 101, 110501 (2008),
quant-ph/0610099.

11 B. Swingle, Phys. Rev. D 86, 065007 (2012), 0905.1317.
12 B. Swingle, ArXiv e-prints (2012), 1209.3304.
13 G. Evenbly and G. Vidal, Phys. Rev. B 79, 144108

(2009), 0707.1454.
14 M. Nozaki, S. Ryu, and T. Takayanagi, Journal of High

Energy Physics 10, 193 (2012), 1208.3469.
15 J. Haegeman, T. J. Osborne, H. Verschelde, and F. Ver-

straete, Physical Review Letters 110, 100402 (2013),
1102.5524.

16 A. Mollabashi, M. Naozaki, S. Ryu, and T. Takayanagi,



14

Journal of High Energy Physics 3, 98 (2014), 1311.6095.
17 J. Molina-Vilaplana, ArXiv e-prints (2015), 1503.07699.
18 M. Miyaji, S. Ryu, T. Takayanagi, and X. Wen, Journal

of High Energy Physics 5, 152 (2015), 1412.6226.
19 X. Wen, G. Y. Cho, P. L. S. Lopes, Y. Gu, X.-L. Qi, and

S. Ryu, ArXiv e-prints (2016), 1605.07199.
20 X.-L. Qi, ArXiv e-prints (2013), 1309.6282.
21 C. H. Lee and X.-L. Qi, ArXiv e-prints (2015), 1503.08592.
22 Y. Gu, C. H. Lee, X. Wen, G. Y. Cho, S. Ryu, and X.-L.

Qi, ArXiv e-prints (2016), 1605.00570.
23 S.-S. Lee, Journal of High Energy Physics 1, 76 (2014),

1305.3908.
24 P. Lunts, S. Bhattacharjee, J. Miller, E. Schnetter, Y. B.

Kim, and S.-S. Lee, Journal of High Energy Physics 8,
107 (2015), 1503.06474.

25 Y.-Z. You, X.-L. Qi, and C. Xu, Phys. Rev. B 93, 104205
(2016), 1508.03635.

26 M. Levin and C. P. Nave, Physical Review Letters 99,
120601 (2007), cond-mat/0611687.

27 G. Evenbly and G. Vidal, Physical Review Letters 115,
180405 (2015), 1412.0732.

28 G. Evenbly and G. Vidal, Physical Review Letters 115,
200401 (2015), 1502.05385.

29 F. Pastawski, B. Yoshida, D. Harlow, and J. Preskill,
ArXiv e-prints (2015), 1503.06237.

30 Z. Yang, P. Hayden, and X.-L. Qi, Journal of High Energy
Physics 1, 175 (2016), 1510.03784.

31 P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter,
and Z. Yang, ArXiv e-prints (2016), 1601.01694.

32 X.-L. Qi, Z. Yang, and Y.-Z. You, ArXiv e-prints (2017),
1703.06533.

33 W. Donnelly, D. Marolf, B. Michel, and J. Wien, Journal
of High Energy Physics 2017, 93 (2017).

34 M. Han and S. Huang, arXiv preprint arXiv:1705.01964
(2017).

35 A. May, Journal of High Energy Physics 2017, 1 (2017).
36 K. Hyatt, J. R. Garrison, and B. Bauer, ArXiv e-prints

(2017), 1704.01974.
37 A. Almheiri, X. Dong, and D. Harlow, Journal of High

Energy Physics 4, 163 (2015), 1411.7041.
38 G. E. Hinton and R. R. Salakhutdinov, Science 313, 504

(2006).
39 Y. Bengio, Y. LeCun, et al., Large-scale kernel machines

34 (2007).
40 Y. LeCun, Y. Bengio, and G. Hinton, Nature 521, 436

(2015).
41 W.-C. Gan and F.-W. Shu, ArXiv e-prints (2017),

1705.05750.
42 J. de Boer, E. Verlinde, and H. Verlinde, Journal of High

Energy Physics 8, 003 (2000), hep-th/9912012.
43 V. Balasubramanian, M. Guica, and A. Lawrence, Journal

of High Energy Physics 1, 115 (2013), 1211.1729.
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