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Abstract

The interplay between electronic interactions and disorder is neglected in the conventional Boltzmann
theory of transport, yet can play an essential role in determining the resistivity of unconventional metals.
When quasiparticles are long-lived, one can account for these intertwined effects by solving spatially
inhomogeneous Boltzmann equations. Assuming smooth disorder and neglecting umklapp scattering, we
solve these inhomogeneous kinetic equations and compute the electrical resistivity across the ballistic-to-
hydrodynamic transition. An important consequence of electron-electron interactions is the modification
of the momentum relaxation time; this effect is ignored in the homogeneous theory. We characterize
precisely when interactions enhance the momentum scattering rate, and when they decrease it. Our
approach unifies existing semiclassical theories of transport and reveals novel transport mechanisms.
In particular, we explain how the resistivity can be proportional to the rate of momentum-conserving
collisions. We compare this result with existing transport mysteries, including the disorder-independent
T? resistivity of many Fermi liquids, and the linear-in-7 “Planckian-limited” resistivity of many strange

metals.
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1 Introduction

1.1 The Challenge of Metallic Transport

One of the simplest experiments a condensed matter physicist can perform is to measure the electrical
resistivity p of a metal. Unfortunately, computing the resistivity from first principles is extremely challenging.
This is because the resistivity crucially depends on (7) the scattering rates and pathways of the electrons and
(i1) the mechanism through which translation invariance is lost.

To understand the heart of the challenge, let us briefly review the origins of transport theory. In many
of the most common metals, a simple picture proposed by Drude [1] in 1900 holds quite well. We estimate
that the resistivity

p=2, 1)

ne

with m the effective mass of quasiparticles in the metal, n the density of quasiparticles, and 77! is the
‘scattering rate’ of these quasiparticles. Bloch [2, 3] improved on this picture in 1929, noting that 7—1 ought
to be the rate at which quasiparticles lose their momentum. However, it was already appreciated by Peierls
[4, 5] in 1930 that such a picture has a serious caveat: whatever the quasiparticles scatter off of must rapidly
relax the total momentum of the system. There is a simple argument: if the total momentum of the system
is conserved, then we may shift to a reference frame moving at velocity ¢ relative to the crystal rest frame.
In the new reference frame, we observe an electric current J = —ent. However, Peierls’ critique turns out to
be unimportant for common metals, where most scattering events can relax momentum.

For these common metals, the theory of transport was placed on solid ground 60 years ago, e.g. [6]. One
calculates the rate at which quasiparticles of momentum p scatter into quasiparticles of momentum ¢. By
associating this with the collision integral of a homogeneous, linearized Boltzmann equation, one is easily
able to compute the resistivity of a metal. Bloch’s and Peierls’ improvements have been accounted for.

However, we have now seen many materials whose transport properties are still beyond the conventional
paradigm. A well-known failure of textbook theory arises in “strange metals” where one commonly measures
p < T at temperatures well below the Debye temperature. Upon closer analysis, one finds [7]

m kBT
pm"jpo—F@ih . (2)

The linear in T' contribution to p is consistent with the Drude formula (1) if there is a scattering rate



This is precisely the scattering rate of a strongly interacting, quantum critical strange metal. It may also be
the “fastest scattering rate” in nature for momentum-conserving collisions, that lead to the loss of quantum
coherence [8, 9, 10]. One of us [11] conjectured that (2) may arise from saturating a fundamental bound on
transport, where momentum relaxing collisions also occur at the rate (3). However, an immediate problem
with bounding the rate of momentum relaxing collisions as o T, even in a metallic state, arises from the fact
that the constant po in (2) is widely believed to arise from scattering off of static impurities. Indeed pq is
strongly disorder-dependent while the coefficient of the T-linear term is not [12]. If the universality of (2)
arises from the universality of (3), then physics beyond the Drude paradigm must be responsible.

A less well-appreciated failure of the textbook theory arises in the conventional Fermi liquid phase of

many ‘complicated’ metals, including heavy fermion metals. Here one measures the resistivity
p=po+ AT?, (4)

where the coefficient A typically depends most strongly on the thermodynamic properties of the sample.
In fact, there appear to be universal relationships between A and simple thermodynamic properties such
as the specific heat and the band structure [13, 14]. Again, it appears that translation symmetry breaking
plays no role in determining the coefficient A arising in the resistivity, which is at odds with the theorem
that p > 0 is solely a consequence of translation symmetry breaking. So we have a second example where,
neglecting the constant pg, the resistivity seems directly tied to a scattering rate most easily associated with
momentum-conserving collisions. Given a diverse array of sample quality and material structure, a theory
which leads to (4), where disorder plays a minimal role in determining the coefficient A, is clearly needed.
A common explanation for the T2 resistivity of the heavy fermion and other materials is that (i) there
are multiple bands present, of different quasiparticle masses [15], and/or (i) that typical electron-electron
scattering is an umklapp process, which can directly relax momentum [6]. The first explanation requires
that a “heavy” band efficiently relax momentum or that the metal has perfectly compensated electron and
hole Fermi surfaces so that the total charge density is zero. The second explanation is plausible so long as
the band structure permits efficient umklapp scattering near the Fermi surface. However, the universality
of A renders this proposal rather unappealing, given the diverse band structures present in these different
compounds, which ought to lead to differences in the efficiency of umklapp between different materials. We
also note that recent experiments on the SrTiOs also show anomalous T2 resistivity: in the material there is

only a single band of electrons at the Fermi surface, and umklapp is highly suppressed [16, 17].

1.2 Kinetic Theory Beyond the Relaxation Time Approximation

The conventional theory of transport in condensed matter physics [6] — which is based on kinetic theory — is not
sophisticated enough to solve these puzzles. This is of course true for the ‘most strongly correlated’ metals,

where no quasiparticles exist — the key assumption underpinning the kinetic equations is the existence of



quasiparticles. However, there are many metals where (i) quasiparticle-quasiparticle scattering is important
and (i¢) quasiparticles remain long-lived. This occurs whenever the electron-electron mean free path is
shorter than the electron-impurity mean free path. Such a regime has been accessed in experiments on
multiple materials [18, 19, 20, 21, 22]. While we will often refer to ‘electron-electron’ scattering in this work,
we technically always mean ‘quasiparticle-quasiparticle’ scattering. Transport in these metals, with long-lived
quasiparticles, is still beyond the conventional framework, as we now explain.

The reason that the textbook kinetic theory of transport [6] is not suitable for such systems is that it
neglects classical correlations between scattering events. The approximation that particles are equally likely
to scatter from momentum p into ¢, everywhere in the sample, is simply not true in general. For example,
consider a quasiparticle moving through a slowly varying potential. If this quasiparticle collides many times
with other quasiparticles in one ‘patch’ of the potential, then the local transition rates are not equivalent to
spatially averaged transition rates. In this limit, one can model transport using hydrodynamics, as has been
done in older [23, 24] as well as more recent work [25, 26, 27, 28, 29, 30].

Kinetic theory was invented to study the dynamics of gases and to compute the viscosity of air. Because
hydrodynamics is contained as a special limit of kinetic theory, a correct and complete solution of the kinetic
theory of transport must recover the hydrodynamic limit of transport when the electron-electron mean
free path is sufficiently short. Previously, the homogeneous Boltzmann equation has been solved in finite
geometries, where boundary conditions play the role of ‘disorder’ and lead to non-trivial transport phenomena
acrosss the ballistic-to-hydrodynamic crossover [18, 31, 32, 33]. There is also previous literature on transport
of non-interacting electrons in disorder potentials by perturbatively solving the Liouville (non-interacting
Boltzmann) equation [34]. Our work will borrow some techniques from these works and extend them into
new regimes: we directly account for both the disorder inevitably present in the bulk of the sample and the
effects of electron-electron interactions.

In this paper, we solve the kinetic theory of transport in an inhomogeneous system. We are able to
compute the resistivity of a disordered medium across the ballistic-to-hydrodynamic crossover, recover all
known (semi)classical transport phenomena within a unified framework and identify new hydrodynamic
regimes. We answer the question: when do interactions enhance the momentum scattering rate, and when do
they decrease it? We present two explicit types of calculations. When the inhomogeneity is weak, we integrate
it out and exactly compute the resistivity to leading order in perturbation theory. When the inhomogeneity is
strong, we present a variational principle for upper bounding the resistivity. Both techniques are completely
general and valid for any system with long lived quasiparticles and inversion and time-reversal symmetry.

The techniques can immediately be applied to realistic, material-specific models of electronic transport.



2 Summary of Results

We first introduce the model and explain qualitatively the transport phenomena that are possible. We then
describe the predictions of our formalism for experiments, and comment on the similarities between our

findings and the experimental mysteries we outlined in Section 1.1.

2.1 Transport Regimes

In this paper, we will consider a toy model for kinetic transport which elucidates the failures of the relaxation
time approximation. We consider a weakly interacting gas of long-lived quasiparticles of Fermi wavelength

Ar, moving through a smooth disorder potential Vi, (Z), which varies on the length scale &: see Figure 1.

e
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Figure 1: Quasiparticles of short Fermi wavelength Ar moving in a smooth disorder potential Vin,p. In the
many-body limit, this disorder potential may be interpreted as an inhomogeneous chemical potential.

The Hamiltonian of the many-body system is

H =

%

(E(ﬁl) + ‘/lmp(fl)) + Hint, (5)

N
where €() = e(—p) is an inversion-symmetric kinetic energy (which need not be p?/2m) and Hiy,; is a many-
body Hamiltonian allowing for interactions between the quasiparticles. We assume that Hjy is invariant under
uniform translations, and so the total momentum of the electrons is conserved in the absence of the impurity
potential. When A\p < &, we will show in Section 3 that one must account for Vip,p, in a more sophisticated
manner than is conventionally done [6], and solve the spatially inhomogeneous kinetic equations. While our
focus in this paper is on the limit where momentum relaxation is entirely due to long wavelength disorder,
it is straightforward to add short-range impurity scattering, umklapp and/or phonon scattering. These will
add conventional momentum-relaxing contributions to the kinetic equations.

We will present two techniques for solving the inhomogeneous kinetic equations. Firstly in Section 4,
when Vi, is weak, we exactly integrate it out and compute p at leading order. Secondly, in Section 5, we

prove a variational principle which can be used to compute upper bounds on the resistivity even when the



inhomogeneity is non-perturbatively large. Schematically, our variational principle gives that

- v [d%Ts ©)
p:m: = 71_ 3
(v [ de Ja)? V.JA=0

the resistivity can be computed by minimizing the entropy produced on arbitrary small deviations away from
equilibrium, subject to the constraint that all conservation laws (including charge) are respected: V-.J4 = 0.
There are integrals over space (normalized by the total volume V'), but no disorder average in (6). In
particular, the constraint must be obeyed in a specific inhomogeneous potential. This constraint is the new
ingredient relative to older variational principles for the homogeneous Boltzmann equation [35, 36, 37, 38,
6]. As explicit applications of these techniques, we have studied models where the impurity potential is
characterized by a single length scale £, where electron-electron collisions occur on a fixed length scale fq,
and where all thermally excited quasiparticles move at a typical speed vp. Our formalism is applicable for
more complicated systems, though we leave detailed analyses of these generalizations to future work. Both
the exact perturbative and variational non-perturbative computations suggest that there are three main

regimes of transport, summarized in Figure 2:

(a) 2 (b)
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Figure 2: We follow a “special” quasiparticle (in red) as it meanders through a disordered landscape, possibly
colliding with other quasiparticles. In each plot, we show a birds eye view of a red quasiparticle, moving
through the inhomogeneous impurity potential Vi, (shown in light blue) of a two-dimensional Fermi liquid.
This is an artistic simplification; our results are not specific to d = 2. (a) A non-interacting quasiparticle
random walks through the impurity potential, deflected by a small angle after each puddle. This leads to
(7). (b) A quasiparticle rapidly collides with others (in blue) on a length scale fe.. The time it takes for
each quasiparticle to “see” the inhomogeneity is thus enhanced, leading to (8). The arrows on each blue
particle emphasize that these collisions conserve the total momentum, and cannot directly contribute to the
resistivity. (c¢) A large number of conservation laws ensure that as we try to move any one quasiparticle (in
red) across the puddle, many other quasiparticles are forced out of equilibrium in order to satisfy additional
conservation laws: the orange holes denote the ‘absence’ of quasiparticles, out of equilibrium, and the solid
orange circles denote where the quasiparticles have been driven. The large number of quasiparticles out of
equilibrium leads to the effective momentum relaxation rate (9).



1. ballistic: In the limit where 4, > &, the trajectories of quasiparticles are dominated by random
walks through the disordered landscape. The diffusion constant of this random walk directly controls
the momentum relaxation rate, and hence the resistivity. One estimates that, up to a possibly small
constant prefactor when the disorder potential is weak, the momentum relaxation time is proportional

to the time it takes for a quasiparticle to travel across a puddle:

poc%a%. (7)

Here we assume that the typical strength of the impurity potential is fixed and does not depend on &.

2. viscous hydrodynamic: In the limit where £, < £, each quasiparticle collides with other quasiparti-
cles in momentum-conserving collisions. Suppose that when minimizing the entropy production in (6),
we are able to arrange the quasiparticles in local thermodynamic equilibrium (on length scales small
compared to £). The time scale relevant for transport is the time it takes the collection of colliding
quasiparticles to travel from the center of an impurity puddle to the edge — this is how long it takes to
feel the effects of inhomogeneity. As the quasiparticles undergo random walks with diffusion constant
VFlee:

1 vplee

p X — X

T £2
In this regime, transport is governed by (a possibly generalized) viscous hydrodynamics [25, 26, 27, 28,

(8)

29]. An understanding of how viscous hydrodynamics emerges from kinetic theory has been achieved in
previous works [31, 32, 33]. Indeed, we will see in simple examples that the resistivity is proportional
to the viscosity of the electron fluid. In sections 4.4 and 5 in particular, we place these results in a
broader formal structure. The resistivity (8) emerges whenever there are more inversion-odd conserved

quantities than diffusive imbalance modes.

3. diffusive hydrodynamic: There is an obstruction to the emergence of the above viscous regime, even
in the limit £, < €. Suppose that there are many conserved quantities which are even under inversion
symmetry (e.g. conserved scalar densities), and thus have odd currents; but only a small number of
odd conserved quantities in the absence of disorder (perhaps only momentum). An example which
we will study explicitly later in this paper is a theory of multiple Fermi surfaces, where the number
of particles on each Fermi surface is conserved. In general, the inhomogeneity makes it impossible
to arrange the system to be in local thermodynamic equilibrium — the number of constraints arising
from the conservation laws associated with odd currents is too large to be solved with equilibrium
values of the odd conserved quantities. Instead, the conservation laws may only be satisfied by creating
“non-equilibrium” imbalances of quasiparticles throughout the sample: see Figure 3. Locally, the fluid
appears out of thermal equilibrium due to the presence of such currents. Because quasiparticles collide

after a distance fo., the non-equilibrium quasiparticle gradient required to drive a current must be of
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Figure 3: In order to conserve all currents as we move through the inhomogeneous landscape, we must excite
Nimbalance quasiparticles out of equilibrium.

order one quasiparticle per mean free path. Hence, integrating this gradient over the impurity puddle,
the number of quasiparticles excited out of equilibrium is Nippalance ~ (£/fec)?. We now estimate
the resistivity by calculating the rate at which momentum is relaxed. The electric field which drove
one quasiparticle out of equilibrium in the viscous limit now drives Nimpalance quasiparticles out of
equilibrium, and so

VELee 52 UR

X Nimbalance X 5~ (9)
Tviscous 52 de Eee

p X

The relaxational dynamics of the imbalance gradients is diffusive. The existence of this novel transport
regime is a main prediction of our theory. Regimes of transport with a resistivity p o< 1/fee, as in (9),
have previously arisen due to a thermal diffusive mode [26] and also in compensated metals [15, 39].

The following two paragraphs elaborate on the relation of our result with these earlier works.

Let us discuss the diffusive hydrodynamic limit further. Firstly, in a conventional fluid, conservation of
both energy and particle number leads to a thermal diffusion mode and hence a contribution to the resistivity
similar to (9). However, the temperature dependence of the resistivity will not be governed entirely by the
temperature dependence of £ in this case, but by factors of the entropy density that appear [26]. We
emphasize the likely existence of non-thermal diffusion modes in many realistic metals which can lead to the
resistivity (9), with all temperature dependence in p governed by the momentum-conserving scattering rate.

Secondly, in cases where the extra conserved densities are due to the presence of multiple bands, one may
ask whether or not (9) is simply a re-derivation of Baber scattering [15]. Baber scattering arises in a metal
with two appreciably occupied bands, where one of the bands carries nearly all of the current, while the
other band efficiently relaxes momentum. Alternatively, electron and hole bands in the metal can precisely
compensate each other so that the total charge density is zero, and hence charge dynamics is decoupled from
momentum relaxation [39]. A precise explanation of these effects can be found in [40]. In these limits, one
arrives at an equation similar to (9). In fact, the hydrodynamic mechanism for (9) is significantly more
general. We require neither an asymmetry between the two bands nor that the total charge density vanish.

The resistivity (9) readily admits a hydrodynamic interpretation. It is possible to observe (9) without



long-lived quasiparticles, as we have emphasized in a companion paper [30]. The advantage of the micro-
scopic description of (9) using kinetic theory is that we are able to further describe the crossover to a low
temperature ballistic regime. We are also able to describe the transition from ballistic to viscous hydrody-
namic regimes, as well as models with multiple microscopic scattering rates, which exhibit all three regimes of
transport, depending on the value of £. Quantitatively characterizing crossovers between the various classes
of hydrodynamic and ballistic transport is a central achievement of this work, extending the recent results
in [31, 32, 33] to a much broader class of models.

Let us note that the list of transport phenomena we described is not fully exhaustive. If there are not
very many conservation laws to satisfy, one may be able to drive current along narrow contours in order to
balance the effects of viscous dissipation and diffusive dissipation more efficiently than (9) [26]. However, we
expect that close to the ballistic-to-hydrodynamic crossover, which is where most realistic solid-state systems

exist, the most important effects will be the three described above.

2.2 Phenomenology for Experiments

The hydrodynamic limit of transport has been directly observed in [18, 19, 41, 20, 21, 22]. Our proposal
is that this limit may have already been observed in a diverse group of materials, albeit in a subtle way —
through the unconventional temperature dependence of the resistivity.

Our main proposal is that the T2 resistivity observed in (strongly) correlated Fermi liquids, and T-linear
resistivity in the non-Fermi liquid regime of many such materials, including transition metal oxides [42, 43, 44],
pnictides [45, 46], heavy fermion metals [47, 48] and organic metals [49], has a common origin: a non-thermal
diffusive mode limiting transport, as we have already described. We now ask whether such a mode can exist
in many strange metals. The most natural imbalance mode is due to the imbalance of quasiparticles between
different pockets and/or bands; we will describe a toy model of this in detail in Section 4.3.4. Many strange
metals (though not all) have complicated band structures, and this is a natural possibility. For single band
materials, such as cuprates [50] or SrTiOj3 [16, 17], there are other possible imbalance modes, including spin
imbalance modes!, ‘quadrupole’ fluctuations (section 4.3.3) and modes associated to additional degrees of
freedom such as phonons.

Our proposal requires that the impurity potential be smooth. This is actually rather natural to obtain
in many strange metals, which are quasi-two-dimensional layered materials, with clean conduction layers
separated by a distance d ~ 1.5 nm from dirty dopant layers. The static Coulomb potential created by the

random arrangement of ions will be random and vary significantly only on length scales larger than

€l
enaxy[L, (10)

where €| is an ‘effective dielectric constant’ associated to in-plane electric fields, and e, is the ‘effective

1A careful treatment of spin imbalance diffusion is beyond this work for technical reasons (time-reversal symmetry is broken),
but may exhibit similar behavior to a model of two Fermi surfaces.



dielectric constant’ for out-of-plane electric fields. This equation straightforwardly follows from Gauss’ law
in an anisotropic medium. In the monolayer cuprates, we estimate €/e1 =~ 1.2 [51], though we caution that
this is simply an order of magnitude estimate; other materials may be more anisotropic. Strange metals can
have mean free paths as short as fee ~ 1 nm [52, 53], which could be smaller than . Even slightly outside
the quantum critical fan of such bad metals one can expect fee ~ &, and so our hydrodynamic mechanism
continues to describe transport, both in the strange metal and in the Fermi liquid. Furthermore, in many
strange metals, the amplitude of the disorder, which is related to the dopant concentration, is not tunable
without moving out of the non-Fermi liquid regime. One cannot arbitrarily reduce the disorder. Thus, we
expect that the disorder is large amplitude and long wavelength in realistic materials. This is precisely the
regime where diffusion-limited transport naturally occurs.

Finally, we note that many materials, including very pure atomic metals like Au or Pb [54] and doped
SrTiOg3 [17] exhibit sharp downturns of a few percent in the resistivity at low temperature. These downturns
cannot be associated with the Kondo effect because dp/9dT is not vanishing as T — 0. This downturn is
consistent with viscous effects. We will describe in Section 4.3.4 a microscopic toy model with phenomenology
very similar to these materials. Furthermore, our formalism elucidates why many metals which are believed
to be clean and strongly correlated do not exhibit obvious signatures of viscous transport in bulk resistivity
measurements — there may be additional non-thermal diffusive modes whose contributions to the resistivity
overwhelm viscous effects. It would be interesting to revisit these phenomena in more detail, using our more

complete kinetic theory of transport.

3 The Boltzmann Equation

We now turn to the detailed solution of the kinetic theory of transport. Let us consider weakly interacting
fermionic quasiparticles with an effective dispersion relation €(p), in the absence of disorder. We assume that
in a perfectly clean sample, in thermal equilibrium, the distribution function is given by the non-interacting

Fermi function:

foq = N (W’) ;) = iex. (11)
We will only use the specific form of foq to estimate the temperature dependence of certain coefficients (for
conventional Fermi liquids). We will neglect the effects of the underlying lattice, other than through their
modification of the band structure €(p) — hence, we will not include phonons in our kinetic theory, nor will
we account for umklapp.

It has long been known that in such a Fermi liquid, so long as the charge density is finite, the resistivity
vanishes. In order to obtain a nonzero resistivity, we will suppose that the chemical potential is inhomoge-

neous:

10



The equilibrium distribution function is now Z-dependent. When the inhomogeneity length scale £ is long

compared to the Fermi wavelength Ap then

o) = s (P

- (13

Here and henceforth we have set kg = 1.
Now, we apply an infinitesimal electric field E, which will perturb the true distribution function f a bit

away from foq. We will then solve the Boltzmann equation in order to compute the resistivity:

of _ of = Of
5t -£+(F— E)-afﬁ——c[f] (14)

e
0= 15
7=, (15)
and F is the external force from the impurity potential:
= Vi
F = _ mp . 16
97 (16)

C is a local collision term subject to suitable conservation laws, and respecting Fermi-Dirac statistics of a
weakly-interacting quantum gas of fermions. In particular, feq must be an exact solution of (14) when E=0.
This implies that the collision operator C has zeros associated with the local conservation laws of charge and
energy. More complicated disorder which couples to f with more than a simple p-derivative corresponds
to impurity potentials that couple to other operators in the QFT. We remind the reader that the collision

operator can be thought of as encoding the decay rate of the quasiparticles: crudely speaking,

Clf1 ~TIm (X[f]) f. (17)

with more precise expressions found in [55].

Let us briefly remind the reader of the assumptions going into (14) [55]. The Boltzmann equation can
be rigorously derived from the Schwinger-Keldysh formalism, and is a controlled expansion when (i) the
scales over which f(z,p) varies obey |Axz|-|Ap| > k. For our purposes this will correspond to |Az| > A
— hence, we will assume that the function Vin,p(Z) is smooth on microscopic scales; (i) quasiparticles are
well-defined, which qualitatively means that all scattering rates (the eigenvalues of the linearized C operator)
are all small compared to kgT'/h. In such a limit, the collision operator will likely be well-approximated by a
small number of Feynman diagrams and can be computed, although we will not do so explicitly at any point
in this paper. We will also neglect renormalization of € and Viy, over their bare values, due to quantum

fluctuations, though this can be accounted for [55].

11



Our goal is to find stationary solutions to the kinetic equations to linear order in E. We write [ =
feq 0 f+O(E?). Because foq is an exact solution to the kinetic equations, up to the electric field contributions,

we obtain at leading order:

— = o afeq o 6£
v~3m5f+F~3p5f+6E~v< £ ) =57, % (18)

This equation is a classical linear differential equation, and we will heavily employ the technology of linear

algebra. In order to do so most efficiently, it is helpful to write this equation in terms of a variable @, defined

Sf = (—652‘1) . (19)

We then interpret &(&, p) as a vector |@) in an infinite dimensional vector space:

via

o) = / dlzdtp &(F, §)|75). (20)
Let us define an inner product
= = = — 1 afeq(x ﬁj = — —
(@i} = G~ ) 6 - s 7o), (21)

with V, the spatial volume of the theory. While the distribution function f(Z,p) is real, we will sometimes
Fourier transform the spatial coordinate Z, and in this case the inner product above should be understood
as complex. (21) is useful because with a sharp Fermi surface, the distribution function § f is generally quite
singular and sharply peaked around the Fermi surface. The functions @ are smooth functions, in contrast.
Furthermore, the weighted inner product (21) will not diverge on any sensible (polynomial in p) trial function.

With the definitions above we can write the linearized Boltzmann equation in the abstract form

(W+L)|?) = EilJi). (22)
Here we introduced the streaming operator
L|&p) = — / Azod’py (- 0 + F - 0,) 8(7 — )5 (5 — o) |oFo) (23)
the linearized collision operator
W|ip) = / ng;;)) i), (24)

and the source vector

) = —e / dzd?p v;(5)|E). (25)

L is an antisymmetric matrix: when integrating by parts across Ocfeq in (21), the x and p derivatives

12



can easily be shown to cancel. We will further assume that the microscopic kinetic theory is time reversal
symmetric and inversion symmetric in this paper; the latter assumption requires that the band structure
obey €(p) = e(—p). Under these assumptions, W is a symmetric matrix in ﬁ [6]: time reversal invariance
implies W(p, §) = W(—@, —p) while inversion symmetry implies W(p, §) = W(—p, —¢). For simplicity, we have
suppressed & indices in these equations, and for the remainder of the paragraph. The assumption that fqq
describes a stable thermal equilibrium implies that W is positive semidefinite. Upon decomposing |®) into
its even/odd components in p; the matrices W and L are restricted to the following sectors:

P T I T L 26)

Do) 0 Woo Loe O

W, and W,, are symmetric, and Lo, = —LJ . The fact that W is block diagonal follows from the fact that
the odd-even block vanishes (due to time reversal symmetry). For an even perturbation |®), W|®) has no

odd component:

[t Wi - Wi ale@ = [ ata W) - Wi -015@
- / ¢ W) (@) — W~ f(~)] = 0. (27)

The last step follows from the fact that ¢ is a dummy integration variable.
The matrix W will also have null vectors associated with conservation laws. To see this, we note that if the
quantity [ d?pd?Z a(p) f is conserved, then there must be a family of solutions to the nonlinear Boltzmann

equation associated with shifts in the conjugate thermodynamic variable (:

fea ( ) — foa (6_4,[0‘@) . (28)

For example, setting a(p) = 1, we obtain a conservation law for electron number; the conjugate thermody-
namic variable is the chemical potential p. The linearized collision operator must have a zero mode associated
with the fact that 0.C[feq(¢)] = 0:

w / d'p o (5)|7) = 0. (29)

Because the charge current is locally given by

J(@) = —e / dpi()/, (30)

(@) =~ /d;lxidd vi( ( afeq>@_ /dde (31)

Hence, the source vector |J;) is the ‘basis vector’ for the homogeneous part of the electric current.

we find
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Our goal is to compute the resistivity tensor, which is given by E; = p;;J;. Alternatively, we may compute

the conductivity tensor J; = 0;;E;. Using (31), we see that
oij = (il (W + L)7HJ;). (32)

Unfortunately, in general, one cannot perform the inverse (W +L)~! explicitly. In Section 4, we will show how
to invert W 4 L analytically, at leading perturbative order in Vinp. In Section 5, we will develop a variational
technique that allows for non-perturbative upper bounds on the resistivity.

Historically, one neglects the streaming terms and approximates L = 0 [6]. However, we clearly cannot
do this in our model — we have neglected umklapp scattering and hence momentum is conserved in electron-

electron collisions. Therefore the vector

Py ) = / d'p pi ) (33)

is a null vector of W: W|P;, #) = 0 for all Z. This is sufficient to prove that the conductivity is infinite, and
hence p = 0, if the streaming terms can be neglected.

Another approximation which has been made is to neglect interactions (W = 0) and treat inhomogeneity
perturbatively [34]. We will review this approach in Section 4.2, but our more general formalism allows for

a complete treatment of both inhomogeneity and interactions.

4 Perturbation Theory for Weak Disorder

4.1 General Considerations

So far, our comments have been quite general. However, it is useful to have precise quantitative results for
p across the ballistic-to-hydrodynamic crossover. Towards this end, we will completely solve the transport

problem at weak disorder. More precisely, suppose that (upon disorder averaging, denoted with E):

B ] = 0. E iy (Vi) = 77 (1), (59
Here F is an O(1) function, and £ is a length scale associated with the disorder distribution. We will define

the Fourier transform
1

VVi

and typically assume that for k& — 00, Vimp(k) ~ exp[—k&]. The volume-dependent prefactor appearing

Vimp ()

/ Az FFY (), (35)

above is such that [ A%k|Vimp (k)| = 62, and will simplify notation shortly. If § is a perturbatively small
parameter, then at leading order (so long as the charge density is not zero in equilibrium) one finds the

resistivity p = p26? + O(6*). We will exactly compute the coefficient ps, making the simple assumption that

14



the only locally conserved quantity, odd under inversion, is momentum. We relax this assumption in (132).
As this section is a little technical, we state the result upfront. We will find that to leading nontrivial

order in the impurity potential, the resistivity

1 A%k )
s = ez | Tampahehs Vimn (A, (36)
where we define
A(k) = (n|(W + L)iilean\n). (37)

We have denoted |n, k = 0) = |n), where |n, k) will be defined in (49) below.

In addition to the derivation that follows, in Appendix A we re-derive the expression (37) from a more
sophisticated (quantum-mechanical) framework called the memory matrix formalism. Using this formalism,
we learn that A(k) is the spectral weight of the density operator, evaluated (in our case) in a classical kinetic
limit: it tells us how efficiently we may lose momentum off of impurities on the length scale k= !.

We may just as well compute the conductivity ¢ ~ 6~2. In order to do so, we employ the following key
observation. When the disorder is perturbatively small, it is instructive to Fourier transform the position
coordinate Z to a wave number coordinate k. We write W and L in the following block-diagonal form (this

is different and unrelated to the block diagonal form mentioned in (26)):

1 96
x . (38)
W—l—L)E,’@ (W-I—L),;,,g 5 1
Only the diagonal pieces are non-vanishing at § = 0, when momentum is conserved. The exact conductivity
is given by (32). By construction in (25), |E) is only non-vanishing in the k£ = 0 sector. By (32), we are
looking for an eigenvalue of (W + L)~!, overlapping with |E), which diverges as §~2. So we break up the
spatially homogeneous 00 block of (38) into a further 2 x 2 block by separating out the null eigenvectors of

W:

0 0
Wt L)y = .
WHba =1y woro (52) %

To obtain this form, let us consider for simplicity the momentum (abstract) vectors

PRy = / dad’p picF|zp). (40)

-,

From (33), W|P;,k = 0) = 0, to all orders in 4. Similarly,

 OVim

LIP;, k) = / dzdp ((iﬁ(ﬁ)-l;)pi o >ei’3-f|fp*>. (41)

When k = 0, the first term vanishes, and the second term has no homogeneous component. The inner product

15



with a k = 0 vector would be proportional to fddx (—0e feq) VVimp = fddx V feq = 0. This explains why
(39) holds to all orders in 4.

Using block diagonal matrix inversion identities, and for simplicity denoting

A1
Wbge=s| '], WLgs=0( A As ). (42)
2
we obtain
—1 ) ) —1
0 0 Ay 52 6
W L)~ — 62 W+LDzZ (A A o . (43)
[ ]oo 0 W, A, k,k( 3 4 ) 2 1

Using the d-scalings in this equation, we can easily see that to leading order as § — 0, only one sub-block of

[(W L) is divergent:

00

Hence
=0 2(Ar(W + L)L Az) " O(6°)

0(5%) 0(58%)

oij ~ (Jil 15)- (45)

We now must compute A; 3 to leading order in 6. The first observation that we make is that we may neglect
the Vimp dependence in the inner product (21); we have already extracted the leading order d-dependence
and hence the Viy,p-dependence of the inner product will only contribute to the conductivity at subleading
orders. Furthermore, A; 3 must come entirely from the streaming terms because, by definition in (42), they
correspond to the null space of W. Hence, A; = —Al. Because we have assumed that momentum is the only
odd conserved quantity, the only inversion-odd vectors A; 3 project on to are |P;, ) (or |P;, k). We conclude

that to leading order in §:

1
(PrllgrW + L) LiglPo)

EE/,clca

oij ~ (Ji|Pr)

(P14 (46)

=

We have denoted |P;, k = 0) = |P;) for simplicity. The notation (W + L)}g

reminds us that, because we
,clean

=

are only computing to leading order in §, we may approximate (W 4 L)™' with its value when § = 0.

Let us now simplify (46). Firstly,

d’p O feq dip D€ 9 feq d’p
<Ji|P]‘> = —6/ prj <— e ) = 6/ (27Th)d pi@ e = —eéij (27rh)df = —5ijne. (47)
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Secondly,

— —, -,

|P17k:0> :Fl‘nak>:1klump(g)|n’]¥>7 (48)

where

In, k) = /dda:ddp eiE'f|fﬁ>. (49)

Combining (46) and (47), we find the resistivity (36).
The remainder of this section provides a detailed analysis of (37) in various solvable limits of kinetic theory.
In this perturbative limit, we will be able to completely and unambiguously characterize the consequences of

interactions on transport for the first time.

4.2 Non-Interacting Theory

We begin by analyzing a non-interacting theory where W = 0 — the only dynamics comes from the streaming
terms. Actually, it is important to keep W as an infinitesimal regulator W ~ z > 0. This is because in the

clean theory, L = ik - ¥(p), and hence

1 ddp [ 0feq [ d% , 1
o = ez | e |00 | G Vi

1 dip | 0feq [ d% ) 1
_n262/(27rh)d D¢ /(%)dkikj‘vimp(k)‘ fe 2+ ik - 7(P)

il o eq ¢ 2¢/7 =
T n2e2 / (2(71T£)d __age /(gwl;dkikjwimp(k” 5(kv(ﬁ))} (50)

In the second step, we have used that |Vimp(k)|? is an even function of k. In the third step we have taken
the regulator z — 0. The factor of —0feq/0€ comes from the inner product (21).

Let us begin by evaluating this in the limit 7" — 0. In this limit

o 8feq
Oe

=d0(e— p). (51)

For simplicity in what follows, let us also assume that the Fermi surface is spherically symmetric. While
this is not generally true, relaxing this assumption leads to angular prefactors alone. Upon performing the

angular integral over p we obtain

1 dk v(p)
pij o /Wkikleimp(k)F ( (52)

n2e? ) |k|vp’

where we have neglected an overall constant prefactor. v(u) is the density of states at the Fermi surface:

d
v() = / (;ir—,f)d&e(m ). (53)
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Employing (34), and noting rotational invariance of the disorder, we obtain

v(p)d? o

Pij X —5~5 —=0ij-
T n2e2ppe Y

(54)

For a spherical Fermi surface, we have n oc p¢ and v(u)vp o defl. Defining m = pg /v, § = mvid, where 0

is roughly the angle a quasiparticle is scattered by the disorder on length scales of order £, we obtain

m
oK ——— 55
v~ (55)
where Tipp = £/ vp#? is the momentum relaxation time. This is nothing more than the canonical formula for

the residual resistivity [56], in the limit of small-angle scattering. We emphasize that the scaling?

P (56)

is a universal consequence of this ballistic limit. One of our main concerns will be the breakdown of this
scaling due to electron-electron interactions.

Not surprisingly, we have found a residual resistivity due to impurity scattering. On closer inspection, this
is slightly subtle: we previously formulated a bound on the resistivity associated with entropy production. The
key point is that the regulator z that we imposed in (50) is sufficient to lead to “spontaneous” production of
entropy: (z+L)~! has a non-vanishing symmetric component. We associate this entropy production with the
emergence of an “arrow of time”. Alternatively, we note that the microscopic trajectories of single particles in
random potentials in spatial dimensions d > 2 are diffusive: in certain limits, this has been proven rigorously
[57, 58]. The computation that we have done is a perturbative computation of the associated diffusion

constant, which we can obtain from p;; via an Einstein relation.

4.2.1 Thermal Effects

Before moving on to account for electron-electron interactions, let us briefly mention thermal corrections
to this residual resistivity. At very low temperatures, we employ a Sommerfeld expansion of (—3feq/0€) in
(50). If, for simplicity, we retain the assumption of spherical symmetry and assume that n is held fixed with

increasing 7', then, using that

n(p T) % o) + "/ () -+ (57)
we find
YT
w(T') = po S 6 (58)

2We have assumed — as noted under equation (7) above — that the typical strength of the impurity potential § has been kept
fixed. In most previous literature, § is defined in a {-dependent way.
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If we neglect the k-dependence in Vi, (k)|?, we find, using the Sommerfeld expansion:

1 =
p(T) X n2€2 27Th dk ((5 (6 - ) o > k2|‘/imp(k)|25(k ' U(p))
1 " K Vi (K) |2
" n2 2 27rﬁ (6 6 (e=m+ ) VR

x n26€2£ /devF(e) (6(e—u) + ”ZGTQ(S”(e_M) +>
e

6
In the last step, we have used the fact that p is 7" dependent, in order to keep n fixed. Depending on the band

x p(0) [1+

structure and p, this is a perturbative correction which does not, a priori, have a fixed sign. The important

point for us is that (working with a Fermi liquid where 1/fce ~ T?)

p(T) —p(0) <T>2 Ar
[

20) o< " (60)

These temperature dependent corrections are significantly smaller than those caused by electron-electron
interactions. As we will see, the parameter governing the magnitude of corrections due to electron-electron

interactions is & /fee, which is much larger than (60).

4.3 Kinetic Theory on a 2d Fermi Surface

4.3.1 The Toy Model

We now turn to a series of toy models of 2d Fermi liquids with circular Fermi surfaces of Fermi velocity v,
following the recent papers [31, 32, 33]. The technical virtue of this model will be that only finite dimensional
matrices need to be inverted to compute A(k) in (37), and hence the resistivity can be obtained exactly. The
model assumes that in the low temperature limit, the only interesting dynamics is associated with fluctuations
in f exactly at the Fermi surface, and so neglect all thermal effects. While this is quite a strong assumption,
it appears to model experiments of flows through tight constrictions reasonably well [18, 20, 21]. To be more

specific, we approximate the distribution function by

B(E,p) ~ Y eTPD;(E), (61)

JEL

where tan pg = p,/p, is the angle of the momentum vector. More formally, we write
#) = [ a,@li@). i lj@) = [ap 2 ”’y) . (62)
J
Henceforth we will denote pg as 8 for simplicity.
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Our first goal is to project W and L onto only the harmonic modes, labeled by j in (61); we follow the
presentation of [32]. As T — 0, we anticipate that the only interesting dynamics occurs at the Fermi surface.

The fluctuations of the local number density of electrons are given by

An(F) = / (2‘125)2 < aaf?> B — (1), (63)

The momentum density g; is similarly given by

. d2 Of. b +D_
. d? O fe _ b_, -
8,(%) = / (27ri2':)2 ( g:) Ppesing = VW)pF%' (64b)

We conclude that @ +; must be exactly conserved in the clean theory. Denoting with |j) the mode & e/ 0,

we conclude that the simplest non-trivial W respecting the conservation of charge and momentum is

1 ovp 1 wvp o
W= ——— (10— |-1){(=1—=|0)(0] — |1)(1]) = —— | 65
e == D1 = 00l = (1) = 5o 7 S 194 (65)
17122
Lee is the mean free path for electron-electron momentum-conserving collisions: it is the length scale over
which higher harmonics in (61) decay in the absence of any disorder. Projected on to the Fermi surface

harmonics, in the homogeneous theory:

cos Ok, + sinOk,,) . 66

This can also be transformed into the |j) basis, but it is not instructive to do so now. Note that the factors
of 1/v in both W and L are related to the non-trivial inner product (21), which in this toy model is relatively
simple:

(13" = v(p)djjr- (67)

4.3.2 A Single Fermi Surface

In order to compute the resistivity we simply need to evaluate .A(E), given in (37). Note that what was
previously denoted as |n) is now denoted as |0) — the zeroth harmonic on the Fermi surface. Hence, we must

compute (0|(W + L(k))~!|0). We outline the computation in Appendix B; it is quite similar to [31, 32, 33]

A() = vy VLR 1 (68)

UFgeek2

The result is

An immediate consequence of (68) is that for arbitrary (isotropic) inhomogeneity, electron-electron interac-
tions in this model decrease the resistance.

It is instructive to consider first the limit where Zo, > £, so that interactions are very weak. In this case,
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the “typical” k ~ 1/¢ and kle. is large; in this limit we obtain

_v(p)
ARy =25, (69)

and hence ,
) v(p)d (70)

rx X m-
Keeping track of constant prefactors more carefully, one can show exact agreement with the free theory result
(52).

In the opposite limit where £ > ., we instead find

20p 4vpn2e?

[(vvimp)z} = 77E ) (71)

rxr

A d2k : o leck? Ve
T 2n2e2 / (27r)2|vlmp(k)| E

=)

where we have used the fact that An ~ vVin, to leading order in Vin,p, along with the definition of the shear

viscosity 7 = n2lee/4vvr [32] in the last step. The last equation above, expressing the resistivity in terms of
the viscosity, was found in [26]. We can interpret this last result from a perturbative hydrodynamic transport
bound [28]: when the only dissipative coefficient is shear viscosity we have p,,J2 = 2E[(0v; +0;v;—Ovidi5)?],
on the function v, = J/n. Hence, in this regime we have transitioned from ballistic to hydrodynamic
transport.

Of course, through the kinetic theory solution, we in fact understand the entire crossover between these
two regimes. It is instructive to consider a specific form for Vin,(k), associated with random point-charge

impurities, placed a distance & above the 2d plane:

672|E|£

Vimp (F)]? o¢ ————
’ (K| + krr)?

(72)
Here kg is a Thomas-Fermi screening wave number. We cannot perform the integration in (68) analytically,
but it is straightforward to do numerically. The result is shown in Figure 4. As anticipated in (71), as fee
becomes shorter the resistivity decreases and ultimately tends to zero. In the limit where krg — 0, the

decrease in the resistivity is significantly faster due to the enhancement of Vi, (k) in the k — 0 limit.

4.3.3 Long-Lived j =2 Mode

Now consider a slight twist to the previous model: let us suppose that the j = 2 ‘d-wave’ modes are also
long-lived relative to generic excitations. This will be seen to dramatically change the physics. We modify
W to

W= Zi (1 == D=1 = 0){0] = [ {A] = (1 = b) (12)2[ + | = 2)(=2])) - (73)

ee
The parameter 0 < b < 1 determines the lifetime of the 7 = 2 modes, relative to the higher harmonics: they

are exactly conserved if b = 0; when b = 1, we recover the results of the previous subsection. Following the

21



1 T T

— krpé = 100
— kpr& = 0.01
08l TP |
< 06| .
SN
04 1
02 | | | |
0 02 04 06 08 1

f/gee

Figure 4: The resistivity (68) as a function of the interaction strength £/l.., measured relative to pres, the
residual resistivity when fe. = co. We have used the impurity potential (72). Electron-electron interactions
decrease the resistance, as it must in this toy model. Furthermore, when |Vi,,, (k)| has significant weight at
small k, the effects of interactions is important even when £, ~ 10€.

techniques of Appendix B, together with the calculation when b = 1, leads to an analytic expression for A(k),

and hence pg;:

A(K) v(p) Loo (74)

T or 11 R 421

Let us begin by setting b = 0 — in this case the j = 2 mode is exactly conserved. It is not difficult to see

in this case that because
k20,
k< —— (75)

VIt k22, -1

electron-electron interactions strictly enhance the resistivity. Moreover, when interactions are strong so that

€ >> ECC’
v(p) [ kdk 22 v(p)d°
e N 55 5 o Vimp| 77— = 5 5, - 7
p ZTLQGQ’UF/ 2 Vimp| loe mM2e20plee (76)

We observe that, up to the small factor of §2, it is as if the momentum-relaxing rate is actually set by fee —
the mean free path for momentum-conserving collisions. We will see how this, potentially counter-intuitive,
effect can be understood from general principles in Section 4.4. Figure 5 shows this effect numerically.
When Viy,p is associated with out-of-plane point charges, and screening is weak, we observe a remarkable
effect: an accidental approximate Mattheisen rule which holds well across the entire ballistic-to-hydrodynamic
crossover, so that

&1 C2

Pua ™ G + 7 L constants. (77)
ee

Let us also note that in this case with b = 0, the contribution to the resistivity due to long-wavelength
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Figure 5: The resistivity (74) as a function of the interaction strength £/l.., measured relative to pres, the
residual resistivity when fe. = co. We have used the impurity potential (72). Electron-electron interactions
enhance the resistance when b = 0, as they must in this toy model. As in Figure 4, we observe that the
effects of interactions can become important even when e, ~ 10£ if the disorder is sufficiently correlated on
long length scales.

correlations in the impurity potential when Vin,p is given by (72) is

—oke
Prz X /kgf(k%iw (1 +0 ((kzee)2)) . (78)

If krp — 0, this integral is logarithmically divergent: schematically,

1

o X log —mM8 ——,
Paa 0108 kTF max(f, gee) (79)

Although it may well be the case that such divergences are cured at higher orders in perturbation theory,
materials with low screening (ktp — 0) would be expected to have an extremely high resistivity. The effects
of weak disorder could be compensated by this logarithmic enhancement of p,, to provide a momentum
relaxation length comparable to fee.

We now turn to the case 0 < b < 1. Following the discussion of (75), from (74) it is not difficult to see
that the resistivity can only be enhanced by interactions when b < % When b < 1 is parametrically small,
and fe < &, it is helpful to approximate (74) by

v(i) kdk 5 2k oo
P 2n2e2vp/ 27 [Vimp| k202, + 4b (80)

Whenever £/ 2, 2v/b, the resistivity will be well-approximated by the b = 0 limit given in (76): interactions
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strictly enhance the conductivity. In contrast, whenever £y /¢ < 2v/b, then we find

o)

with n(b) ~ n(1)/2b for b < 1. So long as b > 0, therefore, for strong enough interactions we do ultimately

Ve

Prx = %b E [(vvlmp)ﬂ = n(b)E ’ (81)

x S —
4vpn2e?

recover a more conventional viscous-dominated hydrodynamic regime, analogous to Section 4.3.2. However,
when b is small, there may be a parametrically large regime where the long-lived 7 = 2 mode enhances the
resistivity. We explore this crossover numerically in Figure 6. Especially when the disorder potential has a
significant long-wavelength component, we observe that the viscous regime where interactions suppress the

resistivity can emerge extremely quickly.

krré = 0.01 krr€ = 100
5 T 4 T
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—b=0.25 I

—b=1

p/ Pres
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Figure 6: The resistivity (74) as a function of the interaction strength & /4., for different values of b, measured
relative to pres, the residual resistivity when £q, = co. We have used the impurity potential (72). As b becomes
smaller, we observe a larger regime where electron interactions enhance the resistivity.

4.3.4 Two Fermi Surfaces: Baber Scattering, Revisited

Another complication of our original model is to consider the case where the Fermi surface consists of two
disconnected pockets of circular shape. If the pockets are sufficiently well separated in the Brillouin zone,
with the distance between pockets on the scale of kg, and the Brillouin zone is sufficiently large, then we
may neglect both inter-pocket scattering of electrons and umklapp processes. In this limit, the number of
electrons within each pocket must be conserved separately. We refer to the difference in electron density
between the two pockets as an imbalance mode.

The simplest model for this consists of two copies of our model of a single Fermi surface, with an additional
collision term that can exchange momentum between the two pockets (as 2-body scattering events may allow
electrons from one pocket to dissipate momentum into the other). Let us denote with ¢4 (A = 1,2) the

angular distribution function in a single pocket, and with [jA) the j* harmonic of $4. The notational
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simplifications from Section 4.3.1 carry through otherwise.
Let us begin by assuming, for ease of computation, that the electrons in each pocket have identical v(u)
and quadratic disperion relation €(p) oc p? — p#, and that each pocket of the Fermi surface is circular. In this

case, we write the streaming term as

L =1i(cos bk, +sinbky) (vr,1P1 + vr2P2). (82)

P, is a projection matrix, defined such that P1|jA) = |j1)041; P2 is defined similarly. We write the collision

term as

W= 2SS Al 2 S (vr.2lj1) — vrals2)) (v 2 (1] — vra(2]) (83)

14 V2 v ’
°lilz2,A e j==%1 Fa Ui

For simplicity we have taken the relaxation time Tee = lee/vp,2 to be the same for all non-conserved modes.

Our qualitative results are not sensitive to this assumption. The second term accounts for the fact that only

the total momentum
VF,1 UF,2

lp+) o TS T
\/ Uk T VR 2 \VVF1 T Uk 2

is conserved. The momentum vector takes this form because with a quadratic dispersion relation, the velocity

| +£1,1) + | +£1,2) (84)

and momentum are proportional. For simplicity, we assume that electrons in both pockets have the same

collision rate. The global density is given by
[n) o |01) 4 |02). (85)

While it is challenging to analytically compute A(E), using the techniques of Appendix B it is straight-
forward to compute A(E), and hence p, numerically. The result is shown in Figure 7. As usual, we have
rescaled the results relative to the residual resistivity at o, = co. We observe that when /. is large, but
finite, interactions decrease the resistivity. This is due to viscous effects within each band. As f.. becomes
small, if the velocities of the two bands are not equivalent, then the fluctuations in the chemical potential
help to source an “imbalance mode”. This is precisely the mechanism that we argued in Section 2 would lead
to p o €21

To be more quantitative, we observe that the hydrodynamic description of transport in this Fermi liquid
contains an imbalance mode [30]. This mode can be seen already in the homogeneous system, with no
disorder. Let us focus on flows in the long wavelength limit where /.. is very short compared to the length
scales over which @ changes. We can choose to look at flows which only depend on the x direction. Taking
the inner product of the Boltzmann equation (22) — in the absence of an external electric field — with j < 2

harmonics, we obtain

0= a.’l:gpl - 8:1,‘@%: (86‘&)
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Figure 7: The resistivity as a function of the interaction strength £/lee, for different values of v 1/vp 2,
measured relative to pres, the residual resistivity when £, = 0o. We have used the impurity potential (72).
As the particles in each pocket move at different velocities, we observe a rapid enhancement of the resistivity,
with p ~ 1/lee.
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In the above equations we have denoted 453-4 = (j, A|®), and we have used the fact that on flows with only
x-dependence, @3—4 = @i‘j, to simplify the equations slightly. These equations follow from (22); following [32]
we have dropped j > 3 harmonics in both bands as these are parametrically small at long wavelength and

can be neglected. Keeping the terms with fewest derivatives, and defining
Vy = UFJ@% + UF72¢% 5 (87)

we find that the time-independent hydrodynamic equations for this two-band model are

1

0~ 0, (v%lvw - iv%’lvp,gfeeaﬁ (®) — QS%)) , (88a)
1

0~ 0, (v§2vz — iug,lumeeeam (5 — @3)) , (88b)
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0~ 0y (V1 P) + Vi D7) — Lee D2v,. (88¢)
We have thrown out terms that are third order or higher in derivatives, as they are subleading in the
hydrodynamic limit. These hydrodynamic equations make manifest that there is a diffusive imbalance mode
with a diffusive current o< 9, (®§ — P3).

Now, we turn to the computation of the resistivity. In the hydrodynamic limit k/.. < 1, we can approx-
imately compute A(k) analytically by inverting the 10 x 10 submatrix of W + L consisting of only j < 2
modes. This correctly computes A(k) to leading order in k. We find that so long as v 1 # vp 2:

2v(p) (U%‘,l - U%z)z

A(k) ~ : (89)
gee’UF’Q’U%’l (v%yl + vgg) k2
which, following our discussion in Section 4.3.3, implies that
2 2 )2
vpp 2 (UF,1 - UF72) (90)

P loe 2 42 (112 T+ o2 )

F2Ur1 \VF1 T VR 2
The scattering length £.. in (90) is a direct consequence of the diffusivity proportional to fe, in (88). If this
imbalance mode were absent, then we would obtain instead the viscous result A ~ /.. as in section 4.3.2. The
velocity dependence of (90) comes from the thermodynamic susceptibility characterizing the overlap between
the charge density and the imbalance density [30]. In particular, for identical realizations of disorder, but
differing values of vp 1 and vpg2, (90) gives us a simple way to confirm that our numerically calculated
resistivity is in the hydrodynamic regime and that the resistivity is dominated by imbalance diffusion: see
Figure 8.

There are other mechanisms that can lead to imbalance modes. For example, in charge-neutral graphene,
the relativistic dispersion relation forbids electron-hole scattering at lowest order in interactions [59, 60]. In
charge neutral graphene, the temperature dependence of thermodynamic susceptibilities is not negligible,

and so this is not a good model system to observe p ~ 1/lec.

4.3.5 Toy Model of Electron-Phonon Scattering

Finally, let us briefly discuss a very crude toy model of electron-phonon scattering. We use an identical
model to Section 4.3.4, thinking of band 1 as describing phonons, and band 2 as describing electrons. The
distribution @' of phonons should no longer be interpreted as a Fermi surface, but simply as the total number
of phonons with velocity at angle . Because phonon number is not conserved, we now take the interaction

to be:

UF 2 VR 2 g UF 2 (vr2]d1) — vr1l52)) (vr2 (31| — vr1(52])
W = —22101)(01] + S iAGA + 2y . - . (91)
éee gee lj|>2,4 Eee j=+1 UF,l + UF,Q
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Figure 8: The resistivity of the two-band Fermi liquid is dominated by imbalance diffusion in the hydrody-
namic regime, and we see excellent quantitative agreement between our analytic prediction (90) (solid lines)
and numerical data (circles) in the hydrodynamic regime £ 2 fe.. We have explicitly computed the coefficient
of proportionality in (90) from the form of |Vir2np|; there are no fit parameters in the comparison between
numerics and analytics.

Again for simplicity we have taken the decay rate Tee = fee/Ur2 to be the same for all non-conserved
quantities. The zero mode of the phonons, in particular, is no longer a conserved quantity. Furthermore,
the charge density mode |n) o |02), since only the electrons are charged. These changes will destroy the
diffusive mode in the generalized hydrodynamics of the electron-phonon system. As such, interactions should
ultimately decrease the resistivity, as there is no diffusive mode decoupled from momentum drag. We confirm
this with a numerical computation of p in Figure 9. We expect that a more detailed quantitative treatment

of electron-phonon interactions will lead to the same qualitative effects.

4.4 General Principles

Now that we have seen a variety of toy models, let us now describe, in general, the circumstances under
which electron-electron interactions will increase or decrease the resistivity, in the weak disorder limit.

We now analyze the formula (37) for A(E) for general kinetic theories with inversion and time-reversal
symmetry, and with momentum-relaxation arising only from charge impurities Vinp,. It is instructive to break

W and L into block 4 x 4 matrices, keeping track of (i) odd vs. even vectors under inversion symmetry, and
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Figure 9: The resistivity of the toy model of electrons and phonons, as a function of the interaction strength
&/lee, for different values of vp1/vp 2, measured relative to pres, the residual resistivity when lee = o0.
We have used the impurity potential (72). The physics is qualitatively identical to the viscous-dominated
transport discussed in Section 4.3.2.

(4i) null vectors of W (‘slow’ modes) vs. non-null vectors of W (‘fast’ modes). We write

|Peven,slow ) 0 Les,os 0 Les,of

@) = |Podd,siow)  Wal= Los,es 0 Los ef 0 ' (92)
|Peven, fast) 0 Letos  We Lef of
|Podd, fast ) Lof es 0 Lofer W,

We remind the reader that in the analysis of (37), the matrix inverse (W + L)~! is taken over momentum

indices alone. Hence, L = ik - #(f). We also remind the reader that LT —Lob,eq for a,b € {s,f}.

ea,ob —

Because the density vector |n) is in the even/slow sector, it is clear from (37) that we need to compute
the slow/even diagonal block of (W + L)~!. It is straightforward, but tedious, to use block matrix identities
to perform this matrix inverse. As the result is quite cumbersome, we present explicit results in Appendix
C, only focusing on the qualitative physics here. For simplicity, we assume that all scattering rates in W,
and W, are comparable, and so the discussion below is not applicable to the model of Section 4.3.3 when

0<bx 1.

The first step of evaluating (37) is to “integrate out” the fast degrees of freedom, which leads to

-1

\7\\/6 /I:es.os
(W + L)SIOW =| _ N . (93)
Los,es Wo
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We have only displayed the top-left 2 x 2 sub-matrix of (W +L)~! here. Explicit formulae for the matrices W
and L can be found in Appendix C. Physically speaking, \7\V67O each give the decay rate of spatial fluctuations

of conserved quantities, and so they will scale with &k as follows:
We o ~ kmin(1, klee). (94)

Some explanation of this result is warranted. At ballistic length scales kfe. > 1, the density of quasipar-
ticles at every momentum is approximately conserved and approximately all of these quantities are relaxed
by impurities, which occurs at a rate o k, determined by the time over which quasiparticles traverse the
inhomogeneous landscape. This result was demonstrated explicitly at £, = oo in Section 4.2 and it will be
perturbatively corrected in £..'. In the hydrodynamic limit, W~ k20, because spatial inhomogeneities of
conserved quantities relax via diffusion (even if there is ballistic sound motion at leading order). Regardless
of lee, we find that

Lesoss Los,es ~ b (95)
from the explicit formulae in the Appendix.

Assuming WO is invertible (we discuss the more general case in the appendix):
U -1
A(R) = (0] (We + LooosWe L) In): (96)

In the ballistic limit, both terms are proportional to k and so A ~ k~! as in Section 4.2. In the hydrodynamic
limit, the first term scales as k*/., while the second scales as £.,'k°. Thus, we would generically expect the

second term to dominate the matrix inverse, leading to
A(k) ~ lee. (97)

This is precisely the result we found in the viscous-dominated hydrodynamic limit in Section 4.3.2, and leads
to p X lee. In this case, interactions enhance transport and reduce the resistivity.

However, it may be the case that there are more even conserved quantities than odd conserved quan-
tities.? This was the case, for example, in the model of imbalance diffusion in Section 4.3.4. In this case,
Ees,OSVAVO* 1EIS7eS is not a full rank matrix and it cannot, by itself, be inverted. We conclude that if |n) is a

“generic” even conserved quantity, that A(k) will be dominated by the part of |n) lying in the null space of
EBS’OSVAV;lfr This leads to

0s,es”

(98)

and hence, as in Section 4.3.4, p < 1/lee: interactions supress transport and enhance p.

The constant prefactors that we have neglected in the above discussion can be straightforwardly accounted

3For this count, momentum should be counted as 1 conserved quantity and not d.
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for but will be sensitive to the specific microscopic model. Below, we will see that such coefficients admit a
simple interpretation when kfq, < 1.

In the hydrodynamic limit, we can provide more intuition for these results. For simplicity, we assume
spatial isotropy in this paragraph. Suppose that the hydrodynamic degrees of freedom include Ny sound
modes and Ny diffusive modes. Ng > 0 generically arises when there are more even than odd conserved
densities. Such imbalance densities are not ‘eaten’ by sound modes. As we derived in Appendix A, A(l;:) is
proportional to an integral over the spectral weight of the charge density operator. Because charge is always

a conserved quantity, in the hydrodynamic limit we may write [61]

N. X2 Na o id 2
GR (w, k) ~ e 1 99
@, ; T iTwk? 2D —iw B (99)

i are thermodynamic susceptibilities. Their precise form is unimportant,

where the coefficients ij" and xj,
and for the viscous and imbalance modes that we described in the previous section, all of these susceptibilities

are independent of /.. and temperature. On general grounds I'; ~ D; ~ {o.. We then find that as kfee — 0:

A(k) ~ Z Xl + Z XPP (100)

(o
j=1 J

If there is any diffusive mode, such as an imbalance mode (Section 4.3.4), that has overlap with the density
operator, so that X # 0, then we immediately find that at the longest wavelength, this diffusive mode
inhibits transport (makes A(k) large) and so the resistivity will always increase with increasing scattering
rate. If there are no diffusive modes that couple to the charge density, as in Section 4.3.2, then interactions
always enhance transport and decrease the resistivity.

Strictly speaking, if any diffusive modes are present, the contributions to A(k) arising from sound modes
are subleading and cannot be included, because there are O(k*(2,) corrections to the diffusive part of the
Green’s function that must be accounted for. But schematically, the hydrodynamic formula (100) is what
our more sophisticated kinetic formalism reduces to in the limit when all hydrodynamic modes are sound or
diffusion. And of course, our kinetic formalism is also valid for models which are not isotropic or in which the
hydrodynamic degrees of freedom are more complicated than simple sound waves and diffusion; the latter
possibility was considered in Section 4.3.3.

We end with a word of caution. Our discussion so far has focused only on the ¢, dependence (which
could be tuned, for example, by modifying the Coulomb interaction strength via a ‘dielectric’) and £. In
some relevant cases, the temperature dependence of the coefficients that we have set to 1 can be extremely
important, because both £, and the constant prefactors that we have neglected will depend on temperature
in a non-trivial way. An important example of this is a (canonical) Galilean-invariant Fermi liquid with

charge, energy and momentum conserved (in the absence of disorder). In such a theory, feo ~ T72. At
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temperatures T' < FF, one finds in the weak disorder limit, when & > f., [26]

n  Ts? lee T2
pro— 4 s 101
52 Rq 52 Eee ( )
We have suppressed dimensionful but temperature-independent quantities in the above formula. This quali-
tative scaling can be straightforwardly recovered in our formalism. The key point is that the term governed
by thermal diffusion is suppressed at low temperatures when & ~ fe.. Hence one will find p(T) to be a non-

monotonic function of temperature across the ballistic-to-hydrodynamic transition. This is why imbalance

rather than thermal modes are necessary to address the experimental challenges outlined in Section 1.1.

5 Variational Principle for the Resistivity

In this section, we will develop a variational method suitable for upper bounding the resistivity of an inho-
mogeneous fluid, even when the disorder is not perturbatively weak. We begin by reviewing the technique

for homogeneous fluids, and then discuss how to generalize it to inhomogeneous fluids.

5.1 Homogeneous Fluids

We begin with the Joule heating expression (32) in a homogeneous fluid, where we may set L = 0. For

simplicity, assume that the electric field E is a unit vector in the direction, and that p;; and o;; are (in such

a coordinate basis) diagonal matrices. It is straightforward to relax this assumption. Then we may write
(2|W|2) 1

S TSR TR TR) o)

where W|®) = |J,) solves the Boltzmann equation. There is a variational principle [6] — that built on earlier

work [35, 36, 37] — which states that for any vector |P),

(2|W[2)
Trr — b) 103
Per = a1, )2 1o
with equality saturated on |®) = |®). As we prove in Appendix D,
(@|W|P) = T5 (104)

where $ is the entropy density production caused by Joule heating. Hence, this variational technique admits
a simple physical interpretation: transport occurs by the pathway which minimizes entropy production, with

fixed sources.
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Let us prove this variational principle. Define

R[®] = W. (105)

Let |®) be an exact solution to (22), and let |®) = |®) + |¢). Noting that R[A®] = R[®] for any \ # 0, we
may freely choose (p|E) = 0 by a suitable rescaling. Then

= (DIWIP) + 2(p|WID) + (p[Wp) _ (PIW(P) + (|W|e)

RIPTel = @)+ ol (@)
@WiF)
> W = Pzz- (106)

We have used positivity of W as well as W|®) = |J,) and (J,|®) = (J.]W~L|E) in the last step. Hence,
we always overestimate the resistivity, and the bound is saturated on the true solution to the equations of

motion.

5.2 Inhomogeneous Fluids

We are interested in inhomogeneous Fermi liquids, where L # 0. The presence of the antisymmetric streaming
terms ruins the variational approach (103). It is simple to see why. From (104), which holds with L # 0, we
see that all entropy production comes from the symmetric matrix W, and so naively one might postulate on
physical grounds that (103) holds for both the homogeneous and inhomogeneous fluid. However, because the

matrix L is antisymmetric, it is a simple exercise in linear algebra to prove that for any vector,
(Jol W) > (o (W + L)1), (107)

Because the variational principle (103) is minimized on (102), the true resistivity, from (32), is larger than
the minimum of the variational principle (103). It is not a correct variational approach.

Where does the derivation go wrong when L is nonzero? Writing |®) = |®) + |¢), we may still assume
{0|Jz) = 0, but now (W + L)|®@) = |E). Hence, similar manipulations to before yield

> (@W[P) + (p|W[ip) — 2(p|LIP)

R[P+¢| = @], (108)

The final term above will generally spoil any hope of a variational principle. However, suppose that we could

force our trial functions to obey LT|p) = 0. Then we would again find that

. d|W|P w
with B B B )
L ewa_ ewius (110

(@1J2)2 Gl WD) e)? (oW + L)~ Ja)
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In general, it is difficult to accomplish LT|p) = 0, because in general LT|®) # 0. In order to proceed
further, it is useful to separate out the dynamics of the conserved densities and currents from the remaining

modes. Let us split the vector |®) into three components:

|Q§odd>
|Q5> = |¢cvcn,slow> . (111)

‘ éeven Jfast >

This decomposition is defined by the fact that the matrices W and L take the form

W, 0 0 0 L Ly
W= 0o o o |, L= -] o o [, (112)
0 0 W, -7 0 o

with W non-singular. Recall the discussion around (26) above on the even/odd properties of W and L. We
know that |E) is non-vanishing only in the first (odd) component. Using block matrix inversion identities to

remove the even, fast modes, we find

—1
B W, + ngglLT Ly |Jz>
(Jz|(W+1L) 1IJI>=( (Js| 0) T g . J (113)
k1

The matrix W, + LoW; 'L] is manifestly positive-definite and symmetric. Now suppose that the list of even
conserved quantities (null vectors of W) is finite (at each point ). Then, the middle row of (W +L)|P) = |E)

(using the three-block decomposition of (111)) implies that:
L{ |®oaa) = 0. (114)

Since this equation must be true on the background solution, writing |®qq) = |Podd) + |@odd), We conclude

that imposing (114) on a trial wave function necessarily imposes

LT [¢oaa) = 0. (115)

So long as there are only a finite number of conserved quantities, then we will only have a finite number of
these constraint equations.

Using the even/odd decomposition, the variation (108) can be written

<@odd‘w|@odd> + <§00dd‘w|¢odd> - 2<S00dd||—1‘5cvcn,slow> - 2<@odd||—1|§00vcn,slow>

R= (@,)? ’

(116)
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where

W =W, + LyW, LT (117)

Assuming the constraints (114) and (115), we observe that both antisymmetric terms above vanish regardless
of the variational choice of |Deven siow). Therefore, following the same logic as (109), we are led to the following
constrained variational principle for the resistivity:

S = (D|W|D)
pez < RI2) <5|Jm>2

) (118)
LT|#)=0

with @ running only over odd vectors. At present, this looks abstract and possibly useless. However, we
expect that in many problems of interest, the only even zero modes of W correspond to scalar (under spatial
rotations) conserved quantities such as energy or charge, where (114) is nothing more than V - J = 0, for
each conserved current j .

Hence, the resistivity is then bounded from above by the rate of entropy production, subject to the
constraints that all currents associated with conserved quantities are exactly divergenceless. In the hydro-
dynamic limit, this is equivalent to the hydrodynamic transport bounds of [28, 62, 63, 30], which themselves
are generalizations of Thomson’s principle, a variational approach for computing the effective resistance of a
resistor network [64]. The advantage of the kinetic variational principle over the hydrodynamic ones is (in
addition to the distinct, but overlapping, regime of applicability) the fact that we do not need to know an

explicit expression for the dissipative hydrodynamic coefficients such as viscosity.

5.3 How Interactions Modify Transport

We have presented a general variational principle (118). To make specific quantitative predictions, more
information about W is necessary. Nonetheless, following the discussion of Section 4.4, let us make a few
general comments — now at the non-perturbative level.

In the ballistic (non-interacting) limit where W — 0, it is challenging to directly deduce from (118) that

the resistivity saturates to a constant

C

< -
Prz S ID@FE’

(119)
with 7 and vp the ‘averaged’ density of states and velocity of quasiparticles, respectively, and C' a dimension-
less number. See Appendix E for details of a direct variational calculation which confirms this. Assuming
that the resistivity is finite, it is simple to show the scaling (119). When W = 0, if we define the coordinate

X = x /€, then the Boltzmann equation becomes

all m ~ 120
0X X 0p (120)

oy Lo 20 i 02,

Because L exactly scales as 1/£, we deduce that (z + L)™' ~ & Hence from the expression (110) for the
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resistivity, we conclude that (119) must follow on dimensional grounds alone.

In the limit when interactions become important, it is clear from the form of W that our goal is to find an
admissible \5) for the variational principle which is — as much as possible — exactly conserved in the absence
of disorder: WO|<5> = 0. If we can achieve this, while remaining consistent with all current conservation laws,

then the resistivity
o< FLWITD) Lo (121)
T {942 &
We have used the exact scaling L ~ 1/&, as well as the heuristic scaling W, ~ 1//e.. Clearly, the resistivity
decreases as the interaction strength increases (and f.. decreases).
However, we expect that in general, there will be more conserved currents than odd conserved quantities.
This is the case in a conventional fluid, where there is both charge and energy conservation, but only
momentum conservation. As we noted previously, of additional importance in many solid-state systems are

imbalance modes. If it is not possible to satisfy all conservation laws on an ansatz |@) with W, |®) = 0, then

we expect that in general the resistivity is dominated by the microscopic scattering rates:

p< SPWol®) | 1 (122)
@1,)2 e

In this limit, interactions enhance the resistivity and the scattering rate for momentum will appear to be set

by £ec, although (as we have explained) this is not quite the correct physical interpretation.

This discussion gives us non-perturbative confidence that the bounds described in Section 2 are qualita-
tively correct. There are some special limiting cases where in hydrodynamic limits [26], one may look for
ansatzes |®) where p increases more slowly than £..! in the limit /., < &. These ansatzes are similar to those
discussed in Appendix E. Based on the discussion in Section 4.4, such a limit must be non-perturbative in the
disorder strength. If there are at least d even conserved modes which must diffuse, and momentum is the only
inversion-odd conserved quantity, we do not expect that such special ansatzes will be able to parametrically

reduce the resistivity of a metal in d spatial dimensions.

6 Conclusion

We have described how to solve the inhomogeneous Boltzmann equation to compute the electrical resistivity
of a metal. In appropriate limits, we have reproduced ballistic and (conventional, viscous) hydrodynamic
transport. We have also discovered a variety of novel effects, which we can often interpret with a generalized
hydrodynamics [30]. At a qualitative level, our main observation is that if there are more inversion-even
conserved quantities than inversion-odd conserved quantities, then textbook viscous hydrodynamics does
not emerge in the limit that the mean free path is short compared to the disorder wavelength. Instead the
dynamics is dominated by diffusive ‘imbalance’ (or other such) modes. In such regimes the interactions cause

the resistivity to increase, in dramatic contrast to the viscous case. When quasiparticles are well-defined,
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we have provided two practical methods for solving the full kinetic transport problem in condensed matter
physics: the perturbative framework of Section 4 and the variational methods of Section 5.

Momentum can be relaxed by short-range quantum impurity scattering and umklapp processes. These
can be accounted for by adding terms to W which do not conserve momentum, in the conventional way.
The formal perturbative expansion in Section 4 is broken by such collisions. Nonetheless, the variational
formalism given in Section 5 remains valid whether or not collisions relax momentum, and it suggests that
the existence of a small amount of umklapp or quantum impurity scattering will only weakly modify the
results described above. If £, is the mean free path for umklapp processes, for example, there will be an
intermediate ‘hydrodynamic’ regime with imbalance diffusion when (e, < & < fyy,. If umklapp can relax
imbalance modes, then a conventional hydrodynamic regime will only emerge when & > ¢, similar to what
we saw in Section 4.3.3.

In the future, it will be important to extend this model to magnetotransport and nonzero frequency
transport, as well as model other types of disorder. We look forward to extensions of this formalism, along

with applications to specific materials and to experimental tests of our predictions.
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A Memory Matrix Formalism

We are studying a quantum many-body system deformed by a perturbatively small chemical potential. The

microscopic Hamiltonian is given by
H = Hgean + / Az (&) Vimp (T), (123)

with n(Z) now interpreted as the charge density operator. It is now very well understood that if momentum
P is the only inversion-odd conserved quantity of Hciean, and Vimp is perturbatively small, that the resistivity

is given by [10, 65, 66, 67, 28]:

Im (G% . (k,w) d R
1 -, (ks 1 [ d'% Im (GR (k,
pij = —— lim ( Piby ): . / ik [ Vi ()2 Tim I (Gl (k) (124)
Xyp @0 w Xip J (2m) w—0 w

XxJp is the susceptibility between the charge current and the momentum, and we can evaluate the Green’s
function G® in the clean theory. One can think of this as a generalization of Fermi’s golden rule to interacting

quantum systems.
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We first write the operator

n=>y ng (125)

In the kinetic limit where k < kp, we may approximate retarded Green’s functions using kinetic theory,

using the general technique of [61]: if the equations of motion for ‘long-lived’ quantities ¢, take the form
N6pa + Mapdipy = 0, (126)

and the susceptibility matrix of the ¢, is xaqp, then at low frequencies

—1

Gy (R.w) = Map () [M(E) —iw| ea (127)
where bc refers to the components of the inverted matrix. The spectral weight is then

. Im (ng(lg, w))

w—0 w

= My (k)X (128)

We take the ¢, to be the number density of quasiparticles at momentum p. In the clean theory, the equations

of motion read

Ofeq Ofea 5
Oong + ( 9 ) (W+1L) ( 9 ong =0, (129)
(recall that dny = (=0 foq)Pp) Which gives
ofe Ofeq ™
M, ., =|--—=24 W+ L) [ — =4 1
. aﬁ)ﬁ( 0 (-2) (130)
The susceptibility we require is
ong Ofeq
e = = (- . 131
Xnnz = 5, ( o ). (131)

The first step in this equation follows from the fact that u is the thermodynamic potential conjugate to n
[61]. Combining (124), (130) and (131) with our non-trivial inner product (21), we obtain agreement with
(37) in the main text.

The generalization of (37) to the case where there are multiple conserved inversion-odd quantities is
immediate within the memory matrix formalism [10]. Let us denote with @, the list of odd conserved

quantities, of which a finite subset are the momenta P;. Then the conductivity tensor o;; is given by

Im (Gg Qb(l@w)) B

Lim, » XJ;Q (132)

Oij = XJiQa

where the spectral weight is to be inverted as a matrix with ab indices. To obtain p;;, one takes the inverse
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of o;; over ij indices as usual. If the disorder does not break every conservation law, and so there is some

Q. = 0, then the conductivity will be infinite.

B Toy Models of 2d Fermi Liquids at Weak Disorder

The toy models that we have presented are exactly solvable due to an elegant mathematical trick introduced

in [31], and extended in [32, 33]. Let us write (for the homogeneous theory)
W =W, — X, (133)

where Wy is chosen such that (Wy + L(E))_l = (E) is analytically computable; we will often leave the k
dependence implicit. Suppose that P projects onto a finite number of modes, and that X = PXP. Then we

write
W+L) = Wo+L-X)" Z (PXPG)" = G + GPX (Z (PGPX) > (134)
n=0 n=0
Defining G= PGP, we find
~ —1
(W+L)"L=G+GP {x (1—Gx) }PG. (135)

The only matrix inverse we must compute, which is located within the square brackets above, is of a finite
dimensional matrix. Hence, it is highly efficient to compute (W + L)~! numerically. In fact, in simple cases,
we can compute it analytically.

Let us begin with the simple model of a single rotationally symmetric Fermi surface for a 2d Fermi liquid
at low temperature, discussed in Section 4.3.2. This will form the basis for all the toy models we consider in

this paper. In this model,

N S < (DA 1001+ = 1{-1]). (136)

The overall prefactors of 1/v follow from (67). Similarly, one can compute

Lk =Y 25(2) X ((ika: + ky)ln = 1){n] + (ke — ky)n +1){n) (137)

Using contour integration one can exactly compute [32]

L _j)ln—mlgi(n—m)ex 1 1
(k) = i (e I — - — : (138)

v(p) V2 + 052 (kﬁee) kzee

with |k|e!®* = k, + ik,. As noted in the main text, we normalize the harmonic bras (j|j’) = §,;; hence, the
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non-trivial inner product is not relevant for the matrix multiplication in (135). It will become relevant for
computing (37), because there we did not normalize the bras. In this simple model of a Fermi surface, the
unnormalized and normalized inner products differ only by a factor v. Given G and X, we may now compute
A(k) = v{0|(W + L)~1|0); the result is shown in (68) in the main text.

It is simple to generalize to the more complicated models. In the model of Section 4.3.3, one uses an

identical G as before, but sets

_ L wvor 1w o ! -
Wo= s X X=pmy < g, Poimei-n-2(-2), P V(M)xlj%wﬂ. (139)

Again, the finite dimensional matrix inverse in (135) can be done analytically, and the result for A(k) ~
(0](W + L)~1{0) is shown in (74) in the main text. In the model of two Fermi surfaces (Section 4.3.4) and of

electron-phonon coupling (Section 4.3.5), by rewriting (82) as

1

L= P X ivp 2(cos Ok, + sin0k,) (P2 + CPy) , (140)
with
¢=UEL (141)
UF,2

)

it is straightforward to see that, upon choosing Wy = vup 2/lee as before,
G = > (G (R m1) 1| + G, (R)m2) (n2]) (142)

Now, defining
1

I+

(143)

cosx =

we take

1 ~
X = P X UZF’2 b|01)(01] + [02)(02| + E (sinar|j1) 4 cos ae|52)) (sin (41| 4+ cos a(j2|) | . (144)
M ee ;
j==+1

where b = 0 in the electron-phonon model, and b = 1 in the model of two Fermi surfaces. X hence is a
projector onto the conserved quantities, in each model. It is straightforward to numerically compute A(E)

from here.

C Consequences of Inversion Symmetry at Weak Disorder
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We explicitly carry out the matrix inverse for W 4 L given in (92). First integrating out only the fast modes

(but not the odd slow modes) we obtain

W, = L;)rf,es(WO + L-erf,ofWe_lLef,of)_ll-of,em (145a)
wo = Lc—srf,os(We + I—If,efwc?ll—of,ef)_lLef,OSv (145b)
Los,es = Loses — Lt os(We + LT ot W5 Lot or) ™ Lot ot W5 Lof,es » (145c)
Les.os = Lesios — Lot es(Wo + LT ot W Lot of) " Lot,ef Wy Lot 0s = — Ly cs- (145d)

Next, we assume for simplicity that WO is invertible. We find (96) as in the main text, and so all that
remains is to justify (94) and (95). In order to derive these scaling arguments, let us explicitly define /., and

vp as follows:

kg ~ eigenvalue of L = ik - 7, (146a)
;]—F ~ typical eigenvalue of W, ,. (146Db)

In both of the equations above, and for the remainder of the appendix, we have used ~ to denote that we
are neglecting O(1) prefactors. Both eigenvalues should be computed in the absence of disorder; we have
already integrated out disorder by (37). In models with parametric hierarchies of relaxation times, or both
very fast and very slow fermions, the scalings above should not be expected to fully capture the physics at
intermediate length scales, and one would need to define a larger block matrix decomposition than (92) to
keep track of modes that decay at parametrically different rates, for example.

First, let us discuss the hydrodynamic limit. In this case, because by definition both W, and W,, are
invertible, we may approximate

We &2 LT o W5t Loges + O (K202) ~ koo (147)

of ,es

A similar equation holds for VAVO. We next find that
/I—\os,es ~ Los7es - L;;rf)oswe_ll—ef,ofwo_lLof,es + @) (kZEge) ~ ka (1 + k2£§e> ~ kUF' (148)

A similar equation holds for Eesps.

The ballistic limit is somewhat more subtle: the infinite dimensionality of the vector space of fast modes
is critical to obtain physically sensible results. Consider the matrix W, + LeTf,OfWC’ 1L0f70f, which must be
inverted to compute We. A naive application of (146) suggests that this matrix scales as fe.k? and hence
that We ~ 0.} — namely, that in the ballistic limit there is no dissipation at all. However, this is not true.

At a mathematical level, the argument above fails because the matrix Log of is very far from full rank, and so

has many null vectors. Physically, these null vectors correspond to any velocity for which k- =0. Do these
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null vectors lead to \/AVe ~ look?, which would diverge in the ballistic limit? This is also not correct, because
although there are infinitely many null vectors, they still form a set of measure zero of the total “size” of the
vector space. Following the explicit calculation of Section 4.2, we expect that the vanishing eigenvalues of a

vanishingly small fraction of eigenvectors lead instead to

W, ~ kvg + O (;) . (149)

This result can alternatively be understood by observing that (W + L)~! is not a singular matrix in the
ballistic limit,% and so by dimensional analysis one is forced to arrive at (149). There is less subtlety in

estimating Eos,es in the ballistic limit. A naive application of (146), together with (145), leads to
Los.es ~ kvp. (150)

As we saw above, this is more precisely argued for by noting that all components of (W + L);}, ~ 1/kvp.
The end result is the same.

Combining the results of the previous two paragraphs, we arrive at (94) and (95).

Wo is invertible if the streaming terms couple every odd mode to an even mode. This is not always the
case — see for example the model of a conserved j = 2 harmonic in Section 4.3.3. If this assumption is not

satisfied, then we can modify the block decomposition of (92) straightforwardly to

|Peven slow) 0 Ls1  Les,os 0 Les,of
|Podd slow’) ~Li 0 0 0 0
1) = | [Podasiow) |[» WAHL=] Loses 0 0 Los,ef 0 . (151)
|Peven, tast) 0 0 Leros  We Lef of
|Podd fast) Lofes O 0 Lofer W,

We have added a fifth row and column to this block matrix that corresponds to the odd conserved quantities
|Podd slow’) Which do not couple via streaming terms to fast modes. We can again integrate out the fast

degrees of freedom, which leads to the following modification of (93):

o~ ~

We I—sl I—es,os
WL =1 -LT, 0 0 : (152)
Eos,cs 0 Wo

together with (145). The generalization of (96) is

N _ —~ ~ —1
A)(E) = (n[M = ML (LML) ™ LI M), with M = (W + Lonos W, 'Tha) (153)

4This is easiest to see in position space, where one can see by directly solving the Liouville (non-interacting Boltzmann)
equation that (Zp|(W + L)~ |Zopo) oc O(T(P) - (& — T0))5 (P — Po)d (T x (T — %o)).-
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The presence of the additional odd conservation laws thus reduces the spectral weight. In particular, the role
of Lg1 in the above formula is, roughly, to project out the components of M. which have overlap with the
odd slow modes. This may be enough to kill any imbalance modes in M (eigenvalues ~ k~2); a more detailed
analysis requires more specific details of the model.

The case we studied in Section 4.3.3 (when the j = 2 harmonics were exactly conserved) is not quite of
the above form, because in that model, there were no odd conserved quantities that coupled via streaming
to non-conserved quantities. In this case, one simply deletes the middle row/column of (151), and a careful
analysis of the resulting matrix inverse in the slow sector leads to A ~ 1/l in the hydrodynamic limit, as

we found in the main text.

D Joule Heating

In this short appendix we explicitly show that entropy production is given by (104) in the main text. At the

quantum level, the many-body density matrix is
o= ® (f(z,p)1a,p) (Lapl + (1 = f(2,P))|02,p)(0z,p]) - (154)
z,p

where we have employed Fermi statistics in an obvious way. The ket |n, ,) denotes whether a given ‘quantum
state’ has 0 or 1 fermions in it. This is an approximate formula, and should be interpreted as only valid on

distances z and p obeying AxAp > h. The von Neumann entropy is then given by

S = —trfolog o] = — /ddwddp [f(z,p)log f(x,p) + (1 — f(z,p))log(1 — f(z,p))], (155)

with the latter equality coming from the explicit expression (154). Hence, expanding in small perturbations

around equilibrium, the time-dependent (unsourced) Boltzmann equation leads to:

[ty o1,
a =) Gemav, o0 BTy
- ddxddp afe fe 1 6fe
~ [ ey (-5 W ot 2 s (o] o

Using the form of the Fermi Dirac distribution (11), we can simplify the above expression:

ds d4zd?p Ofecq €+ Vimp @
E_/(Qwh)dvz (— e >[W¢+Ld§] [—T—i-T—i----] (157)

To get rid of the first term in the final brackets, we use the fact that ¢(p) and 1 are — pointwise in = —
null vectors of W since they correspond to locally conserved quantities, as well as the fact that L annihilates
€ + Vimp by its definition in (23). Because W is symmetric and L is antisymmetric, we readily arrive at

TS = ($|W|®) using the inner product (21). This leads to (104) in the main text. While (22) is a sourced,
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static problem, we continue to interpret (104) as the entropy production.

E Variational Principle in the Ballistic Limit

In this appendix we will show how the variational principle (118) is consistent with a finite resistivity in the

limit where W — 0. For simplicity, let us assume that the matrix
W =z, (158)

with z an (infinitesimal) relaxation rate which we will send to zero. Also for simplicity, we will neglect the
constraints, as they are automatically satisfied when we remove the regulator z at the end of the calculation.

We thus look for a ‘minimum’ of
(®|W, + LTWIL|®)
(Pl4z)?

R[®] = (159)

As z — 0, it is clear that we should look for vectors where L|®) = 0. More precisely, let us look for vectors

where L|®) ~ z|®). In the conventional basis |Zp), we look for solutions to

L|&) =

L 0P o 0D\
O +F- aﬁ> = z|D). (160)

Solutions to this differential equation are of the form

[®z(0)510)) =/dt e *E(1)p(t)). (161)
where
dz F =
— =v —=F 162
a - (162)

(161) should be interpreted as follows. We may choose arbitrary initial conditions Z(0) and 7(0). By solving
(162), we obtain a trajectory #(t) and p(t). The subscript on |®z)z(0)) then simply denotes that we have
chosen a solution to (160) for the initial conditions specified in the subscript. At this point, we also note
that when z — 0, we recover solutions to the non-interacting Boltzmann equation, which satisfies current
and energy conservation.

We now introduce a set .S, which intuitively consists of a set of initial conditions #(0) and p(0) which —
after time evolution for a time of order 2!, according to (162) — ‘cover’ the classical phase space. S is an

infinite set. We will now evaluate R[®] via a scaling argument on trial functions of the form

@) = / dS|Pz0)710))- (163)
COr O

For some purposes, it is easiest to think about |®) in the form (163), but for other purposes it will be more
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instructive to write

@) = / dlad? o 2P | z5). (164)

Because S is a continuous, the function Z(Z,p) is O(1).
We start by evaluating the numerator of R, which is elementary. Since L|®) ~ W|®) on ansétze of the

form (163), we conclude that

_ d4zddp dfe oz
(B|Wo + LTWSIL|®) ~ (D|W,|D) ~z/ bV, (— 8:) e 20D ~yz, (165)

The last step above follows simply from the fact that Z is not parametrically small, by definition of S.

The denominator of R is a little more subtle. On a single trajectory, we have

Yrd? eq — —z|t]) =1\
Uudtsomo) = ¢ [ b (<2 ) v ptant [ ave e

where v, (t) is now the z-velocity of the quasiparticle at time ¢, given that it started at position (£(0), p(0)); it

can be found by solving (162). In this formula, we have applied (163) directly, because it is easier to account
for how v, (t) evolves along each trajectory separately. Under the assumption that (in spatial dimensions

d > 1) the quasiparticles undergo random walks at long times [57, 58], we estimate that on a typical trajectory,

Az| = ‘/dt ezltvx(t)‘ N \/?, (167)

where D is a suitable diffusion constant. In the smooth potential problem that we are studying, D ~ vp€ up

the quasiparticle displacement

to a dimensionless constant, which may be large at weak disorder.

In order to get a strong upper bound on the resistivity, we must maximize the typical size of (F|®)2.
This leads to the following consideration: if we include all possible trajectories in S, then half of the time
Az is positive, and half of the time it is negative; only the magnitude was given in (167). We then expect

the disorder averaged

(-« [ Gy (-2%2) atao.on) | o (168

There are an infinite number of trajectories in S, and while infinitesimally close trajectories (at any finite z)
will be correlated, we expect that in the thermodynamic limit this average vanishes: trajectories starting at
very distant #(0) will be completely uncorrelated. Also note that in this formula, we integrate over & and
P by first integrating over each trajectory (to replace v, with Az), and then we integrate over all possible
starting points.

We must, therefore, slightly improve our definition of |®). A simple thing to do is to replace the set S
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by the set S’, consisting only of trajectories where Az > ¢y/D/z, with ¢ > 0 some finite O(1) number. This

does not change the estimate in (165). But now, because all Az > 0, we may estimate

E [().1#)’] =E [(—e / (%th);Vx (— 652‘*) Am(f(0)7ﬁ<0>>>2

The second scaling argument in this equation follows from the fact that the (—0feq/0€)/(2mh)4V, weighted

~E {|Am|2} (zve)? ~ zv%e*D.  (169)

integral over the set S’ scales as v x z — the factor of z comes from the fact that we cannot include two points
in ', if (¢) they lie on the same single particle trajectory, and (i) a particle can move from one point to the
other in a time < 271 In (169) this extra factor of z has arisen, in contrast to (165), due to the fact that
trajectories are weighted by v,,.

Combining (165) and (169) we obtain

1

<RIP| ~ ——
pNR[] eQVD7

(170)

which is the Sommerfeld-Drude scaling for the conductivity of a non-interacting electron gas: in particular,

it will scale as 1/¢, as stated in the main text.
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