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Describing correlated electron systems near phase transitions has been a major challenge in com-
putational condensed-matter physics. In this paper, we apply highly accurate fixed node quantum
Monte Carlo techniques, which directly work with many body wave functions and simulate electron
correlations, to investigate the metal to insulator transition of a correlated hydrogen lattice. By
calculating spin and charge properties, and analyzing the low energy Hilbert space, we identify the
transition point and identify order parameters that can be used to detect the transition. Our results
provide a benchmark for density functional theories seeking to treat correlated electron systems.

I. INTRODUCTION

Many spectacular phenomena occur near phase tran-
sitions of correlated electron systems1. For exam-
ple, high temperature superconductivity2–4, colossal
magnetoresistance5,6 , and the magnetocaloric effect7–9

all occur near phase transitions. An emblematic corre-
lated phase transition is the metal to Mott insulator tran-
sition (MIT), which is a metal insulator transition that
would not occur in the absence of interactions. Near this
transition, the system is neither in the non-interacting
limit, nor in the strongly interacting limit.

Because there is no small parameter near the MIT, it
is challenging to describe the system theoretically. Sin-
gle determinant pictures fail qualitatively in this region
of physical space10–12. Exotic states in between the in-
sulator and metal, like the spin liquid state13–15, have
been proposed in this region based on approximate theo-
ries. Whether these states might exist in realistic mate-
rial systems is still very much an open question because
solutions either focus on a very simplified model or make
large approximations in the solution of the first principles
Hamiltonian.

Exact correlated solutions can be found for the Hub-
bard model. Sorella and collaborators16 conducted large
scale unbiased quantum Monte Carlo calculation on the
honeycomb lattice. They showed that there is no evi-
dence for the spin liquid phase near the transition be-
tween semi-metal and antiferromagnetic insulator. An
auxiliary-field quantum Monte Carlo study on Kane-
Mele model17 with long-range Coulomb interaction re-
veals that in the absence of spin-orbit coupling, there is
a phase transition between the semimetal and the antifer-
romagnetic insulator while in the presence of spin-orbit
coupling, the transition between the quantum spin Hall
insulator and the antiferromagnetic insulator is observed,
and they did not find evidence for additional phases.
However, this is far from realistic systems since the Hub-
bard model only includes on-site interactions, and Kane-
Mele model is also not able to include all the electron
correlations.

For the full first principles Hamiltonian, there are no
exact solutions. There are two broad classes of ap-
proaches in this case. The first is density functional

theory (DFT) plus corrections, such as LDA+U12,18,19,
and LDA+DMFT20,21. While these techniques often of-
fer substantial improvement over the underlying DFT
calculations18,19,22, they depend on the starting point,
parameter values23, and have significant uncertainty
due to double counting of correlations24. The second
class consists of many-electron wave function techniques,
which have no adjustable parameters but are computa-
tionally demanding and must approximate the wave func-
tion form for efficiency. For extended systems, quantum
Monte Carlo (QMC) methods, in particular fixed node
projector (diffusion or reptation) Monte Carlo is broadly
applied, with recent applications25,26 to realistic strongly
correlated systems. However, the FN-DMC method suf-
fers from the fixed node error, which has not been ex-
plored in depth near the metal-insulator transition for
realistic periodic systems.

In this study, we investigate the fixed node error of a
honeycomb lattice of hydrogen atoms using fixed node
reptation Monte Carlo (FN-RMC). We choose this sys-
tem for several reasons. First, it is one of the simplest
systems with a 1/r interaction, and the closest realistic
system to a Hubbard model. Second, since there is only
one electron per atom, we expect that the nodal error
will be at its minimum in this system. We assess the
fixed node error by using nodes from both the metallic
and antiferromagnetic insulating mean-field states. We
investigated five order parameters to identify the transi-
tion point: double occupancy, compressibility, staggered
moment, spin structure factor and spin spin correlation.
To find the most accurate ground state quantities, we
performed QMC calculations with multiple starting trial
wave functions and find the ground state order parame-
ters by fitting. In our data, we could find no evidence of
intervening phases; the ground state transitions from a
paramagnetic to an antiferromagnetic system at around
a lattice constant of a = 2.75 Å. Our data is appropriate
for density functional development, since standard DFT
in the Perdew, Burke, and Ernzerhoff functional (PBE)27

mispredicts the transition by around 0.2 Å.
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II. METHOD

First-principle methods start from the Hamiltonian of
interacting electrons and ions. Because electrons and ions
do not move on the same time scale, we use the Born-
Oppenheimer approximation28 to separate their motion.
The Hamiltonian of many-body electrons system is then

Ĥ = − 1
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where i, j refer to electronic coordinates, and α, β refer
to ionic coordinates. This Hamiltonian contains the ki-
netic energy of electrons, electron-electron interactions,
electron-ion interactions and ion-ion interactions. We
use 3D boundary conditions with an out-of-plane lattice
constant of 100 Bohr (53 Å) and the Ewald summation
method to handle the 1/r interactions.

A. Variational Monte Carlo (VMC)

In variational Monte Carlo(VMC), the expectation
value of the energy is evaluated by computing the in-
tegral

EV (P) = 〈ΨT (P)|Ĥ|ΨT (P)〉 (2)

=

∫
dR

|ΨT (R,P)|2∫
dR|ΨT (R,P)|2

ĤΨT (R,P)

ΨT (R,P)
,

where ΨT is the trial wave function, R is a vector
of all electronic coordinates, and P is a list of vari-
ational parameters. Expectation values of observables
are calculated by sampling the probability distribution
P (R) = |ΨT (R)|2/

∫
dR|ΨT (R)|2 and averaging over the

sampled values. We optimize parameters within a VMC
trial wave function such that the variance of the local
energy ĤΨT (R,P)

ΨT (R,P) is minimized.

We constructed compact Slater-Jastrow type trial wave
functions, which are antisymmetrized products of single-
particle orbitals and non-negative Jastrow correlation
factors29,30

Ψ(R) = eJ(R,X;P )D↑(r1↓ , ..., rN↓)D↓(r1↑ , ..., rN↑) (3)

where R = (r1, r2, ..., rN ) are the spatial coordinates of
electrons, Rα = (rα1, rα2, ..., rαM ) are the spatial coor-
dinates of ions, and P = (p1, p2, ..., pi) are the Jastrow
coefficients that must be optimized. We generate the or-
bitals in the Slater determinants with density functional
theory31–33. Correlation between electrons is included
via the Jastrow factor J , which is a two body term,

J(R,X;P ) =
∑
i,j

f(ri − rj ;P ) +
∑
i,α

g(ri − rα;P ). (4)

Here f and g refer to electron-electron and electron-ion
interactions, respectively. The Jastrow factor introduces
local correlations between electrons that reduce the like-
lihood they get close to one another and affects the dis-
tances of electrons with same spin.

Althrough VMC is easy to implement and computa-
tionally efficient, VMC with a single Slater-Jastrow wave
function ansatz is not accurate enough. As a result,
we use the VMC method as precursor to FN-RMC as
a means of optimizing trial wave functions for later use
in more accurate FN-RMC calculations.

B. Fixed Node Reptation Monte Carlo

In the diffusion Monte Carlo method, operators that
do not commute with Hamiltonian suffer from the mixed
estimator error, which is linear in the trial wave function
error,

〈Â〉 =
〈Ψ0|Â|Ψ0〉
〈Ψ0|Ψ0〉

=
〈ΨT |Â|Ψ0〉
〈ΨT |Ψ0〉

+O(|ΨT −Ψ0|). (5)

A combination of mixed and variational estimators,
termed the extrapolated error, reduces the error to sec-
ond order,

〈Â〉 = 2
〈ΨT |Â|Ψ0〉
〈ΨT |Ψ0〉

− 〈ΨT |Â|ΨT 〉
〈ΨT |ΨT 〉

+O(|ΨT −Ψ0|2)

= 2〈A〉DMC − 〈A〉VMC +O(|ΨT −Ψ0|2). (6)

The reptation quantum Monte Carlo (RMC)34,35

method is a stochastic projection approach that deter-
mines the ground state by repeatedly applying the pro-
jection operator to a trial wave function. Compared to
DMC, RMC results are free from mixed estimator error
and population control bias. The expectation value of a
local observable Â is calculated as

lim
τ→∞

〈ΨT |e−
τĤ
2 Âe−

τĤ
2 |ΨT 〉

〈ΨT |e−τĤ |ΨT 〉

=
〈Ψ0|Â|Ψ0〉
〈Ψ0|Ψ0〉

, (7)

The absence of mixed estimator error ensures that re-
sults are accurate even for order parameters that do not
commute with the Hamiltonian. However, RMC suffers
from the fermion sign problem. We address this by us-
ing the fixed-node approximation36,37, which fixes the
nodal surfaces of a wave function during the projection
process38. In fixed-node QMC, the accuracy of a calcu-
lation depends on the nodal surfaces of the trial wave
function and gives an upper bound to the ground state
energy. Since the Jastrow term is positive, the accuracy
of our FN-QMC calculations is determined by the nodal
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surface of the associated Slater determinant. In this pa-
per, we will vary the Slater determinant to minimize the
total fixed node energy.

C. Order parameters

Several order parameters are investigated to identify
the MIT transition point and transition order.

TABLE I. Order parameters of the unpolarized UNP to Néel
transition

Order parameters Definition
Local compressibility 〈(ni − 〈ni〉)2〉
Double occupancy 〈ni↑ni↓〉
Staggered moment 〈(Si − Sj)

2〉
Spin spin correlation Cs(Lmax) = 1

NN~τmax

∑
R,~τmax

〈SR · SR+~τmax〉

Spin Structure factor SAF = 1
N
〈[
∑
r

(Sr,A − Sr,B)]2〉

Here ni = ni↑ + ni↓ is the electron density on i-th site. Si =
ni↑ − ni↓ is the spin density on the i-th site. In Sr,A and
Sr,B , r refers to the r-th unit cell, A and B indicate different
sublattices.

Compressibility: Compressibility measures the aver-
aged local spin fluctuation on each site. It is defined as

〈(ni − 〈ni〉)2〉 = 〈(ni↑ + ni↓ − 〈ni↑ + ni↓〉)2〉, (8)

where, ni , ni↑ and ni↓ are the number of total electrons,
the number of spin-up electrons, and the number of spin-
down electrons on the i-th site respectively. Electrons in
the unpolarized UNP state have more freedom than those
in the Néel state, producing a larger local compressibility
for the unpolarized state.

Double occupancy: Double occupancy evaluates the
probability of two opposite spins occupying one site,

D = 〈ni↑ni↓〉. (9)

We expect the double occupancy decrease with the trans-
formation from spin unpolarized to Néel state.

Staggered moment: The staggered moment is the
averaged spin difference between nearest neighbors,

〈(Si − Sj)2〉 = 〈((ni↑ − ni↓)− (nj↑ − nj↓))2〉, (10)

where i and j indicate nearest neighbors. Because spins
are uniformly distributed in the unpolarized state and
symmetry-broken in the Néel state, we expect the stag-
gered moment to increase with the lattice constant.

Spin-spin correlation at maximum distance:
The spin-spin correlation examines the long range cor-

relation between two symmetry-equivalent sites. The
spin-spin correlation order parameter is defined as

Cs(Lmax) =
1

NN~τmax

∑
R,~τmax

〈SR · SR+~τmax〉, (11)
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FIG. 1. Energy vs. 1/number of atoms. The lattice constant
is fixed as a = 2.95Å and state is Néel. Energy starts to
converge linearly at lattice cell size 4x4 (32 atoms).

where SR is the spin operator at site R, and ~τmax is a
vector that connects two symmetry-equivalent sites with
maximum distance in the finite cell. N~τmax is the number
of ~τmax vectors.
Spin structure factor: The spin structure factor

also evaluates long range interactions,

SAF =
1

N
〈[
∑
r

(Sr,A − Sr,B)]2〉. (12)

Here Sr,A and Sr,B are spin operators on the A and B
sublattices of unit cell r.

III. CALCULATION SETUP

Our calculation was done in three steps. First, we gen-
erated Slater determinants with density functional the-
ory. We then multiplied a Jastrow factor to each Slater
determinant and optimized the resulting trial wave func-
tions using the VMC method. Finally, we used these op-
timized trial wave functions to perform reptation Monte
Carlo energy calculations. To reduce the fixed-node er-
ror, we generate multiple Slater determinants by varying
spin states and exchange correlation functionals. Den-
sity functional theory(DFT) calculations were carried
out with the CRYSTAL software suite39,40. QMC cal-
culations were performed with the open source package
QWalk41, using a constant time-step of 0.02 Hartree−1

throughout the RMC projection procedure. We checked
smaller timesteps with no change in results. We sampled
lattice constants between 2.4 Å and 3.3 Å, with a step
size of 0.05 Å.

To control the finite size error, we varied the system cell
size (2x2, 4x4, 6x6 and 8x8). Fig.1 shows the influence
of finite size error. Starting from unit cell containing 32
atoms (cell size 4x4), energy increases linearly with the
number of atoms. The finite size error for a unit cell with
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FIG. 2. DFT energy vs. lattice constant. Here the vertical
axis is the energy difference between Néel state and spin un-
polarized state. Lines correspond to different hybridization.
The inset plot shows the symmetry breaking point (where
the AFM functional produces the Néel state) as a function of
hybridization.

128 atoms (8x8) has errors in the energy of approximately
1 meV/atom. Therefore, a unit cell with 128 atoms (8x8)
is large enough to reflect the properties of this system.
In the following section, we report the results for an 8x8
unit cell containing 128 atoms.

IV. RESULTS AND DISCUSSION

A. Trial wave functions from density functional
theory

B. RMC results as a function of the trial wave
function.

For small lattice constants, the system is well approx-
imated by a noninteracting model, in which there is no
formation of spin moments on the hydrogen atoms. Thus
one would expect a high quality trial function to be a sin-
gle Slater determinant with no spin polarization, which
we generate using the restricted Kohn-Sham technique.
We will label this trial wave function UNP, for unpo-
larized. On the other hand, for large lattice constants
the system becomes an antiferromagnetic Mott insulator
with Néel order. An appropriate trial wave function for
this state is the spin-polarized Néel state, in which the
spin symmetry is broken and the up/down determinants
are inequivalent. We term this trial wave function the
Néel state.

Depending on the density functional used, the Néel
state may not be stable relative to the UNP state. In or-
der to obtain both types of trial function, we used hybrid
functionals PBEx

42,43, where the functional is given by:

Exc = (1− p)EPBEx + pEHFx + EPBEc . (13)
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FIG. 3. Shifted FN-RMC energy vs. lattice constant. Y axis
is the shifted energy w.r.t to the averaged value corresponds
to the specific lattice constant. Blue dots correspond to spin
unpolarized states wave functions, green dots correspond to
Néel states. For clarity, we have drawn regions around trial
functions of the same spin state.

Here, EHFx refers to the Hartree-Fock exchange, while
EPBEx and EPBEc are the exchange and correlation parts
of the PBE functional. The addition of Hartree-Fock
exchange to the functional increases the favorability of
the Néel state over the unpolarized state. The results
of these calculations are shown in Fig 2. From a mean-
field perspective, one would identify the paramagnetic-
antiferromagnetic transition at the point that the Néel
state becomes lower in energy. This transition point is
very sensitive to the percentage of Hartree-Fock exchange
in the density functional, varying by 0.6 Å over a reason-
able range of values.

C. Differences between the order parameters of
the trial function and the FN-RMC result

For each value of the lattice constant, we thus have gen-
erated a set of Slater determinants that either have spin
moments (Néel) or are paramagnetic (UNP). Fig 3 shows
the RMC energy vs. lattice constant for all of these trial
functions. The RMC energies vary by few meV/atom
depending on the orbitals. We mark the lowest energy
state of a given type (UNP or Néel) by a line on the
graph. We attempted to use superpositions of UNP and
Néel states as trial functions, but found no improvement
in the energy.

Näıively, one might think to determine the
paramagnetic-antiferromagnetic transition at the
point where the fixed node energy of the minimum of
each of the two different trial functions crosses; in this
case at around 2.8 Å. However, there are two issues
with this approach. First, the properties of the fixed
node wave function are not guaranteed to be the same
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FIG. 4. Order parameters computed with a PBE trial function. Green, blue and red colors represent the results calculated
with VMC, DMC and RMC respectively. Grey dots are extrapolated values with Equation 6. All statistical uncertainties are
much smaller than the symbols.

as the trial function. We have noted several cases, for
example VO2 and FeSe25,26, where a trial function from
an insulating mean-field solution results in a zero gap
in fixed node diffusion Monte Carlo. Second, there
is substantial variation of the fixed node energy even
within the same class of trial function, which leads to
uncertainty in the transition point.

To investigate the effect of the projection on the wave
function, we evaluated VMC, DMC, and RMC calcula-
tions using a trial function made up of orbitals from the
PBE functional and no hybrid mixing. The code was
allowed to break symmetry to form a Néel state, which
happens at around 3 Å, as can be seen in Fig 2. There are
immediately several things that are interesting to note
about these curves presented in Fig 4. First is that the
local compressibility is decreased for all lattice constants
as we move from a Slater determinant to a correlated
wave function. This is due to a decrease in double oc-
cupancy through short-range correlations. Concurrently
with this change, the staggered moment increases, since
opposite spin electrons spend more of their time on sep-
arate sites, even in the metallic phase. The long-range
order parameters, spin-spin correlation, and spin struc-
ture factor, also increase.

At the transition, the Slater determinant has a sharp
change in all order parameters. As the treatment of cor-
relation improves, the transition becomes more smooth,
to the point that it is very difficult to resolve in the local
compressibility. Given that the orbitals from PBE are
not optimal, we can see that the transition point identi-
fied using this trial function would be somewhat larger
than the optimized wave function presented later in Sec-
tion IV D, but also somewhat smaller than PBE itself.
It thus appears that the projection does correct the trial
function in the correct direction, but the fixed node error
is large enough to prevent a full relaxation.

D. Order parameters

Our partial solution to the dependence of the results
on the trial function is to compute the energy as a func-
tion of order parameters of the correlated wave function.
The investigated order parameters are listed in Table.[I]
and summarized in this section. The heatmaps in Fig 5
shows the calculated order parameters as a function of
lattice spacing. We use blue (red) to denote the lower
(higher) energy regions. We fit the energy as a function
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TABLE II. Correlation coefficients between order parameters

Staggered moment Spin structure factor Spin-spin correlation Double occupancy
Local compressibility -0.98781498 -0.97847496 -0.97817482 0.99875347
Staggered moment 0.99791757 0.99789502 -0.99360847
Spin structure factor 0.99985429 -0.98578002
Spin-spin correlation -0.98553147

of the order parameter and minimize the energy func-
tion to estimate the ground state order parameters. The
curve overlaying the heatmap depicts the fitted ground
state order parameter.

The local compressibility (Fig 5(d)) and double oc-
cupancy (Fig 5(e)) curves are smooth, which indicates
a continuous transition. Obvious kinks show up simul-
taneously around a ≈ 2.75 Å in the plots of staggered
moment (Fig 5(a)), spin-spin correlation (Fig 5(b)) and
spin structure factor (Fig 5(c)). This observation reveals
a paramagnetic-antiferromagnetic transition at a criti-
cal point around a = 2.75 Å. From Fig 2, the tran-
sition point identified by DFT calculations varies with
the change of exchange correlation functional, so it is
difficult to accurately estimate the transition point; our
QMC results provide a benchmark for the methods like
DFT; it appears that in this case a hybrid of around 20-
30% obtains a transition similar to the QMC result. As
can be seen from Fig 5(c), the RMC calculation can miss
the transition if sufficiently poor trial wave functions are

used. We found wave functions that are high in fixed
node energy, but have very small spin structure factors.

Fig 5 can give some hints as to the nature of the
metal insulator transition. First, the order parameters of
the minimum energy wave functions change continuously
as we pass through the transition, with no discernible
jumps. To the limits of our statistical resolution, the en-
ergy also appears to have no first order kinks. The com-
puted transition thus appears to be second order given
our data. This is in agreement with the results of Assad
and Herbet44 and Sorella16 who find similar second order
transitions in a model systems.

To check for intervening phases, we also evaluated
the correlation coefficients between different order pa-
rameters, with the result shown in Table.[II]. We find
that these order parameters are almost perfectly corre-
lated/linearly dependent, so it appears that our sampling
essentially spans only a one dimensional path through
Hilbert space. We never saw a tendency for the RMC
process to move outside this path between metal and an-
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FIG. 6. Finite size effects on the order parameters as a function of lattice constant.

tiferromagnetic insulator, which might have happened if
there are other phases. While it is possible that there
are other intervening phases, this could only happen if
the the fixed node error were large enough to prevent the
RMC process from accessing them.

Since finite size effects can be large near phase tran-
sitions, we estimated them by considering smaller unit
cells: 4×4 and 6×6, presented in Fig 6. The clearest
order parameter are the spin-spin structure factor and
spin-spin correlation, which approach zero for small a as
the size increases. These are indicators of long-range or-
der, as opposed to the local compressibility and staggered
moment. The values are continuous due to the second-
order nature of the transition.

V. CONCLUSION

We have used fixed node reptation Monte Carlo to
study a correlated metal-insulator transition on the hon-
eycomb lattice with 1/r interactions. The fixed node er-
ror in this material is on the order of 10 meV/atom, but
can affect the computed properties of the fixed node wave

function significantly. We addressed this by considering
an ensemble of wave functions to map out the low-energy
Hilbert space as a function of the order parameters. This
enabled a clear identification of the metal insulator tran-
sition point, which seems to be a continuous transition or
a crossover. We have provided our data45 which can be
used as a high quality benchmark for density functional
theory development; not just for the energy but also the
properties of the wave function.
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X. Moya, L. Mañosa, A. Planes, E. Suard, and B. Oulad-
diaf, Physical Review B 75, 104414 (2007).

10 M. Potthoff, A. Avella, and F. Mancini, “Strongly corre-
lated systems: Theoretical methods,” (2012).

11 A. J. Cohen, P. Mori-Sánchez, and W. Yang, Chemical
Reviews 112, 289 (2011).

12 A. Liechtenstein, V. Anisimov, and J. Zaanen, Physical
Review B 52, R5467 (1995).

13 Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and
G. Saito, Physical review letters 91, 107001 (2003).

14 P. Chandra and B. Doucot, Physical Review B 38, 9335
(1988).

15 V. Kalmeyer and R. Laughlin, Physical Review B 39,
11879 (1989).

16 S. Sorella, Y. Otsuka, and S. Yunoki, Scientific reports 2,
992 (2012).

17 M. Hohenadler, F. Parisen Toldin, I. F. Herbut, and F. F.
Assaad, Phys. Rev. B 90, 085146 (2014).

18 V. I. Anisimov, F. Aryasetiawan, and A. Lichtenstein,
Journal of Physics: Condensed Matter 9, 767 (1997).

19 V. I. Anisimov, J. Zaanen, and O. K. Andersen, Physical
Review B 44, 943 (1991).

20 V. Anisimov, A. Poteryaev, M. Korotin, A. Anokhin, and
G. Kotliar, Journal of Physics: Condensed Matter 9, 7359
(1997).

21 V. Anisimov, D. Kondakov, A. Kozhevnikov, I. Nekrasov,
Z. Pchelkina, J. Allen, S.-K. Mo, H.-D. Kim, P. Metcalf,
S. Suga, et al., Physical Review B 71, 125119 (2005).

22 B. Himmetoglu, A. Floris, S. Gironcoli, and M. Cococ-
cioni, International Journal of Quantum Chemistry 114,
14 (2014).

23 K. Held, I. Nekrasov, G. Keller, V. Eyert, N. Blümer,
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