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The key feature of Weyl semimetals (WSM) is the presence of topologically protected Dirac cones
in a 3D material. We consider the effect of restricting geometry on the spectrum of excitations in
WSM using as a model a cylindrical WSM wire. For the full manifold of hard boundary conditions,
we derive the general form of the dispersion equation relating the energy of the excitations and
their momentum along the wire. We show that only the special class of boundary conditions,
corresponding to decoupled helicities or, equivalently, to pinned directions of the electron spin on
the surface, support massless excitations. For a general boundary condition, these excitations acquire
mass inversely proportional to the radius of the wire. This demonstrates that boundary phenomena
may play a crucial role in formation of excitations in WSM based structures.
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I. INTRODUCTION

Recent synthesis of Weyl semimetals (WSM)1–6 marks a significant achievement in a series of efforts invested in
finding solid state implementations of Weyl materials, whose unique properties were envisioned almost a century
ago7. The principal feature of the new emergent class of materials such as TaAs, NbAs is that they realize WSM in
stoichiometric single crystals rather than in a material with carefully crafted chemical composition as, for instance, in
Q− Bi1−xSbxTe3 with Q = La or Lu, where the WSM phase was expected for 0.39 < x < 0.42 and 0.41 < x < 0.46,
respectively8, or in a complex heterostructure as, for example, in HgTe/CdTe multilayers9. Owing to the relative
simplicity of the discovered materials, WSM started to leave the realm of the theoretical high-energy physics and to
attract significant attention from more “everyday” perspectives including possible applications of WSM in a new type
of electronics, weyltronics, based on unique features of WSM10,11. The property that sets WSM apart from other
Dirac materials is the separation of Dirac points corresponding to states with different helicities, which provides means
for dynamical distinction between such states. This property of WSM is a subject of an intensive of fundamental12–20

and more application oriented21–24 research.
At the same time, the main attention is paid to either infinite systems or to structures with simple flat surfaces

thus leaving open the question of the effect of restricting geometry. The general objective of the present paper is to
address this question by discussing main spectral features of excitations propagating in a WSM wire of finite radius.

One of the difficulties in describing finite WSM structures is to specify correctly the hard boundary conditions,
which ensure that the electrons remain inside the material. The problem of boundary conditions imposed on solutions
of the Dirac equation started to attract special attention in the context of states with reduced dimensionality (see
Ref. 25 and references therein) almost half-century ago but still is a subject of research26–28. One of the reasons
for such delayed development is a drastic difference between the dynamical origins of the hard boundary for the
canonical Schrodinger case, which essentially follows prescriptions of the classical mathematical physics, and for a
Dirac particle. In the non-relativistic case, the hard boundary is equivalent to the presence of a sufficiently high
potential barrier. Such barrier supports only attenuated solutions in the prohibited region, which eventually leads to
the simple requirement of vanishing Schrodinger wave function at the boundary. This approach, however, doesn’t work
for a Dirac equation due to the Klein tunneling29–32. Indeed, the scalar potential raises the level of the Dirac sea and,
as a result, a sufficiently high scalar potential barrier instead of blocking propagation opens new propagating channels.
Thus, a scalar potential cannot support the hard boundary and a more general class of matrix potentials33–35 must
be considered yielding a manifold of hard boundary conditions.

We show that despite the fact that confining surfaces may be described by various boundary conditions, it is possible
to outline general spectral features, which hold at almost all boundary conditions. One of such common features is
a series of bands of massive excitations existing at positive and negative energies. The existence of such bands may
appear a natural consequence of hard boundary conditions similarly to those in classical electrodynamic and quantum
Schrodinger systems. It is well known, however, that this picture does not hold of systems governed by the Dirac
equation, where, for instance, near hard boundaries may exist surface, or edge, states, which are impossible in the
canonical systems. We show that, in WSM wires with the finite radius, such additional states are in general massive
due to the boundary induced coupling between states with different helicities. The only class of boundary conditions
admitting massless excitations is the one corresponding to fully decoupled helicities and, as a consequence, prescribing
the definite orientation of the electron spin at the surface of the wire.

II. DISPERSION EQUATIONS OF GUIDED MODES

Within the model with two Weyl points, the dynamics of Weyl fermions is described by a Dirac equation with a
helicity dependent scalar and vector potentials accounting for separation of the Weyl points

i
(
γ0∂0 + vα · ∇

)
Ψ̃ = Û(r)Ψ̃, (1)

where we have introduced the full potential

Û(r) = eV (r) + γ5q0(r) + vγ ·
[
eA(r) + γ5q(r)

]
. (2)

Here, V (r) and A(r) are the scalar and vector potential, respectively, and q0(r) and q(r) are half-distances between
the Weyl points in the energy and in the momentum space.

We employ the fact that both physical potentials and the separations between the Weyl points are spatially uniform
inside the wire and thus vector potentials can be excluded with the help of a gauge transformation

Ψ̃(r) = exp
{
−ieA · r− iγ5q · r

}
Ψ(r). (3)
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FIG. 1. The variation of the spin in a state propagating in a WSM wire with the axis parallel to the z-axis along the radius
(the x-axis) in (a) extended and (b) surface modes. At the origin, the spin is parallel or anti-parallel to the z-axis for j = ±1/2.
The spin is confined to the (y, z)-plane for all x and experiences full revolutions (for sufficiently large r) for Q2

ξ > 0 and

hyperbolic-like rotation for Q2
ξ < 0.

Additionally, taking into account that spatially uniform physical potentials lead to simple shifts of the energy and

the momentum, we assume that V = 0 and A = 0. This turns (1) into an equation with Û = 0 and thus possessing
the cylindrical symmetry. Furthermore, we make use of the translational symmetry along the axis of the wire and
separate longitudinal and transversal variables. Thus, distinguishing sectors with opposite helicities

Ψ(r) =

(
ψ+

ψ−

)
, (4)

and choosing the z-axis along the axis of the wire, we obtain the equations of motion within each sector

(εξ + ξkξσz)ψξ(r⊥) = −iξσ⊥ · ∇⊥ψξ(r⊥), (5)

where εξ = ε − ξq0, kξ = k + ξqz, r⊥ is the radius-vector in the (x, y)-plane, σ⊥ · ∇⊥ = σx∂/∂x + σy∂/∂y, and we
have chosen units with v = 1.

Finally, the rotational symmetry yields the representation

ψξ(r⊥) =

∞∑
m=−∞

ei(m+1/2)φR̂z(φ)ψ
(j)
ξ (r), (6)

where R̂z(φ) = e−iσzφ/2 accounts for rotation of the spin while encircling the origin and j = m+1/2 is the z-projection
of the total angular momentum.

A general solution of the radial equation corresponding to projection j, up to a normalization factor, can be written
as

ψ
(j)
ξ (r) =

(
f

(1)
ξ Jj−1/2(Qξr)

if
(2)
ξ Jj+1/2(Qξr)

)
, (7)

where Jn are the Bessel functions of the first kind, Qξ =
√
ε2ξ − k2

ξ , and we have chosen f
(1,2)
ξ = ξkξ ∓ (ξQξ + εξ)

in the form emphasizing a symmetry between the components with positive and negative j. In the latter case, one
needs to use the relation J−|n| = (−1)nJ|n|.

Depending on whether Qξ is real (ε2ξ > k2
ξ) or imaginary (ε2ξ < k2

ξ), the state described by Eq. (7) either extends

over the whole cross-section of the wire or is localized near the boundary thus forming surface (edge) states. The
case Qξ = 0 corresponds to an algebraic variation with the distance to the axis of the wire and requires a special
consideration (see Appendix A). An important feature of the radial dependence of the spin state must be emphasized:
at the axis of the wire, the spin is oriented along or against the axis depending on the sign of the angular momentum
and, away from the axis of the wire, the spin lies in the plane normal to the radius (see Fig. 1).

Solutions (7) are subjects to boundary conditions. As has been discussed in Introduction, there is a manifold of
possible boundary conditions corresponding to fermions confined to the interior of the wire. Restrictions imposed
on this manifold translate into physical conditions, which, while may take place in particular systems, may be too
restrictive to be adopted on the general ground. For example, requiring decoupled character of states with opposite
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helicities implies rather special requirement for the spin of Weyl fermions to have definite orientation on the surface of
the wire. Indeed, absent radial current, 〈Ψ|α · nB |Ψ〉|r=rB = 0, means that within each helicity sector the spin should
be tangent to the surface of the wire and then, due to linearity, all states must have spin with the same orientation.

As we show in Appendix B, a general boundary condition imposed at the surface of the wire can be written as

M̂Ψ(rB) = Ψ(rB), (8)

with the matrix M̂ having in the rotated frame, M̃ = eiΣzφ/2M̂e−iΣzφ/2, the form

M̃ = M̂‖(v+,v−) cos Λ + M̂⊥(θ, χ) sin Λ, (9)

where Λ is the helicity mixing angle, unit vectors vξ lying in the (y, z)-plane describe the “pinned” spin states of
Weyl fermions with helicity ξ, and the matching angle θ quantifies the rotation around the x-axis aligning vectors vξ
so that v+ = −Rx(θ)v−.

Imposing condition (8) on a solution, one finds a dispersion equation D(ε, k) = 0 relating the energy and the
longitudinal momentum of the modes propagating along the wire with

D(ε, k) =
1

2

〈
ψ−
∣∣R−1

x (θ) (σ0 − v+ · σ cos(Λ))
∣∣ψ+

〉
, (10)

where
〈
ψ−
∣∣ is a state satisfying 〈

ψ−
∣∣−u〉 = −〈u|ψ−〉 (11)

for any unit vector u in the (y, z)-plane, so that for ψ− =
(
ψ

(1)
− , ψ

(2)
−

)T
one has

〈
ψ−
∣∣ = i

(
ψ

(2)
− ,−ψ(1)

−

)
.

In the limit Λ = 0, Eq. (10) yields the dispersion equation for decoupled helicities with the spin states re-
lated by v+ = −Rx(θ)v−, as discussed in Appendix B. In this case, the dispersion equation factorizes D(ε, k) =
D+(ε, k;v+)D−(ε, k;v−), where

D±(ε, k;v+) = 〈−v±|ψ±〉 . (12)

In the opposite limit of strong coupling, Λ = π/2, the dispersion equation ensures that the spin states of fermions
with different helicities are directly related to each other at the surface of the wire. In this case, one has D(ε, k) =
D(ε, k; θ), with

D(ε, k; θ) =
〈
ψ−
∣∣R−1

x (θ)
∣∣ψ+

〉
. (13)

Generally, expanding σ0 in (10) in terms of eigenstates of v+ · σ, the dispersion equation can be presented in the
form explicitly showing the transition between these limiting cases

D(ε, k) =D(ε, k; θ) sin2(Λ/2)

−D+(ε, k;v+)D−(ε, k;v−) cos(Λ).
(14)

III. SPECTRA OF PROPAGATING STATES

We limit our analysis of the dispersion relations to the case when the system possesses the full cylindrical symmetry.
This takes place when q⊥ ≡ 0, so that the Weyl points may only be separated in energy and along the z-axis
in the momentum space. Even in this case, the spectrum of fermions in WSM wires is very feature-rich owing to
multidimensionality of the manifold of boundary conditions. We, therefore, limit ourselves to discussing general
spectral properties, which hold for a wide variety of boundary conditions, and pay the most attention to an important
effect of the restricting geometry of WSM wires: boundary induced mass of excitations.

A. Decoupled helicities

In the case of decoupled helicities, the effect of the separation between the Weyl points reduces to simple shifts of
the energy and the longitudinal wavenumber. Therefore, in order to simplify the notations, we assume that the Weyl
points are not separated and omit the helicity index, ξ, where it is irrelevant.
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Making use of the explicit expressions for ψ
(j)
ξ , we obtain

Dξ(ε, k;vξ) = sin(βξ/2)f
(1)
ξ Jj−1/2(QrB)

+ cos(βξ/2)f
(2)
ξ Jj+1/2(QrB),

(15)

where βξ is the angle between vξ and the z-axis.

It must be noted thatDξ(ε, k;vξ) identically vanishes at ε = ξk. This is the consequence of inadequate representation
of solutions for the radial equation in form (7) for the case when Q = 0. We present a detailed analysis of this case
in Appendix A, where we show that modes corresponding to ε = ξk may exist only for boundary conditions of the
special form, vξ = −ξez. In what follows, we assume that this condition is not met and, therefore, solutions of
Dξ(ε, k;vξ) = 0 corresponding to ε = ξk must be excluded.

The gapped solutions of Dξ(ε, k;vξ) = 0 correspond to standing cylindrical waves inside the wire and thus emerge
at energies yielding relatively large values of arguments of the Bessel functions in (15). Taking this into account, we
obtain in the limit of small k the dispersion laws of the massive states for ε > 0 and j = 1/2 in the form

ε
(l)
ξ (k) = µ

(l)
ξ +

k2

2µ
(l)
ξ

, (16)

where integer l enumerates subbands, and the masses of the excitations are

µ
(l)
ξ =

1

2rB

(
βξ +

π

2
+ 2πl

)
. (17)

For negative energies, the subbands have negative masses ε
(l)
ξ (k) = −µ(l)

ξ −
k2

2µ
(l)
ξ

with µ
(l)
ξ = (βξ + 2πl − π/2) /2rB .

The presence of massive excitations may appear a natural consequence of the hard boundary conditions (cf. a
Schrodinger particle in a confining potential or the electromagnetic field in a conducting hollow waveguide). It is
important, therefore, to emphasize that, despite strong confinement, in addition to massive states there are also
massless excitations. In order to qualitatively describe them, we consider the solutions of Dξ(ε, k;vξ) = 0 near the
point where they cross the Q = 0 states with a non-trivial spin orientation (see Appendix A). Employing the smallness
of Q, we can approximate Eq. (7) by

ψ
(j)
ξ ∝

(
−1

(εξ + ξkξ)
i

K(j)

)
, (18)

where

K(j) =
2j + 1

rB
(19)

defines a characteristic spatial and energy scale induced by the finite radius of the wire.

Using Eq. (18), we find the spectrum of massless excitations for positive projections of the total angular momentum

ε
(j)
ξ (k) = ξ

[
K(j)(βξ)− k

]
, (20)

where K(j)(βξ) = K(j) tan(βξ/2).

For j < 0, we have ε
(j)
ξ (k) = −ξ

[
K̄(j)(βξ)− k

]
, with K̄(j)(βξ) = (2|j|+ 1)r−1

B cot(βξ/2).

Figure 2 presents the results of the numerical solution of D+(ε, k;v+) = 0 together with the results obtained
from (20) for different orientations of the pinned spin state. It shows that for small βξ, when K(j)(βξ)rB is small,
approximation (18) reproduces main spectral features satisfactorily.

The massless states change their character from extending over the cross-section of the wire (for |k| < K(j)(βξ)/2)

to surface modes (when |k| > K(j)(βξ)/2). Thus, in this case, the dispersion curves of the surface states are rays with

the termination points kc = K(j)(βξ)/2 except for βξ = 0, when the whole spectral branch corresponds to the spin
distribution algebraically decaying with the distance from the surface of the wire.



6

FIG. 2. The dispersion laws, ε+(k), of the gapless modes obtained numerically (solid lines) and from (20) (dashed lines) for
different angles between the pinned spin state and the z-axis, β+ = 5◦, 15◦, 30◦, 45◦, 60◦. The arrow shows the variation of
the lines with increasing β+. The dots indicate the transition from the state extending over the cross-section of the wire
(k < K(j)(β+)/2) to surface states (k > K(j)(β+)/2).

B. Strong coupling between helicities

A similar analysis as in the previous section can be used for discussion of some general spectral features in the case
of strong coupling, Λ = π/2. Indeed, Eq. (13) can be interpreted as if the pinned state at the surface of the wire
is given by the spin state of the fermions with the complementary helicity. Since the general form of the features
discussed above does not depend on the precise orientation of the boundary spin, they preserve in the limit of strong
coupling as well.

The main changes induced by the strong coupling happen at a vicinity of anti-crossing of dispersion curves corre-
sponding to decoupled helicities. Near these points, we can use an approximation similar to (18) for both |ψ+〉 and〈
ψ̄−
∣∣. Expanding the resultant equation, one can see that it contains the energy, the longitudinal momentum and the

separation between the Weyl points only in combinations

ε̄ = ε− qz, k̄ = k − q0. (21)

Thus, the spectrum of systems with different separations will have the same form as discussed below up to shifts in
the (ε, k)-plane. It should be noted in this regard that the separation of the Weyl points in energy, q0, induces shifts
along the k-axis, while qz results in shifts along the energy axis.

Solving the resultant quadratic equation with respect to ε̄, we find

ε̄u,b(k̄) = −∆(π/2) cos(θ/2)±
√
k̄2 + ∆2(π/2), (22)

where

∆(π/2) =
K

sin(θ/2)
(23)

is the mass of the low-energy excitations acquired due to the boundary induced coupling between helicities. Fig-
ure 3 presenting a comparison of these results with numerical solutions of D(ε, k; θ) = 0 shows that the adopted
approximation reproduces very well the spectrum of excitations near the extrema of the bands.

It must be emphasized that the acquired mass is the consequence of restricted geometry in the radial direction.
With increasing the radius of the wire, the mass decreases and vanishes in the limit R → ∞ corresponding to the
well studied case of a WSM with a flat surface. At the same time, as follows from Eq. (23), the acquired mass is
not bounded from above and diverges as θ approaches 0. In this limit, the spectrum consists of a single flat band at
ε̄ = 0, while the second band escapes to infinity. The emergence of the flat band can be seen in the case qz = q0 = 0
directly from Eq. (13). Indeed, for θ = 0, we have

D(ε, k; θ = 0) = 2εkJm(Qr)Jm+1(Qr), (24)

which vanishes either at isolated points or when ε(k) ≡ 0.
Finally, it should be noted that changing the sign of the gap when θ passes through zero corresponds to changing

the character of the low energy band. It reaches minimum or maximum at k̄ = 0 and shifts upwards or downwards
with increasing magnitude of θ for positive and negative θ, respectively.
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FIG. 3. Natural logarithm of the half-width of the gap (or the mass) induced by the boundary condition corresponding to a
strong coupling as a function of the matching angle θ. The numerical and analytical results are indistinguishable on this scale.
The inset shows the upper branch of the massive excitations, found by numerical solution of D(ε, k; θ) = 0 (solid lines) and
from (22) (dashed lines) for different values of the matching angle θ = 5◦, 15◦, 30◦, 90◦ (the arrow shows the variation of the
branch with increasing θ).

C. General boundary conditions

In view of Eq. (14), traversing the manifold of boundary conditions should yield a continuous transition to the
strong coupling limit. As a result, the main spectral features found for the case Λ = π/2, in particular, opened gap
in the spectrum of excitations massless when the helicities are fully decoupled, should preserve for the general case
as well.

Using the same approach as in the previous section, we obtain an equation with respect to ε̄ with the solutions

ε̄u,b(k̄) = ∆(Λ)
sin(δ)

sin Λ
±
√[

k̄ − kD(Λ)
]2

+ ∆2(Λ), (25)

where we have excluded θ using the relation β+ − β− = θ + π and denoting δ = β+ − β−. The mass of low-energy
excitations is

∆(Λ) = K
sin(Λ)

cos(Λ) cos
(
β̄
)

+ cos(δ)
(26)

with β̄ = (β+ + β−)/2, and the position of the extrema of the bands is given by

kD(Λ) = ∆(Λ) cot(Λ) sin
(
β̄
)
. (27)

Equation (26) defines a subset of boundary conditions producing the flat-band in the spectrum of WSM wires

cos(Λ) cos
(
β̄
)

+ cos(δ) = 0. (28)

Using the obtained results, one can show that states near the edges of the opened gap can be either bulk or surface
depending on separation between the Weyl points. The character of the spatial variation of the state in the radial
direction is determined by the sign of Q2

ξ = ε2ξ − k2
ξ . Substituting the solution obtained above, we obtain that the

vicinity of the minimum of the upper (for δ > 0) branch is occupied by bulk modes, if

U+ − (qz + ξq0) > 0. (29)

In turn, the top of the lower brunch corresponds to bulk modes, if

U− + (qz + ξq0) > 0, (30)

where

U± = ∆(Λ)

[
sin(δ)

sin(Λ)
± 1

]
. (31)
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FIG. 4. The phase diagram on the (q0, qz)-plane of the structure of states occupying the upper (a) and the lower (b) branches
(for θ > 0) of the excitations gapped due to coupling between states with opposite helicities at the surface of the WSM wire.
The transition lines corresponding to different helicities are identified by encircled + and −. In specifications of the structure
of the state (bulk or edge), the upper and lower lines are for ξ = 1 and ξ = −1, respectively. Panel (c) shows diagrams for
different branches superimposed to indicate the region where all states have the same structure.

We present these results in Fig. 4 in the form of a phase diagram on the (q0, qz)-plane of separations between the
Weyl points. The straight lines separate the regions where the extrema of the separated bands correspond to bulk
and surface modes and are determined by the boundary conditions only. In Fig. 4(c), we superimpose diagrams for
the lower and upper bands to emphasize that for small separations q0,z the near-edge (non-relativistic) states are bulk
modes. At the same time it should be noted that with increasing the radius of the wire, the middle region in Fig. 4(c)
shrinks relaxing the condition imposed on the separation of the Weyl points.

IV. CONCLUSION

We have studied the effect of restricting geometry on the spectrum of excitations in Weyl semimetals (WSM) using
as a model a cylindrical WSM wire.

We have parametrized the full manifold of hard boundary conditions imposed by the requirement of vanishing
amplitude of finding electron outside of the wire. The most general boundary conditions are described by two
distributions of unit vectors tangent to the surface of the wire, and the distributions of a scalar coupling parameter
and a relative phase between the states with different helicities.

We derive the general form of the dispersion equation relating energy and longitudinal momentum of electrons
propagating along the wire. The coupling parameter describes a continuous transition between the limit of decoupled
helicities when the boundary conditions have the form of pinned spin states at the surface of the wire, to the strong
coupling case, where the rotational symmetry is restored at the surface but by the price of a direct relation between
the orientations of the spins of electrons with different helicities.

We study main spectral features following from the derived dispersion equation. We show that in the limit of
decoupled helicities, for each helicity, the spectrum consists of massive bands and a single massless band. At the same
time, we show that the presence of massless bands is specific for systems with the boundary conditions supporting
decoupled helicities. Since relaxing the spin state at the surface of the wire is achieved by coupling states with
different helicities, this leads to lifting the degeneracy at the point of anti-crossing resonance with opening a gap in
the spectrum and, thus, creating two massive modes. The acquired mass is a result of the confined geometry in the
radial direction and vanishes in the limit of infinite radius of the wire (flat surface).

This demonstrates that restricting geometry may lead to strong modifications of the spectral properties of WSM
and may lead to formation of new classes of excitations.
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Appendix A: Zero-mass modes

A straightforward substitution of εξ = ξkξ into (7) yields a trivial solution ψ
(j)
ξ (r) ≡ 0. Here, we derive a correct

form of solutions of

(ε+ ξkσz)ψ(r⊥) = −iξσ⊥ · ∇⊥ψ(r⊥) (A1)

for Qξ ≡
√
ε2 − k2 = 0. Here and below, we assume that both external potentials and separations between the Weyl

points are absent, since they only lead to, generally speaking helicity dependent, shifts of the energy and longitudinal
momentum.

We notice thatQξ = 0 corresponds to the case when ε+ξkσz has a zero eigenvalue. This simplifies (A1) to a system of
equations, which can be directly integrated using, for example, the characteristics method. This presents the solution
in terms of analytical functions of τ± = e±iφr. Among the full set of solutions, we are the most interested in those
induced by the series representation of the analytical functions, which establishes a connection with representation in
terms of states with the definite projection of the angular momentum on the z-axis. Thus, taking into account the
condition of regularity at the origin, it is convenient to introduce

h(m)
s =

(
eisφr

)m
, (A2)

and to approach Eq. (A1) directly having in mind the relations

(∂/∂x± i∂/∂y)h(m)
s = m(1∓ s)h(m−1)

s . (A3)

This leads to a solution of Eq. (A1) in the form (up to a normalization factor)

ψ(r, φ) =

(
ah

(n)
s

bh
(m)
s

)
. (A4)

One class of solutions corresponds to either a or b equal to zero, so that the spin is parallel to the z-axis. The spectrum

of these excitations consists of two branches, ε = ±k, with ψ
(m)
ξ = h

(m)
−ξ |−ξz〉 on ε = k, and ψ

(m)
ξ = h

(m)
ξ |ξz〉 on

ε = −k.
Additionally, we find that for s > 0 there are solutions existing when ε = ξk and n = m− 1 with a = im and b = k.

For s < 0, the non-trivial solutions exist when ε = −ξk and n = m+ 1 with a = −k and b = in.
It should be emphasized that for both these classes of solutions, Weyl fermions with opposite helicities occupy the

same spectral branch with opposite projections of the total angular momentum. This is, essentially, a consequence
of the requirement of regularity at the origin. It should be noted in this regard, that in hollow wires, the power of
monomials is no longer limited by non-negative values. This lifts restrictions on the sign of the angular momentum
carried by modes with absent one of g1,2 (cf modes of the electromagnetic field guided by hollow cables36).

Appendix B: Parametrization of the family of local boundary conditions

At the boundary of the wire, the wave function must satisfy a boundary condition Ψ = M̂Ψ with such Hermitian

M̂ that ensures vanishing current through the surface of the wire, jn = 〈Ψ|nB ·α|Ψ〉 = 0 with nB being the normal
to the surface. Such boundary conditions in the context of the Dirac equation have been discussed in a number of

publications (see, e.g.,33–35). We, however, need M̂ represented in a way emphasizing coupling between particles with
different helicities, which is slightly different from previously used representations.

The matrix M̂ must satisfy the anticommutation relation
{
M̂,nB ·α

}
= 0 and can be chosen unitary, so that

M̂2 = 1̂. In the cylindrical coordinate system, in the rotated spinor frame with Ψ = exp (−iΣzφ/2) Ψ̃, the radial

component of α turns into αx and for M̃ = eiΣzφ/2M̂e−iΣzφ/2 we have{
M̃, αx

}
= 0. (B1)

The matrix M̃ can be presented in the block form M̃ =

(
M11 M12

M†12 M22

)
, where Mij are 2 × 2-matrices, which in the

chiral representation satisfy {Mii, σx} = 0 and [M12, σx] = 0. Thus, for an arbitrary matrix M̃ anticommuting with
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αx, we have Mii = mii · σ, M12 = m
(0)
12 σ0 + m

(x)
12 σx, where σ0 is a 2 × 2 identity matrix, vectors mii are tangent to

the surface of the wire, and m
(0,x)
12 are arbitrary complex numbers.

Imposing the condition M̂2 = 1̂, we find that the parameters defined above are subjects of several constraints.

For example, from equality of the diagonal blocks of M̃2 to σ0, it follows that m2
ii + |m(0)

12 |2 + |m(x)
12 |2 = 1 and

Re
[
m

(0)
12 m

(1)
12

∗]
= 0. They show that M12 is proportional to a unitary matrix and thus the condition M11M12 +

M12M22 = 0 can be regarded as a relation between vectors mii and a condition imposed on M12: it must leave
vectors mii in the tangent plane. Making use of these observations, we can represent

M̃ = M̂‖(v+,v−) cos Λ + M̂⊥(θ, χ) sin Λ, (B2)

where Λ is the helicity mixing angle, and

M̂‖(v+,v−) =

(
v+ · σ 0

0 v− · σ

)
,

M̂⊥(θ, χ) =

(
0 eiχRx(θ)

e−iχR−1
x (θ) 0

)
.

(B3)

Here Rx(θ) = e−iσxθ/2 is the rotation around the x-axis in the spin 1/2 representation. Vectors v± are unit vectors
in the plane tangent to the surface of the wire and are related by v+ = −Rx(θ)v−, which can be regarded as either
a relation between v± or a definition of θ.

We consider two important particular cases: Λ = 0 and Λ = π/2.
In the case Λ = 0, the states with opposite helicities are decoupled and satisfy their own boundary conditions:

ψξ = vξ · σψξ. They correspond to fermion’s spins taking definite directions determined by vectors v1,2, in other
words the spins are pinned at the surface of the wire.

The second case, Λ = π/2, corresponds to strong coupling. An example of physical situation where such model
appears naturally is the case when the electron is described by the Dirac equation with zero mass inside the wire and
large mass outside. Similar models were widely applied for describing hard boundaries in reduced dimensionalities37,38.
In this case, physical states are attenuated in the prohibited region due to the mass barrier and the boundary conditions
are formulated as orthogonality to unphysical exponentially growing solutions. Solving the Dirac equation and taking

the limit of infinite mass outside yields the boundary condition with M̃ = M̂⊥(θ = π, χ = −π/2). It should be
noted, however, that the spin states inside the material should not necessarily correspond to the spin states in the
prohibited region and, thus, a unitary transformation of spin states should be allowed at the boundary yielding the
class of boundary conditions with arbitrary θ. The important feature of this model is that it demonstrates that the
boundary conditions can be determined by the environment only regardless of dynamical properties inside the wire,
in particular, of the separation between the Weyl points.
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