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Two-level system strongly coupled to a single resonator mode (harmonic oscillator) is a paradig-
matic model in many subfields of physics. We study theoretically the Landau-Zener transition in
this model. Analytical solution for the transition probability is possible when the oscillator is highly
excited, i.e. at high temperatures. Then the relative change of the excitation level of the oscillator
in the course of the transition is small. The physical picture of the transition in the presence of
coupling to the oscillator becomes transparent in the limiting cases of slow and fast oscillator. Slow
oscillator effectively renormalizes the drive velocity. As a result, the transition probability either
increases or decreases depending on the oscillator phase. The net effect is, however, the suppression
of the transition probability. On the contrary, fast oscillator renormalizes the matrix element of the
transition rather than the drive velocity. This renormalization makes the transition probability a

non-monotonic function of the coupling amplitude.

PACS numbers: 73.40.Gk, 05.40.Ca, 03.65.-w, 02.50.Ey

I. INTRODUCTION

Since the publication of seminal papersi*4, see also the

review Ref. [3, the effect of environment on the dynam-
ics of a two-level system is modeled by introducing the
coupling of the levels to the infinite set of harmonic os-
cillators.

In the course of the Landau-Zener (LZ) transition, ™
when the energy levels of the two-level system undergo
the avoided crossing under the action of external drive,
the effect of environment amounts to the loss of adia-
baticity of the transition. More quantitatively, the prob-
ability for the system to stay in the ground state after the
transition is diminished by the environment 81 The un-
derlying reason for this is the absorption of “quanta” of
the environment. This absorption leads to decoherence,
which suppresses the interference of different virtual tun-
neling pathways.

The situation is more delicate when the environment
is represented by a single oscillator 2%29 I experiment,
the role of such an oscillator, which is coupled to a two-
level system, is played e.g. by the transmission line
resonator®?, like in circuit quantum electrodynamics, see
the review Ref. 31] or by the optical resonator =2

In the absence of coupling, the amplitude of the LZ
transition can be viewed as coherent superposition of
many amplitudes corresponding to virtual trajectories.
In the language of spins, virtual trajectory of the LZ
transition represents a sequence of virtual spin flips 1Y
With coupling, each virtual transition is accompanied by
the excitation of the oscillator. On the other hand, the
stronger oscillator is excited, the stronger is the feedback
that it exercises on the two-level system. Then it is a
compound object, two-level system dressed by many os-
cillator quanta 2! that undergoes the LZ transition.

For the two-level system coupled to the environment
with a continuous spectrum only the weak-coupling
regime is of interest. This is because, upon increasing

coupling, the interference is completely suppressed, so
that the transition probability, PLTZ_w, assumes the value
Pl =1 /2. On the contrary, when the two level system
is coupled to a single oscillator, there is a wide domain
of parameters when the coupling is strong while PLT;J’ is
still a strong function of the drive velocity.

Nontriviality of the Landau-Zener (LZ) transition in
the presence of coupling to the oscillator is highlighted
by the exact result reported in Ref. 21l This result per-
tains strictly to zero temperature when at time { — —oo
the oscillators is in the ground state. It was demonstrated
in Ref. [21] that if the two-level system starts in the state
1 and ends in the state 1, then the oscillator remains in
the ground state at ¢ — oo. This result can be viewed as
a manifestation of the “no-go” theorem=3 3% in applica-
tion to the spin-boson model. Certainly, at intermediate
times, the oscillator can be excited. As a consequence of
the above restriction, the two-level system and the oscil-
lator end up entangled.

Another manifestation of nontriviality of the LZ tran-
sition with coupling to a single oscillator is the depen-
dence of P/;"* on the coupling strength, g. In particu-
lar, numerical results of Ref. 25 suggest that, for finite-
temperature oscillator, the dependence of Pt on gisa
non-monotonic curve with a minimum. In other words,
upon increasing g, the adiabaticity of the transition first
decreases and then increases again. There is no clear
physical picture explaining the emergence of this mini-
mum. In theory, coupling to the oscillator turns a sin-
gle avoided crossing, taking place in the course of the
LZ transition, into a network of avoided crossings2% cor-
responding to different oscillator levels. The coupling
strength quantifies the “talking” between the 1 and |
amplitudes pertaining to a certain oscillator level to the
corresponding amplitudes for two neighboring oscillator
levels.

In general, the problem of the LZ transition in the
presence of coupling to the oscillator contains, in addi-



tion to g, three other parameters with the dimensionality
of frequency: the matrix element between 1 and | lev-
els, the inverse bare LZ transition time, and the oscillator
frequency. Definitely, it is impossible to derive an analyt-
ical expression for Pl for arbitrary relations between
these parameters. In the present paper we focus on the
situation when the oscillator is highly excited. Under
this simplifying assumption we identify the domain of
parameters where the asymptotic analytical expression
for PLTZ_’i can be found. Roughly speaking, the two do-
mains correspond to slow and fast oscillator depending
on whether the LZ transition time is shorter or longer
than the oscillator period. Coupling to a slow oscillator
effectively renormalizes the drive velocity. In the case of
a fast oscillator, the LZ transition splits, as a results of
coupling, into a sequence of individual transitions even-
spaced in time. The corresponding gaps are the oscil-
lating functions of coupling strength, g. Non-monotonic
behavior of the survival probability with g is the result
of interference of partial transition amplitudes. We con-
firm this behavior by solving the many-level Schrodinger
equation numerically.

II. BASIC RELATIONS

Our study the dynamics of a two-level coupled to an
oscillator is based on the following Hamiltonian

=-S5 - %&m +wblh+ g, @ b+, (1)
where w is the oscillator frequency, while b and bt are, re-
spectively, the annihilation and the creation operators of
the oscillator. The drive is characterized by the rate, v,
of the change of the energies of the 1 and | states coupled
directly by the matrix element A/2. It is assumed that
the coupling between the two-level system and the os-
cillator is longitudinal. The Hamiltonian Eq. differs
from the standard spin-boson Hamiltonian with drive4!
only in one respect: in spin-boson model there is a sum-
mation over many oscillators.

Denote with a7 and al' the amplitudes to find the sys-
tem in the states T and | with n quanta excited. As
follows from Eq. , these amplitudes satisfy the follow-
ing infinite system of coupled equations

vt 1 A
qait (n g Jwal - el

=—g [(n +1)2q" T 4 nl/Qa?_l},

i +

t 1 A
ial) — %a? + (n + §)wa§ - 5@?

_ g[(n F 1)Vt nwag—l] (2)

Our goal is to find the analytical solution of this system in
the limit when the oscillator is highly excited, so that the

relevant n-values are big. In this limit, we can neglect the
difference between (n+1)*/? and n'/2. Denote the initial
state of the oscillator with n = ng > 1. A crucial sim-
plification is achieved if, in the course of the transition,
the excitation level of the oscillator changes relatively
weakly, i.e. by m quanta with m much smaller than ng.
This allows to eliminate the explicit n-dependence from
the system Eq. . Upon introducing the new variables

a2 (1) = b7 (1) esp [t (o +m+ 7).
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where
G = gny*. (5)

Obviously, the partial solutions of the system Eq. are

the plane waves
by (t) = Bi(t)e ™™, b'(t) = Bu(t)e "™, (6)

where k is the wave vector. The amplitudes B,, B, satisfy
the system

By + [% + 2G cos(wt — H)]Bl - §B2 =0,
iB, — [% + 2G cos(wt — K)}Bz — 531 =0. (7)

This system describes the LZ transition within a given
k. The form Eq. (@ suggests the interpretation of k as
a phase of the classical oscillator.

Original system Eq. describes the “spreading”
of the initial state with n = ng over the states with
n = ng + m. The survival probability QZ;(THm) is the
probability for the system, which starts at t — —oo from
a single nonzero amplitude a7, to remain in one of the
states a™T™ at t — oo. After reducing the original sys-
tem to the form Eq. the amplitude B, represents
a combination > 0" exp(—ixm). The initial condition

m
that at ¢ — —oo the m-dependence of amplitude b7 is
Om,0 suggests that the solutions of Eq. @ corresponding
to different k have the same absolute value at ¢ — —oo.
This allows to express the net LZ survival probability via
the survival probabilities corresponding to all x-values

n n-+m [ dh:
QLZ:MPM:;QL:( M= [ Qe (8)

In the remainder of the paper we study the dependence
of @, found from Egs. (7)), in the limits of slow and
fast oscillator.



IIT. SLOW OSCILLATOR

To illustrate how delicate is the effect of coupling to
the low-frequency oscillator on the survival probability,
we plot in Figs. [Th, b the numerical solutions of the sys-
tem Eq. for different G-values. Fig. corresponds
to the wave vector k = /2, while Fig. corresponds to
k = —m /2. The solutions @, ,(t) correspond to the “sub-
gap” frequency w = 0.25A. The drive velocity is chosen
to be v = mA?/4, so that, without coupling, the survival
probability Q,, = exp (—7A?/2v) is small, Q,, = e~ 2
Comparing Figs. [Th and [I] b, we conclude that the effect
of coupling on @Q,, is very different for these two val-
ues of k. For k = m/2 the survival probability increases
monotonically with the coupling strength, G, while for
k = —m /2, already for the minimal coupling G = 0.25A,
the value of @), , is smaller than in the absence of cou-
pling.

Formal explanation of this peculiar dependence of @Q;
on x follows from the expression of the time-dependent
energy levels of the system Eq. . This expression reads

1/2
A2 2
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In Fig. we plot these levels for G = 0.25A and k =
+7/2. It is seen that the plots E(t) for k = +m/2 lie
on the opposite sides of the G = 0 curve. Thus, for k =
/2, the coupling to the oscillator effectively increases
the drive velocity, and, thus, )., gets enhanced. For
k = —7/2, the effective drive velocity is decreased due to
the coupling to the oscillator and, correspondingly, @,
is diminished,

Dramatic difference of the survival probabilities for dif-
ferent k-values becomes even more dramatic upon further
increase of coupling strength. This is illustrated in Fig. [3]
where the curves @ ,(G) obtained numerically are plot-
ted for Kk = 7/2, kK = —7/2, and k = 0. While all three
curves start from Q,, = e”2, the k = 7/2 and kK = 0
curves increase with G, while the K = —7/2 curve de-
creases with G. It also follows from Fig. [3] that beyond
certain G-value all three curves exhibit strong oscilla-
tions.

The goal of the theory is to account for the shapes
of the curves. To this end, we recall that, in the
absence of coupling, the most concise way to de-
rive expression ., = exp (—7TA2/2U) is to perform
the analytic continuation of the semiclassical solutions,

¢
exp <iz’ Ik dt’E(t’)), for the 1, | amplitudes to the com-
0

plex plané3?. Then @, , emerges in the form of the follow-
ing integral between the turning points on the imaginary
axis
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FIG. 1: (Color online) Survival probability, Q.z, calculated
numerically from the system Eq. is plotted versus dimen-
sionless time, At/2, for several values of the coupling am-
plitude, G, and for the oscillator phases x = 7/2 (a) and
k = —m/2 (b). The oscillator frequency is chosen to be
w = 0.25A, where A is the gap at ¢ = 0, while the drive
velocity is chosen to be v = wAZ?/4. At zero coupling, the
survival probability at t — 0o is QLz(c0) = e~2. For k = /2
the values Qrz(00) grows monotonically with G, while for
k = —7/2 the value Qrz(c0) first drops with G and then
grows with G.

Here 71, and 7r are the left and the right turning points,
E(itr) = E(itr) = 0, which, in the absence of coupling,
are simply equal to +=A /2v. General expression Eq.
suggests that the extension to the finite coupling at k =
+7/2 amounts to the modification of

9 911/2

B(it) — [A4 - (%T j:QGsinh(wr)) } .
The equation for 7, 7g becomes transcendental. Still,
for a given set of parameters, the dependence @, ,(G)
determined by Egs. and can be obtained by
the numerical integration. The results are shown in Fig.
(a), (b), and (c). They agree very well with @, found

from numerical solution of the system @
At weak coupling, the term £2G sinh(w7) amounts to
the modification of the drive velocity. For the effective
velocity obtained by expansion sinh(w7) at small 7 we

find
Vepy = 0 <1 + 4Gw> . (12)

v




FIG. 2: (Color online) The time-dependent energy levels
Eq. @D are plotted for K = w/2 and different oscillator
frequencies and the coupling strengths: (a) G = 0.25A,
w = 0.25A; (b) G =4A, w = 0.25A; (c) G = 0.5A, w = 10A.
The level positions in the absence of coupling are shown with
dashed lines. Three distinct shapes of the curves E(t) il-
lustrate three different scenarios of how the coupling to the
oscillator affects the LZ transition. (a) and (b) correspond to
the slow oscillator regime. In (a), the coupling amounts to ef-
fective modification of the drive velocity. Upon increasing the
coupling, (b), the LZ transition is the result of interference of
many isolated LZ transitions. For the fast oscillator, (c), the
description of the LZ transition in terms of time-dependent
energy levels is inadequate. Blue lines in (a) show the energy
levels calculated for the same coupling and frequency as red
lines but for Kk = —7/2.

Upon substituting v.;; into the LZ survival probability
we get the results which agree perfectly with the result
obtained above using the semiclassical E(i), Eq. (10).
This agreement could be expected only in “perturbative”
regime G < v/w, but, for numerical reasons, this agree-
ment holds up to the maximal value of G = v/4w. For
this maximum value v.,, at Kk = —m/2 turns to zero.
Thus, we use this simplified procedure for arbitrary .
In doing this, it is very important to take into account
that for k different from +7/2 the transition point is
shifted from ¢ = 0 to some ¢ = t.;;. The combination
2L 4+2G cos(wt—rk) should be replaced by % [v.,(t — t.;/)].
Fig. [3k illustrates that theoretical dependence @, ,(G) is
in good agreement with numerical solution of the system
Eq. @ at Kk =0.

Summarizing, we write the expression for survival
probability in the limit of a slow oscillator in the form

TA2
Qrz(k) = exp{ 2 [1 — 4Gw Sin(wteffﬂ }7 -

v

where t.;, is determined by the condition

te
% + 2G cos(wt,;; — k) = 0. (14)
The final step is averaging of Eq. over k. This aver-
aging can be performed analytically when the renormal-
ization of the velocity due to the coupling to the oscillator
is weak. Expanding the denominator, we get

TA? 21A2Gw
QLz = exp (_ 2% ) Iy ( 02 ) ’ (15)

where Iy(z) is the modified Bessel function. We note
that, while deriving this result, we assumed that G is
much smaller than v/w, the argument of Iy can be big-
ger than 1. This is because this argument contains an
additional big factor 7A2/2v. In other words, Eq.
captures strong enhancement of the survival probability
caused by the coupling to the oscillator.

In Fig. we compare the results of three approaches
to the calculation of the evolution of @, , with coupling
strength. The first result, shown with blue curve, is
purely numerical. Namely, the dependence @, (k) was
obtained for each G-value and then averaged over x nu-
merically. The second result (red line) is semi-analytical,
obtained from Egs. , , and, finally, the analyti-
cal result Eq. (15)) (green line). As could be expected,
Eq. captures the @, ,(G) behavior only for small
couplings. The semi-analytical descriptions works well
until G ~ A. The origin of the discrepancy between this
description and the numerics is that @Q,, is the result
of the averaging of rapidly growing and rapidly decaying
contributions.

In the limit of large G' > v/w the curves in Fig. [3|start
to oscillate. The oscillations survive the averaging over
k. The origin of these oscillations becomes clear from



Fig.[2b. LZ transition at small G evolves into a sequence
of individual well-resolved LZ transitions upon increas-
ing G. The net number of transitions, Ny = 4Gw /v,
grows linearly with coupling. Passage of these transi-
tions may result in constructive or destructive interfer-
ence depending on the phase accumulated between the
subsequent transitions. The situation is fully analogous
to the Landau-Zener-Stiickelberg interferometry=8

IV. FAST OSCILLATOR

From Fig. 2t we realize that the description based on
time-dependent energy levels is inadequate for the fast
oscillator. This is also clear from physical arguments,
since the “local” velocity is much bigger than the drive
velocity. The role of the oscillator at large w is to renor-
malize not the drive velocity but rather the matrix ele-
ment, A/2, between the levels. To see this, we make the
following substitution in the system Eq.

B, (t) = D, (t)exp .

2iG sin(wt — m)]

2iG sin(wt — K)

TUERE B

B, (t) = D,(t) exp

&

after which it acquires the form
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In the form Eq. (|17]), the inter-level matrix element oscil-
lates with time. If the time of the LZ transition, ~ A /v,
is much longer than the period of oscillations, the gap os-
cillates many times in the course of the transition. This
suggests that the oscillating factor can be replaced®? by
its average Jo(4G/w), where Jy is the Bessel function.
This replacement immediately leads to the survival prob-

ability
2
Woeo |- ()] 0y

This result suggests that a very small Q,, = e~2 at zero
coupling increases rapidly with coupling, reaches Q. , =
1, when the Bessel function passes through zero, and then
drops down.

To check numerically the validity of averaging over the
oscillator period, in Fig. [ we show the time depen-
dence @, »(t) calculated by numerical solution of Eq.
for particular value % = 0.6, when the Bessel function

Jo(4G/w) turns to zero. We see that, for this coupling,
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FIG. 3: (Color online) The survival probability, Q.z, at t —
oo is plotted versus the dimensionless coupling strength for
the phases of oscillator k = /2 (a), kK = —7w/2 (b), and k = 0
(c). Blue curves were obtained by solving the system Eq.
numerically. Red curves are theoretical obtained from Eqgs.
(13), (4). In the lower panel (d) the result of the numerical
averaging of Qrz(k) is plotted with blue line. The green
line shows the analytical result Eq. , while the analytical
result obtained from Eqgs. , is shown with red line.
The drive velocity and the oscillator frequency are the same
as in Fig.
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FIG. 4: (Color online) Survival probability, @z, calculated
numerically from the system Eq. , is plotted versus the di-
mensionless time, At, for specific coupling strength G = 12A
and frequency w = 20A, so that 2 = 2.4 and Jo (4G /w) = 0.
Different curves correspond to the values of k: k = 7/2 (blue),
k =m/3 (red), and kK = 7/4 (green). It is seen that Q. does
not change near t = 0, where the £k = 0 LZ transition is
expected suggesting that the gap is suppressed. Black line
shows the time evolution of .~ at zero coupling. The drive
velocity is v = 7A%/4 in all the curves.

Q1 ~(t) does not change with time in a certain domain
around t = 0 suggesting that the effective gap is zero.
However, unlike what Eq. predicts, the value of
@1~ is not one in this domain. The reason is that the
system Eq. encodes a number of individual transi-
tions which take place around the times ¢, = kw/v. This
becomes apparent if we make the following substitution

in the system Eq.

Dy(t) = /2D, (t - f) :
v

D,(t) = e~ t/2D), (t - %) . (19)

Upon this substitution, Eq. assumes the form

B(=2)+5(-2)0 (-2

:%ﬁz (t—%)exp lz <wt—4GSinE:M>1»
D:(1-7) =5 (=5) 2 (1-7)
)expl—i(wt—zmmw)].

(20)

The same argument as above suggests that, as a result
of being fast, the exponent in the right-hand side can be
averaged over the period, 27 /w, Then the system Eq.
will describe a regular LZ transition taking place around
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FIG. 5: (Color online) The “incoherent” survival probabil-
ity is plotted from Eq. versus the dimensionless cou-
pling amplitude for different values of the bare survival prob-
ability: Qrz(0) = e7? (blue), Qrz(0) = e* (red), and
QLz(0) = e '° (green). For the latter curve the approach

to the asymptote Qrz(c0) = 1 is non-monotonic.
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FIG. 6: (Color online) Red: the survival probability, (LOZ>,
is plotted from Eq. versus the dimensionless coupling
amplitude. The bare survival probability is chosen to be
QL.z(0) = e72; Blue: the small-G portion of the “incoherent”
result shown in Fig. Green: the dependence Q(LC;) with
interference effects incorporated is plotted from Eq. .

t = ¢ with a gap reduced by J;(4G/w), where J; is the
first-order Bessel function. The corresponding survival
probability reads

Q') = exp [—FAQ Jt <40ﬂ . (21)

20 '\ w

Naturally, a similar transition taking place around
t = —% is described by the same Q(le). Note also, that,
in addition to J;(4G/w), the averaged matrix element
is multiplied by exp (ix). The physical meaning of the
moments ¢ = £% is transparent. The energy separation
between 1 and | state changes with time as vt. At ¢ = 2
this separation becomes equal to the oscillator quantum.
The extension of Egs. , to arbitrary k is
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FIG. 7: (Color online) The net survival probability Q1 z(co)
calculated by solving numerically the system Eq. , and
subsequently averaged over k, is plotted versus the dimen-
sionless coupling amplitude for three values of the oscillator
frequency: w = 20A (green), w = 22A (blue), and w = 23A
(red). The bare Qrz value is chosen to be QrLz = e 2 asin
Fig. 4l which corresponds to the drive velocity v = 7A%/4. In
the domain % < 0.1 all three curves coincide and agree with
the “incoherent” and “coherent” theoretical results shown in
Fig. [B] The position of the maximum also agrees with “co-
herent” curve in Fig. @ However, the peak value Q.7 =~ 0.6
is higher than Q.2 = 0.35 predicted by theory. Note that the
theoretical result Eq. takes into account only £ = 0 and
k = £1 intermediate transitions.

straightforward:

A2 4
0 — exp [—” 7 (G)} |
2 w

The transitions taking place at ¢ = t; can be viewed as
well separated if the time, w/v, is much bigger than the
individual LZ transition time ~ A/v, yielding the crite-
rion w > A. The second condition to be met is that the
effective time averaging takes place during the LZ tran-
sition time, so that A/v > 1/w. The second condition
can be cast in the form X > xz. If the bare survival
probability is small, A% >> v, then the first condition is
more restrictive.

Fig. [ offers an insight into a general scenario of the
LZ transition in a two-level system coupled to a fast os-
cillator. The system undergoes a number of individual

(22)
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From this product one can infer the following expres-

—iy/1-Q%e ™ /(QL2)

transitions at times ¢ = ¢; characterized by survival prob-
abilities Q(Lkz) It is also seen from Fig. that the evo-
lution of @, , with time depends on the wave vector, k.
This is a consequence of interference of partial transition
amplitudes. To find the net survival probability analyt-
ically, we first assume that averaging over x suppresses
the interference effects completely. Then we can write
the recurrent relation for @y, which are the successive
values of (), , after N transitions

QN1 = QN (1 - (LZH)) +(1-Qn) AR (23)

This relation expresses the fact that the occupation of the
state T after the transition comes from the occupation
of this state before the transition as well as from the
occupation of the state | which flips in the course of
the transition. It is straightforward to derive from Eq.
the expression for @), , after the arbitrary number
of transitions

(24)

N |
N | =

QLZ =

- (k)
1;[ (1-201).

In Fig. [f] the behavior of Q,, versus the coupling is
plotted from Eq. for different bare values of Q.
Naturally, all the curves approach 1/2 at very large cou-
pling. This is because, at large coupling, the information
about the initial state of the two-level system is erased.
For the bare value Q., = e~2 the approach to 1/2 is
monotonic. However, for Q,, = e~* a wiggle emerges at
% ~ 0.23. This feature evolves into a well pronounced
maximum for bare Q. , = e 19.

At the position of maximum in Fig. [5[ (green line) the
argument, 4G /w, of the Bessel functions is about 0.6. For
this value and also for smaller couplings we can restrict
consideration to only three LZ transitions taking place at
t =0 and t = +w/v, since all higher Bessel functions are
small. With only three transitions, we can incorporate
the interference effects into the theory. To do so, we
should take into account that each partial LZ transition
is characterized by a scattering matrix which contains
the survival probability and a phase, x. The evolution
of the amplitudes to find the system in 1 and | states is
described by the product of scattering matrices

—iy/1- Qe VO —iy/1- Qe

—iy/ 1= Qe 4/QLY)
(25)

(

sion for the amplitude to change the level after the three



transitions2l

Ajoy = —iQE1 - Qe
— QU1 - @) (e o)

Q(Loz)e—i(X3—X2+X1)_ (26)

+i(1—QM)V1 -

Different contributions to A,_,, describe partial ampli-
tudes to change the level at one transition and to not
change the level at other two transitions. The survival
probability is given by Q,, =1 — |4, |2

If we assume that the phases xi1, x2, and x3 are
completely uncorrelated the averaging over these phases
yields

9= [e9] @2+ @ 1 -]’
+200 [1-Q] [1-012], @

which is nothing but the result Eq. in which only
the terms &k = 0 and k£ = +£1 are kept. Now we take
into account that the transitions k = —1 and k = 1 are
identical, set x1 = x3, and perform the averaging over
the two phases. This gives

Qur = Q7 20000 1-02].  (8)

We note that the interference contribution to Eq. (28]
is negative. In fact, it leads to a maximum in Q. ,(G)
behavior even for the bare Q,, = e~2, as illustrated in
Fig. @ Thus, it is the result Eq. that should be
compared to the numerical calculations. The results of
these calculations are shown in Fig. [7] where probabil-
ity, Q. z, calculated by solving the system Eq. and
averaging over  is shown for three oscillator frequencies
versus the dimensionless coupling amplitude. In the do-
main % < 0.1 all three curves coincide and agree with the
“incoherent” and “coherent” theoretical results shown in
Fig. [6] The position of the maxima also agrees with the
prediction of the “coherent” theory Eq. . However,
the peak value Q. , = 0.6 is higher than Q,, = 0.35 pre-
dicted by the theory. The possible origin of the discrep-
ancy is that the theory Eq. takes into account only
k =0 and k = 1 intermediate transitions. Our overall
conclusion is that non-monotonic behavior of Q. ,(G) is
the result of the interference of intermediate LZ transi-
tions.

V. DISCUSSION AND CONCLUDING
REMARKS

In the present paper we have focused on the question:
how the longitudinal coupling to a harmonic oscillator

affects the survival probability of the Landau-Zener tran-
sition in a driven two-level system.

On general grounds, one would expect the following
answer to this question. Weak coupling, by making the
transition less adiabatic, increases the survival probabil-
ity. At very strong coupling this probability should ap-
proach 1/2; since the memory about the initial state of
the two-level system gets erased due to coupling. There
is, however, the evidence that these expectations are not
entirely correct. Firstly, the exact result obtained in Ref.
21l states that, for purely longitudinal coupling, the effect
is identically zero for any coupling strength. Secondly,
the numerical simulations of Ref. 25, which pertain to
longitudinal coupling suggest that, at finite temperature,
Q.2(G) is a non-monotonic function with a maximum.
The domain of parameters investigated in Ref. 25 is in-
termediate in all respects: the temperature, the oscillator
frequency, and the LZ tunneling gap were of the same or-
der. In this regime it is difficult to infer the underlying
origin of this maximum.

To establish the above physical picture, we have
adopted a strong assumption that the oscillator is highly
excited, so that the change of the excitation level in the
course of the transition is relatively small. Under this
assumption, we studied the effect of coupling on the LZ
transition in two limiting cases of slow and fast oscilla-
tor. For the slow oscillator our analytical results for the
survival probability are given by Egs. , , and
Eq. . For the fast oscillator they are given by Eq.
and Eq. . We can now quantify the validity of
our main assumption. For both, the slow and the fast
oscillator, the LZ transition in the presence of coupling
transforms into a sequence of individual transitions*!
This is illustrated in Fig. for the slow oscillator and
in Fig. [ for the fast oscillator. The number of transi-
tions for the slow oscillator is Ny = 4Gw/7mv. For the fast
oscillator this number can be estimated by equating the
argument of the Bessel function in Eq. to the index,
i.e. Ny =4G/w. Since each individual transition is asso-
ciated with different level of the oscillator, the criterion
that the oscillator is highly excited can be quantified as
follows: the initial excitation level ng should be bigger
than Ny for the slow oscillator, while for the fast oscilla-
tor it should be bigger than Ny.

Although our analytical results essentially confirm the
general expectations, we find that, in both limits, @, (G)
approaches 1/2 with oscillations. These oscillations are
the consequence of the interference of the amplitudes cor-
responding to different pathways through multiple LZ
transitions. It is likely that non-monotonic Q.. (G) es-
tablished in Ref. [25] is the consequence of this interfer-
ence.

Our study is most closely related to Refs. 20/ and [29]
In these papers the LZ transition in the presence of a
periodic perturbation was studied. In fact, in Ref. 29
the qualitative difference between the slow oscillations
regime and fast oscillations regime was identified. Since
in Refs. 20, 29 periodic perturbation was assumed to



be deterministic it did not contain its own dynamics. In
other words, there was no feedback from the two-level
system on the source of the oscillating field. With regard
to relation of our study to Refs. 22H24] Ref. 22]essentially
restates the fundamental result of Ref. 21l for the case
of a single oscillator. A new powerful step reported in
Ref. [23]is that for oscillator in the initial state, n, the
probability | 1,n) — | {,n) can be evaluated explicitly.
This finding is insufficient to calculate the full survival
probability. Concerning Ref. 24} it also deals with highly

excited oscillator, but the Landau-Zener gap, A, is set to
be zero from the start.

Note finally, that throughout the paper we assumed
the bare survival probability is small, so that, unlike Ref.
42, the perturbative treatment does not apply.
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