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We present an electrostatic theory of band gap renormalization in atomically-thin semiconductors that cap-
tures the strong sensitivity to the surrounding dielectric environment. In particular, our theory aims to correct
known band gaps, such as that of the three-dimensional bulk crystal. Combining our quasiparticle band gaps
with an effective mass theory of excitons yields environmentally-sensitive optical gaps as would be observed in
absorption or photoluminescence. For an isolated monolayer of MoS2, the presented theory is in good agreement
with ab initio results based on the GW approximation and the Bethe-Salpeter equation. We find that changes in
the electronic band gap are almost exactly offset by changes in the exciton binding energy, such that the energy
of the first optical transition is nearly independent of the electrostatic environment, rationalizing experimental
observations.

Introduction. Atomically-thin materials exhibit remarkable
electronic properties due to their quasi-two-dimensional na-
ture.1–4 However, their size also makes them extremely sensi-
tive to their local environment. A complete theoretical picture
must simultaneously treat the two-dimensional nature of car-
riers and the dielectric character of the surroundings. This
latter property is the primary distinction between atomically-
thin materials (such as the transition metal dichalcogenides)
and heterostructured semiconductor quantum wells (such as
GaAs in AlGaAs).

To date, many theoretical studies of atomically-thin mate-
rials have focused on the excitonic properties, including the
large exciton binding energy,5–7 the unique excitonic Rydberg
series,8,9 the nature of selection rules,10–12 and Berry phase
modifications of the exciton spectrum.13,14 Surprisingly, the
quasiparticle band gap has received significantly less atten-
tion, especially from simplified microscopic theories, perhaps
because it is challenging to measure experimentally. In fact,
simple theories of the exciton binding energy are often times
used in conjunction with the experimentally measured optical
gap in order to estimate the quasiparticle band gap.8,15

The GW approximation represents the current method-of-
choice for the accurate calculation of band structures and band
gaps.16,17 However, the quasi-two-dimensional nature of the
atomically-thin materials makes these calculations very chal-
lenging to converge.18–20 In this work, we provide a simple
electrostatic theory of band gap renormalization due to elec-
trostatic proximity effects. Through combination with an ef-
fective mass theory of the exciton binding energy, we find that
the optical gap – i.e. the sum of the band gap and the (nega-
tive) exciton binding energy – is extremely insensitive to the
dielectric environment. To the best of our knowledge, this
represents the first quasi-analytical demonstration of this re-
markable effect.

The band gap of nanoscale materials differs from that of the
three-dimensional bulk parent material because of two sepa-
rate effects: carrier confinement and dielectric contrast. In
the first case, the geometric confinement of carriers leads to
an increased kinetic energy and a concomitantly larger band
gap. However, in layered materials (such as the TMDCs), the
two-dimensional confinement is already largely reflected in
the bulk band gap, as evidenced by the small bandwidth in

the perpendicular (stacking) direction. Therefore, in the fol-
lowing, we employ this idealized scenario of carriers confined
to two dimensions, even when describing the bulk material.
In particular, this approximation is invoked to describe low-
energy carriers at the K-points of the Brillouin zone; here, the
wavefunction character is primarily that of transition-metal d-
orbitals, which are confined to the center of the TMDC layer,
precluding strong interlayer hybridization. In Fig. 1, we show
the bandstructure of bulk and monolayer MoS2 calculated us-
ing density functional theory21. The monolayer band gap at
the K-point is only 0.09 eV larger than that of the bulk, indi-
cating that any band gap renormalization due to carrier con-
finement is already (largely) accounted for in the bulk band
gap; we henceforth neglect this small shift so as to focus
on alternative effects while treating the monolayer and bulk
on equal footing. We emphasize that this geometric carrier
confinement is a one-electron (kinetic energy) effect that is
well-described by density functional theory – unlike dielec-
tric screening effects.

As mentioned above, a second source of band gap renor-
malization in nanomaterials is the dielectric contrast effect.
Physically, we recall that the quasiparticle conduction and va-
lence bands measure the electron affinities and ionization po-
tentials, respectively. The excess charge created in these pro-
cesses polarizes the material and its environment such that the
potential energy of the charge depends on the local dielectric
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FIG. 1. Band structure of bulk and monolayer MoS2 calculated with density
functional theory. The direct band gap (at the K-point) is 0.09 eV larger for
the monolayer than for the bulk, due to the carrier confinement effect.
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geometry. We model atomically-thin semiconductors as a slab
of dielectric constant ε1 and width d, surrounded by environ-
mental dielectric constants ε2 below and ε3 above, as shown
in Fig. 2. Consistent with the arguments presented above, the
carriers will be assumed to occupy the center of the slab, at
z = 0.

We now proceed to calculate the band structure corrections
due to such a heterogeneous dielectric environment. We as-
sume that a reference many-body band gap is known; here,
we will primarily consider band structure corrections to the
three-dimensional bulk material. The three-dimensional bulk
band gap is the simplest reference value, because it can eas-
ily be obtained from calculation or experiment, owing to the
relatively strong screening and small exciton binding energy
of three-dimensional bulk semiconductors. While our theory
could also be applied to correct the band gap of an isolated
monolayer due to changes in its dielectric environment, we
emphasize that the latter reference band gap is much harder to
calculate or extract from experiment.

Corrections to the three-dimensional bulk band gap will
be calculated in two ways: (1) classically, using electro-
static continuum theory; and (2) quantum mechanically, using
the static Coulomb-hole plus screened exchange (COHSEX)
approximation to the quantum mechanical GW self-energy.
When correcting a reference band structure, we require the
difference in the screened Coulomb interaction, δW(r, r′) ≡
W(r, r′)−W ref(r, r′), where W is the total screened Coulomb
interaction. We calculate the respective screened interactions
through their electrostatic counterparts associated with the
slab dielectric geometry shown in Fig. 2. While this is a
classical approximation, which neglects local field effects, it
avoids the high cost of an ab initio calculation of the screened
Coulomb interaction.

In recent years, effective mass theories of atomically-thin
materials have made frequent use of the model potential en-
ergy derived by Rytova22 and Keldysh23 (RK),

WRK(ρ) =
πe2

(ε2 + ε3)ρ0

[
H0

(
ρ

ρ0

)
− Y0

(
ρ

ρ0

)]
(1)

where H0 and Y0 are the Struve function and the Bessel func-
tion of the second kind and ρ is the two-dimensional in-plane
separation. The screening length is given by ρ0 = ε1d/(ε2+ε3)
and can be related to a two-dimensional sheet polarizabil-
ity.5,24 For the purposes of the present manuscript, the RK
potential suffers from two deficiencies. First, it applies only
in the limit of extreme dielectric mismatch between the slab
and its surroundings; while this approximation is good for iso-
lated (suspended) monolayers, it breaks down in more general
dielectric environments. Second, the RK potential has an un-
physical logarithmic divergence at ρ = 0, which precludes
its use in simple electrostatic theories of band gap renormal-
ization. Instead, we employ the exact solution of the finite-
thickness electrostatic problem shown in Fig. 2. We empha-
size that the logarithmic behavior of the RK potential is cor-
rect over some intermediate length scale and only incorrect
for ρ . d.

The potential energy of two charges in a slab with loca-
tions z1, z2, and in-plane separation ρ can be calculated via
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FIG. 2. Idealized dielectric slab geometry used to model the electrostatics of
atomically-thin semiconductors.

image charges to give a screened interaction W(z1, z2, ρ).25 In
the center of the slab (z1 = z2 = 0), we find

W(ρ) =
e2

ε1ρ
+ 2

∞∑
n=1

e2Ln
12Ln

13

ε1
{
ρ2 + (2nd)2}1/2

+ (L12 + L13)
∞∑

n=0

e2Ln
12Ln

13

ε1
{
ρ2 + [(2n + 1)d]2}1/2

(2)

where L1n = (ε1 − εn)/(ε1 + εn). Unlike the RK potential,
this continuum electrostatic potential is correct in the uni-
form case ε1 = ε2 = ε3 and has the proper divergence as
ρ → 0. Atomistically, the dielectric function should go to
unity at q → ∞ (i.e. on sub-atomic length scales). Instead
of the coarse-grained electrostatic theories employed here, all
of our calculations could easily be performed with an ab ini-
tio screened Coulomb interaction, as could be efficiently ob-
tained using the recently introduced quantum electrostatic het-
erostructure technique.26,27

Electrostatic solution. In the simplest electrostatic (Born)
approximation, the conduction and valence band corrections
in the center of the slab are given by the self-interaction en-
ergy25,28

δΣc/v = ±1
2

lim
ρ→0

δW(ρ), (3)

which is non-divergent due to the use of an interaction differ-
ence, δW, as long as the slab dielectric ε1 is identical in both
W and W ref . When the reference potential energy is that of
a uniform, bulk dielectric, i.e. W ref(r, r′) = e2/(ε1|r − r′|),
then the electrostatic corrections using Eqs. (2) and (3) can be
summed analytically to give the relatively simple expression

δΣc/v = ± e2

2ε1d

{
(L12 + L13)√

L12L13
tanh−1

( √
L12L13

)
− log(1 − L12L13)

}
,

(4)

where we used log(1 − x) = −∑∞
n=1 xn/n and tanh−1(x) =∑∞

n=0 x2n+1/(2n + 1).
Tight-binding COHSEX. First-principles band structure cal-

culations typically employ the GW approximation to the self-
energy. In the static screening limit, this approximation yields
two contributions to the self-energy: a Coulomb-hole (COH)
term and a screened exchange (SEX) term.16 By assuming that
an initial, many-body reference band structure is known, we
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can calculate corrections in alternative electrostatic environ-
ments as diagonal elements of the self-energy operator, which
leads to

δΣCOH
p (k) =

1
2

lim
ρ→0

δW(ρ), (5a)

δΣSEX
p (k) = − 1

Nk

∫
d2x1

∫
d2x2φ

∗
p,k(x1)ρ(x1,x2)

× δW(ρ)φp,k(x2),
(5b)

where x = (ρ, τ) is the combined space and spin variable,
ρ(x1,x2) is the reduced density matrix of the mean-field ref-
erence, Nk is the number of k-points sampled in the Bril-
louin zone, and p = (c, v) indexes the conduction or valence
band. In the simplest approximation, we consider the two-
band tight-binding Hamiltonian29

H(k) =

(
Eg/2 at(kx + iky)

at(kx − iky) −Eg/2

)
(6)

with eigenvectors 〈x|pk〉 = φpk(x) and eigenvalues Ec/v(k) =

± 1
2

√
E2

g + (2atk)2. In this Hamiltonian, Eg is the band gap, a
is the lattice constant, and t is the interatomic transfer inte-
gral. A single (doubly-occupied) valence band leads to the
simple density matrix ρ(x1,x2) =

∑
q φvq(x1)φ∗vq(x2). Fur-

ther simplifications concerning the locality of the underlying
real-space basis functions leads to the SEX self-energy

δΣSEX
p (k) = − 1

Nk

∑
q

|〈pk|vq〉|2
∑′

G

δW(G + q − k), (7)

where

δW(k) =
1

ABZ

∫
d2ρ eiρ·kδW(ρ), (8)

ABZ is the area of the Brillouin zone, and the primed summa-
tion in Eq. (7) excludes the term with G = 0 when k = q.
Summarizing, the COH term yields a positive, constant shift
to both the conduction and valence band, which is exactly
equal to the (positive) correction obtained in the pure elec-
trostatic theory presented above; the SEX term yields a nega-
tive, k-dependent shift with a magnitude that depends on over-
lap factors between the valence band and the band being cor-
rected. To a reasonable approximation (verified numerically
below), the SEX contribution is negligible in the conduction
band (due to vanishing overlaps) but is substantial in the va-
lence band. Further, if the squared overlap is approximated
by unity, i.e. |〈vk|vq〉|2 ≈ 1, then the magnitude of the SEX
correction in the valence band is exactly twice that of the
COH term. As shown in Ref. 30 for the case of molecules
near metal surfaces, we therefore have simple, approximate
COHSEX corrections given by δΣc ≈ +P − 0 = +P and
δΣv ≈ +P − 2P = −P, where P = 1

2 limρ→0 δW(ρ) is pre-
cisely the electrostatically-derived correction. In reality, the
squared overlap can be less than one, and the SEX correction
to the valence band (and thus the band gap) will be slightly
smaller than that of the continuum electrostatic theory.

Effective-mass theory of excitons. The optical gap, as mea-
sured in linear spectroscopies such as absorption or photolu-
minescence, is the sum of the quasiparticle band gap and the
(negative) exciton binding energy. At a similar level of theory
to that used so far, the exciton states can be calculated using
an effective mass theory,[

− 1
2µ
∇2
ρ −W(ρ)

]
Ψn(ρ) = EnΨn(ρ), (9)

where ρ is the electron-hole separation, Ψn is the exciton
wavefunction, and En is its binding energy. The mate-
rial parameters enter through the exciton reduced mass µ =

memh/(me + mh) and the same screened Coulomb interaction
W as used above. Due to the angular symmetry, the effective
mass equation is a simple one-dimensional Schrödinger equa-
tion in the radial direction, which may be solved numerically
exactly on a real-space grid to obtain the full Rydberg series
of band-edge excitons. The exciton wavefunctions and bind-
ing energies are sensitive to the local dielectric environment,
where higher dielectric constants result in stronger screening,
more diffuse wavefunctions, and smaller binding energies.

Results. While our theory is appropriate for any atomically-
thin semiconductor, we will apply it to the well-studied case of
MoS2, a prototypical layered transition-metal dichalcogenide.
As is common for quantum-confined materials, we correct the
bulk band gap using a uniform reference Coulomb potential
with ε1 = ε2 = ε3, i.e. W ref(r, r′) = e2/(ε1|r − r′|)31; for
MoS2, we use ε1 = 14, which is approximately the value
of the in-plane element of the bulk dielectric tensor, calcu-
lated using various first-principles techniques including den-
sity functional theory and the GW approximation.5 For the
monolayer, we solve the electrostatic problem in Fig. 2 with
ε1 = 14 and d = 6 Å, which roughly corresponds to the
perpendicular extent of monolayer MoS2; these parameters
yield the ideal screening length ρ0 = 42 Å in good agree-
ment with the ab initio value of 41.5 Å.5 We take the refer-
ence A-series band gap of bulk MoS2 to be Ebulk

g = 1.98 eV32

and for the tight-binding Hamiltonian in Eq. (6), we use
at = 3.51 eV·Å.29 For the exciton problem in Eq. (9), we
use the effective mass µ = 0.25 m0, as parameterized by DFT
calculations.5

First, we consider the experimentally-relevant situation of a
monolayer on a substrate with dielectric constant ε2 and vac-
uum above (ε3 = 1). In Fig. 3(a), we show the band gap
calculated using the tight-binding COHSEX approximation,
as a function of the substrate dielectric constant. The purely
electrostatic approximation in Eq. (4) is not shown, but gives
nearly identical results, predicting band gaps that are slightly
larger (about 0.05 eV), which can be understood based on
arguments presented above. Remarkably, the simple theory
presented here – parameterized only on bulk data and an es-
timate of the monolayer width – predicts an isolated mono-
layer (ε2 = 1) band gap of 2.62 eV (a 0.64 eV increase from
bulk); this compares very favorably to a recent, carefully-
converged ab initio calculation using the many-body G0W0
approximation, which predicts 2.67 eV.20 This huge increase
in the quasiparticle band gap reflects the strong role played by
reduced dielectric screening in atomically-thin materials.
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At larger values of ε2, the increased screening ability of the
substrate yields a rapid decrease in the band gap, demonstrat-
ing the strong sensitivity of atomically-thin materials to their
local environment. Even a modest substrate like silica, with a
dielectric constant of ε2 ≈ 4, is predicted to have a band gap
of 2.35 eV, which is 0.27 eV smaller than an ideal, suspended
monolayer. On graphite, with ε2 ≈ 10, the band gap is re-
duced by 0.45 eV. Similar results have been obtained with an
approximate treatment of substrate screening in otherwise ab
initio G0W0 calculations.33,34 These findings underscore the
care required when comparing experimental measurements on
substrates to ab initio calculations of isolated atomically-thin
materials. In reverse, the simple formula given in Eq. (4) can
be used to infer the ideal, suspended band gap based on mea-
surements performed on substrates.

In Fig. 3(a), we also show the optical gap for the 1s and
2s exciton states, obtained by summing the quasiparticle band
gap and the exciton binding energies of each state, as a func-
tion of the substrate dielectric constant. For the isolated mono-
layer, we predict optical gaps of 2.03 eV and 2.35 eV (posi-
tive binding energies of 0.59 eV and 0.27 eV) for the 1s and
2s states, respectively. Again, these compare well with con-
verged ab initio calculations using the Bethe-Salpeter equa-
tion, which predict optical gaps of 2.04 eV and 2.32 eV (bind-
ing energies of 0.63 eV and 0.35 eV).20

As the dielectric constant of the substrate increases, the ex-
citon binding energies are reduced due to increased environ-
mental screening. Remarkably, the competing effects in the
band gap and 1s binding energy almost exactly cancel. Up to
a substrate dielectric constant of ε2 = 20, the 1s optical tran-
sition energy only changes by 0.1 eV. In the aforementioned
examples of silica and graphite substrates, the exciton binding
energy is reduced by 0.24 eV and 0.49 eV, respectively. Not
only is the optical transition energy roughly constant, but the
cancellation is almost perfect such that the monolayer tran-
sition energy is nearly identical to the bulk transition energy
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FIG. 3. Quasiparticle band gap and optical gap (i.e. excitonic transition en-
ergy) of monolayer MoS2 as a function of (a) the substrate dielectric constant
with vacuum above (ε3 = 1), and (b) the encapsulating dielectric constant
(ε2 = ε3). The bulk band gap, which is a fixed parameter in the theory, is
indicated by a dotted grey line. Filled circles at ε2 = 1 indicate the ab initio
G0W0 result (black circle) and the Bethe-Salpeter equation results (red and
blue circles) for an isolated monolayer, from Ref. 20.

(the bulk band gap and optical gap roughly coincide, because
the exciton binding energy is only about 0.04 eV32).

In addition to the well-known observation that the optical
gap of bulk TMDCs is almost identical to that of monolay-
ers, the effects predicted by the theory are in good agree-
ment with a number of other more detailed experimental find-
ings, such as the insensitivity of the optical gap in TMDCs
when comparing suspended samples and samples on fused
silica substrates.35 Identical effects in the band gap, optical
gap, and exciton binding energy have been observed in a
joint experimental-computational study of MoSe2 on bilayer
graphene and graphite: the latter exhibits a 0.24 eV reduction
in the band gap and a concomitant 0.28 eV reduction in the
exciton binding energy, leading to a minimal change in the
optical gap.33 Similar competing effects have been observed
in the optical properties of doped or photoexcited TMDCs,36

although the screening physics is quite different.
The above analysis can be repeated for more general di-

electric environments; the results of uniform encapsulation
(ε2 = ε3) are shown in Fig. 3(b). While the qualitative be-
havior is the same, the effects are naturally stronger due to the
simultaneous screening from above and below the monolayer.

Finally, we mention that although we have focused on the
band gap, our theory separately predicts changes to the ioniza-
tion potential and electron affinity. The environmental renor-
malization of these quantities may be of interest for photo-
chemistry, catalysis, or device engineering.

Conclusions. In summary, we have presented a simple, but
powerful theory of environmentally-sensitive electronic and
optical transition energies in atomically-thin materials. While
the theory shows that the quasiparticle band gap and the ex-
citon binding energy are individually very sensitive to their
local dielectric environment, the sum of the two (the lowest-
energy optical transition) is almost completely insensitive. In
some sense, this is an unfortunate state of affairs for the use of
atomically-thin materials as environmental or chemical sen-
sors, because optical transitions are the simplest to measure
(by absorption or photoluminescence); by contrast, measur-
ing the band gap by photoemission or electron tunneling ex-
periments is much more difficult. Nonetheless, the theory pre-
sented here enables rapid and quantitative exploration of ac-
cessible energetic changes through dielectric engineering.

In light of our results, we propose that the higher-lying ex-
citonic resonances are promising optical reporters of the local
environment. Even the 2s resonance – which can typically be
resolved in experiments – is predicted to redshift by 0.1 eV
when a suspended sample is placed on a silica substrate. In-
deed, the 1s-2s separation was used recently as an experimen-
tal probe of environmental effects.15

Going forward, this approach can be used to study other
environmentally-sensitive, atomically-thin materials such as
black phosphorous.37 These techniques can also be applied to
more heterogeneous dielectric environments, as might be ex-
perimentally realized through patterning,15 molecular cover-
age,38,39 or functional layered heterostructures.40–42 In many
cases, explicit electronic hybridization and charge transfer
should be accounted for in the theory. Work along these lines
is currently in progress.
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