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Motivated by the recent numerical work, we use the boson-vortex duality to study the possible
phases of the frustrated spin-1/2 J1−J2 XXZ models on the honeycomb lattice. By condensing the
vortices, we obtain various gapped phases that either break certain lattice symmetry or preserve
all the symmetries. The gapped phases breaking lattice symmetries occur when the vortex band
structure has two minima. Condensing one of the two vortex flavors leads to an Ising ordered phase,
while condensing both vortex flavors gives rise to a valence bond solid state. Both of those phases
have been observed in the numerical studies of the J1 − J2 XXZ honeycomb model. Furthermore
by tuning the band structure of vortex and condensing it at the single minimum at the Γ point, we
obtain a featureless paramagnet. But the precise nature of this featureless state is still unclear and
needs future study.

I. INTRODUCTION

Frustration, the inability to simultaneously satisfy
the competing interactions, can give rise to interesting
physics. The study of frustrated magnets can be traced
back to the search of exotic phases of matter such as
quantum spin liquids [1]. There are two types of frus-
tration, attributed to geometry and interaction respec-
tively. For example, geometric frustration arises from the
kagome and pyrochlore lattice, on which exotic spin liq-
uid states were discovered [2, 3]. Interaction frustration
can also lead to exotic long-ranged entangled states, such
as the Kitaev spin liquid on the honeycomb lattice [4].

In this paper we focus on the spin-1/2 J1 − J2 XXZ
model on the honeycomb lattice, where the interaction
frustration plays an important role. The Hamiltonian is

H = J1
∑
〈i,j〉

(Sxi S
x
j + Syi S

y
j + αSzi S

z
j )

+ J2
∑
〈〈i,k〉〉

(Sxi S
x
k + Syi S

y
k + αSzi S

z
k)

(1)

Although the lattice is bipartite, the competing near-
est and next-nearest interactions give rise to interesting
ground states, especially when J2 is comparable with J1.
In the limit of J2/J1 → 0, the groundstate is an anti-
ferromagnetic state with anti-parallel spins on different
sublattices. At large J2/J1, two triangular sublattices are
decoupled and each of them has the 120◦ states as ground
states. For the intermediate J2/J1, due to strong frus-
tration, previous studies suspect that the ground state
is a spin liquid state [5–13]. However, more and more
evidences from recent numerical results shows that the
exotic spin liquids are unlikely to appear [14–21]. In the
XY limit (α = 0), an unexpected z-direction Ising or-
der is found when 0.22 . J2/J1 . 0.36 [14–16]. At the
SU(2) point (α = 1), a valence bond solid (p-VBS/c-
VBS) forms in the similar parameter region [16–21]. Ad-
ditionally, the transitions between those gapped states
and antiferromagnetic order seem to be direct transitions.

If those transitions are continuous, they might be exam-
ples of quantum criticality beyond the Landau-Ginzburg
paradigm [22, 23]. Although numerics gives us simple
and clear results for both XY and SU(2) model on the
honeycomb lattice, we still lack a theoretical understand-
ing of those phase diagrams.

Besides those lattice symmetry breaking states, pre-
vious studies show that a short-range-entangled para-
magnet, i.e. symmetric and non-fractionalized gapped
groundstate, is also possible for the spin-1/2 system on
the honeycomb lattice. The existence of such a feature-
less state is consistent with the Lieb-Schultz-Mattis the-
orem [24] in the two dimensions [25–30]. Although its
wavefunction has been microscopically constructed [31–
34], the corresponding parent Hamiltonian is still unclear.
Hence it would be helpful to understand the physical
mechanism for the featureless state in order to get its
Hamiltonian.

In this work, I start with a generalized Bose-Hubbard
model which could recover the above spin model in the
particular limit. By doing the boson-vortex duality, we
get an effective theory in terms of vortices coupled to a
U(1) gauge field. The superfluid (i.e. the magnetic or-
der in the spin language) corresponds to a state where
the vortices are gapped. The vortices hopping on the
triangular lattice have two low energy modes at finite
momenta Q± = ±( 2

3π,
2
3π). By condensing the vortex in

various ways, the superfluid is disordered to the charge
density wave (CDW) order, valence bond solid (VBS)
and the featureless state. For example if the vortices con-
dense at one of the momenta Q±, we obtain the CDW
(i.e. the Ising order in the spin language) which breaks
the inversion symmetry on the bond of the honeycomb
lattice. When vortices condense at both Q±, we obtain
the valence bond order, such as plaquette VBS (p-VBS)
and columnar VBS (c-VBS). At last when vortices con-
dense at the Γ point (Q = (0, 0)), a featureless state is
obtained.

This paper is structured as following. In the Sec. II, we
briefly review the boson-vortex duality on the honeycomb
lattice. Then, we formulate the effective vortex theory
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on the triangular lattice in the Sec. III. Accordingly,
symmetry breaking phases are obtained by condensing
those vortices. Further in the Sec. III C, we tune the
band structure of vortices and obtain a featureless state
through vortex condensation. Finally, in the Sec. IV, we
summarize and discuss open questions.

II. MODEL

We consider a generalized Bose-Hubbard model on the
honeycomb lattice with half boson per site, whose Hamil-
tonian is

HHB = H0 +HU

= −t1
∑
〈i,j〉

(a†iaj + h.c.) +
U

2

∑
i

ni(ni − 1)

+ V1
∑
〈i,j〉

(ni −
1

2
)(nj −

1

2
)− µ̃

∑
i

ni + . . .

(2)

where ai(a
†
i ) is the boson annihilation (creation) opera-

tors on the sites i of the honeycomb lattice. ni is the
boson occupation number at site i. µ̃ is the chemical
potential which is zero at half-filling. t1 > 0 and . . .
includes the short-ranged further neighbor hopping and
interaction terms. Notice that t1 → −t1 will not change
the physics of this model, because we can always do trans-
formation ai → −ai on one sublattice to cancel the sign
change of t1. This model is related with the spin model
in Eq. (1) in the following way. At infinite U , the bosons
become hard core bosons. At half-filling, the boson sys-
tem is equivalent to a spin system with spin-1/2 degrees
of freedom on each site. Spins and bosons are related by

the mapping ai → S−i , a†i → S+
i and ni → Szi + 1

2 . When
there is only nearest and next-nearest neighbor hopping
and interaction terms, we can map the boson model to a
spin-1/2 J1 − J2 XXZ model in Eq. (1) whose superex-
change Ji and Szi S

z
j anisotropy α satisfy J1,2/2 = t1,2

and V1,2 = J1,2α.
We proceed with the boson-vortex duality according

to the standard procedure [35–38]. Firstly, we write the
action of the Hamiltonian in Eq. (2) after representing

the bosons by rotor operators
[
φ̂i, n̂j

]
= iδij where ni is

the boson number and φi is its phase factor. The action
is also a function of imaginary time slice ∆τ . Then we go
to the Villain representation. The nearest hopping term
is written as

exp

(
t1∆τ cos(∆αφi)

)
→

∑
{Liα}

exp

(
− L2

iα

2t1∆τ
+iLiα∆αφi

)
(3)

where Liα are integer variables living on the links of
the direct honeycomb lattice, representing the current
of bosons. ∆α is the discrete lattice derivative along α
direction: ∆αφi = φi+α − φi.

In the presence of the second nearest neighbor hop-
ping, instead of adding those terms into the action, we

renormalize the nearest neighbor hopping amplitude t1.
This treatment is allowed since at last, all the parame-
ters in the effective vortex theory are renormalized val-
ues [39, 40]. Then, by integrating out the bosonic field
φ, we obtain the continuity equation for the bosonic 3-
current Jiµ = (ni, Lix, Liy) where ni is the boson density
assigned to be along time direction and Liµ is the boson
current along spatial direction starting from site i. The
continuity equation ∆µJiµ = 0 can be solved by defining
a non-compact U(1) gauge field as

Jjµ = εµνλ∆νAJλ. (4)

where AJλ is a gauge field living on the dual triangular
lattice link starting from dual lattice site J pointing λ
direction. Below, we use small letter like i, j, k for the
sites of the direct lattice while the curly big letter such
as J , K and so on are used for dual lattice sites.

In terms of Jiµ, we can also rewrite the other terms
in Eq. (2) by changing ni to Jiτ , for example, ni(ni −
1) = Jiτ (Jiτ − 1). We also absorb the nearest neighbor
interaction to the on-site interaction with a renormalized
strength Ũ . ∆τ is chosen so that e2 = t∆τ = 1/Ũ∆τ

where t and Ũ are renormalized hopping amplitude and
on-site interaction of direct bosons.

With all those ingredient, we are ready to get the dual
U(1) gauge theory. We will present it and study it care-
fully in the next section.

a

b

n2 n1

I‖

I⊥

AJλ

FIG. 1. Dual triangular lattice for the direct honeycomb lat-

tice. ~n1 = (1, 0) and ~n2 = (− 1
2
,
√

3
2

) are Bravais vectors span-
ning the dual lattice. AJλ is the gauge field on the λ bond
which is coupled to vortex field on the J site. I‖ and I⊥ are
inversion symmetries of the honeycomb lattice.

III. DUALITY AND PHASES

The dual vortex theory is defined on the triangular lat-
tice in the Fig. 1. Its effective action describes a bosonic
field, i.e. vortex field, coupled to a non-compact U(1)
gauge field living in the (2 + 1)−d stacked triangular lat-
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tice, which is given by

Z =

∫
DAJλ

∫
DΨJ exp

{ ∑
�∈Pxτ∪Pyτ

−1

2e2
(εµνλ∆νAJλ)2

−
∑
4∈Pxy

[
1

2e2
(ετνλ∆νAJλ − f)2

]
− tv

∑
Jλ

(Ψ†J e
2πiAJλΨJ+λ + h.c.)

−
∑
J

(s|ΨJ |2 +
u

2
|ΨJ |4)

}
,

(5)
where tv > 0 is the hopping amplitude of vortex ΨJ cou-
pling with gauge field AJλ defined in Eq. (4). f = 1

2 is
the boson filling factor. τ is the direction of imaginary
time while other Greek letters like µ, ν denote spatial
directions x or y. Notice the term in the first line sums
over square plaquettes on the xτ and yτ planes denoted
by Px(y)τ . The second line is a term summing over trian-
gular plaquettes of the triangular lattice on the xy plane.

The second term of Z has a mean field solution sat-
isfying ετνλ∆νAJλ = f . This means vortex sees a π
flux threading through each triangular plaquette due to
the direct boson density. We choose a simple gauge with
AJλ = 1/2 on every link. After solving the band struc-
ture of vortices, we obtained the low energy vortex field
as a function of position r

Ψ(r) = ψ1e
iQ+·r + ψ2e

−iQ−·r, (6)

where Q± is the minima of the vortex band structure.
Specifically, we introduce the basis vectors of the re-

ciprocal lattice ~b1 = (1, 1√
3
) and ~b2 = (0, 2√

3
), then

Q± = ±( 2π
3
~b1 + 2π

3
~b2). Under lattice symmetries and

the global U(1) symmetry, based on the vortex transfor-
mations under these symmetries in Appendix A, two low
energy modes of vortex transform as following.

T1ψ1(2) → ψ1(2)e
±i 2π3

T2ψ1(2) → ψ1(2)e
±i 2π3

Rdualπ/3 ψ1(2) → ψ2(1)

Rdirect2π/3 ψ1(2) → ψ1(2)

I‖ψ1(2) → ψ∗1(2)

I⊥ψ1(2) → ψ∗2(1)

Cψ1(2) → ψ∗2(1)

U(1)ψ1(2) → ψ1(2)e
iα

(7)

Here, we list the transformation under translation sym-
metries T1,2 along ~n1,2 directions and rotational sym-
metries Rdualπ/3 (Rdirect2π/3 ) around dual (direct) lattice sites.

Also, inversion symmetries and charge conjugation are
studied.

Finally, the action in terms of low energy modes ψ1,2

preserving all the symmetries is

S =

∫
d3x

{∑
s=1,2

[
|(∂µ −Aµ)ψs|2 + r|ψs|2

]
+ u

∑
s=1,2

(|ψs|2)2

+ u4|ψ1|2|ψ2|2 + vc
[
(ψ1ψ

∗
2)3 + (ψ∗1ψ2)3

]}
(8)

The possible phases in this theory are demonstrated be-
low.

A. Superfluid

When vortices are gapped, i.e. r > 0, we preserve the
dual U(1) gauge symmetry in the vortex vacuum. The
photon mode of the U(1) gauge field can be identified as
the goldstone mode of the direct bosons. This gives the
superfluid state of direct bosons. By condensing vortices
in different ways, we breaks the dual U(1) symmetry and
restore the U(1) symmetry of direct boson resulting in
gapped states with various orders.

B. Gapped ordered state

r < 0 and u > 0 leads to
∑

s=1,2 |ψs|2 > 0, i.e. at least
one of the two vortex flavors condenses.

1. Charge density wave

When u4 > 0, single vortex condensation is energeti-
cally favored. This means 〈ψ1〉 6= 0, 〈ψ2〉 = 0 or, equiva-
lently, 〈ψ1〉 = 0, 〈ψ2〉 6= 0. Suppose ψ1 is condensed, i.e.
ψ1 = eiθ1 . Without losing generality, we can set θ1 = 0.
This leads to the vortex field

Ψ(r) = eiQ+·r. (9)

One can easily show that the translational symmetry is
preserved, but Rdualπ/3 , I⊥, and C are all broken by this

single flavor condensation of ψ1. But the combination
CI⊥ is a symmetry of the resulting state. Therefore, this
phase is likely to be the CDW phase, which has a stag-
gered boson density on the A, B sublattices. This CDW
phase is nothing but the unexpected Ising order that is
discovered in the J1 − J2 XY model [14].

We can also show in a direct way that such single
flavor condensation leads to the CDW phase [39, 40].
We consider the vortex current, defined on the links of
the dual triangular lattice as Jvr,µ = iΨ†rDA,µΨr where

DA,µ = ∆µ− 2πi ~Aµ is the covariant lattice derivative on
the links along µ direction. The 2π in front of A repre-
sents the unit of charge of the gauge field, which is also
consistent with our convention in Eq. (5). As shown

in Fig. 2, the vortex currents ~Jv around the up triangle
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and down triangular plaquettes are opposite. The current
also forms a vortex whose core lives at the center of each
triangle. Since the vortex of the dual vortex corresponds
to the direct boson, this pattern of the vortex current de-
termines the boson density and the corresponding state
is the CDW state.

FIG. 2. Vortex current on triangular dual lattice when single
vortex condenses. Two patterns of vortex current lead to
two degenerate ground states of the CDW phase with lattice
symmetry breaking of direct boson. Specifically the density
on one sublattice (◦) is higher than the other sublattice (•).

2. Valence bond solid states

When u4 < 0, both species of vortices condense, i.e.
〈ψ1〉 = 〈ψ2〉 6= 0. Now the sign of vc determines the re-
sulting ordered state. Similarly, we assume ψ1,2 = eiθ1,2 ,
the effective Lagrangian is reduced to

Leff = vc cos 3θ, (10)

where θ = θ1− θ2 is the difference in the phase factors of
two species of vortices.

Restoring the boson U(1) symmetry, the resulting state
is a gapped state. With the fixed θ determined by Leff ,
the ground state breaks translational symmetries T1,2
and the C6 rotational symmetry around the dual lattice
sites down to C3. Since both inversion symmetries and
the charge conjugation are preserved, the corresponding
state of matter should have bond order, where the singlet
lives on certain bonds of the honeycomb lattice forming
long range order. There are two patterns of valence bond
satisfying this symmetry breaking. Different vc favors
ground state with distinct bond patterns.

When vc < 0, θ = 2π
3 n (n ∈ Z) minimizes the action.

The resulting vortex field isv

Ψ(r) = eiQ+·r+inπ3 + e−iQ+·r−inπ3

= 2 cos

[
2π

3
(r1 + r2) +

nπ

3

]
(11)

where r1(2) is the length of a component of r along n1(2)

direction which is shown in Fig. (1).

We can calculate the vortex hopping amplitude
−〈eiAλ(r)Ψ∗(r)Ψ(r+λ)〉 to obtain the symmetry breaking
state of the direct bosons [39, 40]. Specifically, frustrated
links of vortices reveal the locations of boson singlets.
Notice n = 1, 2, 3 leads to three different Ψ configura-
tions. They are the three degenerate states, one of which
is shown in Fig. 3. We represent the vortex field Ψ(r) as
arrows in figure, whose length is proportional to |Ψ| and
its direction represent the sign of Ψ. If two neighboring
arrows are parallel (i.e. the two vortex fields have the
same sign), the hopping between them will cost larger
energy (since the expectation value of each hopping term
is positive). Therefore, the vortex hopping is suppressed
and boson hopping across these frustrated links will be
favored. In other words, the boson will form singlet on
those links of direct honeycomb lattice. Therefore, the c-
VBS state (shown in Fig. 3) with three-fold degeneracy
is obtained.

FIG. 3. c-VBS of bosons whose singlets are denoted by thick
links. The corresponding vortex configuration by arrows is
also shown.

When vc > 0, then minimal action requires θ = π
3 (2n+

1) (n ∈ Z). There are also three degenerate ground states
for n = 0, 1, 2. Now the vortex field is

Ψ(r) = eiQ+·r+iπ6 +inπ3 + e−iQ+·r−iπ6−inπ3

= 2 cos

[
2π

3
(r1 + r2) +

π

6
+
nπ

3

]
(12)

Also by the analysis of vortex frustrated links, we can
get the ground state in terms of direct boson, which has
plaquette order as shown in Fig. 4. Notice that the c-
VBS and p-VBS break the same lattice symmetry. Since
both of them are product states, they belong to the same
valence bond phase. This means when we tune vc from
negative to positive, there is no phase transition at vc =
0.

In conclusion, we have found CDW and VBS states
through vortex condensation. These results are summa-
rized in Fig. (5). Although we cannot find the exact rela-
tion between the microscopic boson model and the effec-
tive vortex theory, our phenomenological theory provides
physical mechanism to those states found in numerics.
This dual picture, on the other hand, allows us construct
the featureless state in terms of vortices, which will be
studied below.
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FIG. 4. p-VBS of bosons whose singlets are denoted by thick
links. The corresponding vortex configuration by arrows is
also shown. Black dots denotes Ψ = 0 where the direction of
arrow is ambiguous.

u4

OR

CDW/Ising c-VBS/p-VBS0

FIG. 5. Phase diagram obtained for S in Eq. (8) at r < 0
and u > 0. By tuning u4, we get the CDW (Ising order in the
spin language) for u4 < 0 and the VBS state when u4 > 0.
The open circles and dots denote different density of bosons
occupied by different sublattices.

C. Featureless state

Despite the dual triangular lattice has π flux thread-
ing through each triangular plaquette, the unit cell of
this dual lattice is not enlarged. Therefore, it is possible
to have single low energy vortex mode carrying integer
quantum number of those symmetries, unlike Eq. (7).
Different from the square lattice [39, 40], the two min-
ima of the vortex band structure on the triangular lattice
is not protected by any symmetry. We thus can tune the
band structure so that the only minimum locates at the
Γ point and the corresponding ground state is no longer
degenerate. If the vortices condense at the Γ point, we
would have a state without lattice symmetry breaking.
Since the gauge field is completely gapped out by the con-
densation, the resulting state is not a topological ordered
state but a short-range entangled paramagnet. This is
consistent with the Lieb-Shultz-Matthis theorem due to
the integer boson per unit cell.

In order to get the featureless state, we tune the vor-
tex band structure to have a minimum locating at the Γ
point. With only the nearest neighbor positive hopping,

the energy minima locate at Q± = ±( 2
3π
~b1 + 2

3π
~b2) (K

points). And as we discussed before, the condensation

of vortices leads to degenerate ordered states. However,
there is no reason to forbid further-neighbor hopping. By
adding those hopping terms, we can tune the vortex band
structure and change the location of energy minima.

Notice each triangular plaquette must have π flux due
to the 1/2 boson per site. Then the triangular plaque-
tte defined by the 2nd-neighbor (NNN) hopping (see Fig.
6) also has π flux per plaquette because 3/2 bosons are
enclosed. If we only consider this NNN hopping of vor-
tices, the band structure also has two energy minima at

M points Q′± = ±π~b2

2nd-neighbor

3rd-neighbor

4th-neighbor

FIG. 6. Triangular plaquettes are formed by n-th neighbor
hopping of vortices.

We find that if the third-neighbor hopping is dominant
in the vortex dynamics, the system has band structure
with unique energy minimum at Γ point. The effective
low energy vortex theory is the normal phi-4 theory.

L = |(∂µ −Aµ)ψ|2 + r|ψ|2 + u|ψ|4 (13)

Condensing vortices leads to a featureless Mott insula-
tor. So far, it is not clear if it is a crystalline symmetry
protected topological state or just a trivial state which
can be adiabatically connected to a product state.

IV. SUMMARY AND DISCUSSION

In this work, we studied the possible phases of the
Bose-Hubbard model on the honeycomb lattice at half-
filling. Our study provides an approach to understand
the phases found in the numerical study of the J1 − J2
spin-1/2 XXZ models [14, 18].

By using the standard boson-vortex duality, we obtain
a dual vortex theory on the dual triangular lattice. A
state with gapped vortices corresponds to a superfluid
phase. Then by condensing these vortices, the superfluid
is disordered to insulating phases. The insulating phases
can either break certain lattice symmetries or preserve
all the symmetries, and it depends on the details of the
vortex band structure. Specifically when the dynamics of
vortex is dominant by the nearest neighbor hopping, the
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vortex band structure has two minima. Then condensing
vortex would necessarily break lattice symmetry, giving
rise to CDW or VBS states. The CDW is obtained by
condensing one of the two vortex flavors, and in the spin
language, it corresponds to the Ising ordered state discov-
ered numerically in the J1 − J2 spin-1/2 XY honeycomb
model [14]. The VBS state, including p-VBS and c-VBS
patterns, is a condensate of two vortex flavors. The VBS
state, particularly the p-VBS order, has been found in
the numerical study on the spin-1/2 SU(2) J1 − J2 hon-
eycomb model [18].

Alternatively, if the vortex dynamics is dominated by
the third neighbor hopping, the vortex band structure
will have a single minimum at the Γ point. By condens-
ing this single vortex flavor, we preserve all the lattice
symmetries. The existence of such featureless state is
consistent with the extended Lieb-Schultz-Mattis theo-
rem in two dimensions. But the construction or real-
ization of this state is non-trivial [31–34]. According to
the present study, we need large third-neighbor hopping
terms of vortices in the dual triangular lattice, which is
unusual.

Notice that there is another VBS state found in the
numerical calculation, called staggered VBS (s-VBS)
state [14, 18, 21]. Our theory cannot obtain this state
directly from superfluid. The reason is that the s-VBS
state have Z3 vortex with feature less core [41]. From
the VBS side, by condensing these vortex, we cannot get
superfluid. Therefore, it is unlikely to get a direct tran-
sition from superfluid to the s-VBS state.

Due to the fact that the boson-vortex duality is a phe-
nomenological theory which cannot take account of all
the microscopic details, we cannot predict the specific
interaction which realizes those phases. In particular it
is unclear about the parent Hamiltonian of the featureless
paramagnet. Also we don’t know whether the featureless

paramagnet from our approach is the same phase as the
one constructed in Ref. [31, 33, 34], which is a crystalline
symmetry protected topological phase [32].

Moreover, the nature of the transitions between the su-
perfluid (magnetic order) and those insulating phases are
unknown. Numerically it is unclear due to the finite size
effect. On the theoretical side, the phase transition be-
tween the superfluid and the lattice symmetry breaking
phase (CDW, VBS) is captured by the deconfined phase
transition [22, 23]. The transition from the superfluid
to the CDW (Ising order) discovered in the J1 − J2 XY
model is described by the easy-axis non-compact CP1

(NCCP1) theory [42], which is likely to be first order,
while the transition from the superfluid to the p-VBS (or
c-VBS) discovered in the J1−J2 SU(2) model is described
by the SU(2) NCCP1 theory, which may be continuous.
At last, the transition between the superfluid and the
featureless paramagnet is naively described by a O(2)
or O(3) Wilson-Fisher critical theory depending on the
spin-rotational symmetry of the original spin model.
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Appendix A: Symmetry transformation of vortices on triangular lattice

Symmetry operations on the vortex operator v(x, y) on the triangular lattice lead to

T1v(n1, n2) = v(n1 − 1, n2)

T2v(n1, n2) = v(n1, n2 − 1)

Rdualπ/3 v(n1, n2) = v(n1 − n2, n1)

Rdirect2π/3 v(n1 −
1

3
, n2 −

2

3
) = v(−n2 +

2

3
, n1 − n2 +

1

3
)

I‖v(n1, n2) = v∗(n2 − n1, n2)

I⊥v(n1, n2) = v∗(n1 − n2,−n2)

(A1)

Fourier transformation gives

T1v(k1, k2) = v(k1, k2)eik1

T2v(k1, k2) = v(k1, k2)eik2

Rdualπ/3 v(k1, k2) = v(−k2, k1 + k2)

Rdirect2π/3 v(k1, k2) = v(−k1 − k2, k1)

I‖v(k1, k2) = v∗(k1,−k1 − k2)

I⊥v(k1, k2) = v∗(−k1, k1 + k2)

(A2)

Thus, for particular momentum Q, e.g. Q± in the context, we can have the corresponding transformations for low
energy vortex modes as listed in Eq. (7).


	Possible phases of spin-1/2 XXZ model on honeycomb lattice by boson-vortex duality
	Abstract
	Introduction
	Model 
	Duality and phases 
	Superfluid
	Gapped ordered state
	Charge density wave
	Valence bond solid states

	Featureless state 

	summary and discussion 
	Acknowledgments
	References
	Symmetry transformation of vortices on triangular lattice 


