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Radiative heat-transport mediated by near-field interactions is known to be superdiffusive in
dilute, many-body systems. Here we use a generalized Landauer theory of radiative heat transfer
in many-body planar systems to demonstrate a nonmonotonic transition from superdiffusive to
ballistic transport in dense systems. We show that such a transition is associated to a change of
the polarization of dominant modes. Our findings are complemented by a quantitative study of the
relaxation dynamics of the system in the different regimes of heat transport. This result could have
important consequences on thermal management at nanoscale of many-body systems.

I. INTRODUCTION

The theory of near-field radiative heat transfer has for
many decades remained largely limited to two-body sys-
tems [1–6]. Recently, heat transport in many-body sys-
tems has also been considered in the context of nanopar-
ticles [7–10] and multilayer geometries, such as photonic
crystals [11, 12] and hyperbolic metamaterials [13–15].
The focus of much of this work has been the study of
systems in which the steady-state temperature distribu-
tion of a set of internal bodies is a priori known and dic-
tated via contact with large heat reservoirs. There are,
however, situations in which a full study of heat transport
necessitates an account of thermal relaxation through ra-
diative channels. A first step in this direction has been
made by generalizing Rytov’s theory of fluctutational
electrodynamics to describe radiative transfer in many-
body geometries with varying temperature distributions,
including nanoparticle systems [17–19], multilayer con-
figurations [16, 20–28], and more generally, arbitrary ge-
ometries that include the possibility of inhomogeneously
varying temperature profiles [29, 30]. Furthermore, so
far, only a superdiffusive regime of heat transport has
been observed in systems purely driven by thermal ra-
diation and, in particular, only in nanoparticle systems
within the dipolar approximation [31].

In the present work, we employ a recently developed,
exact theoretical framework [32] to investigate near-field
radiative heat transport in N -body systems consisting of
parallel planar slabs separated by vacuum, in which ra-
diation is the only source of thermal relaxation. Here
we restrict our discussion to polar materials, where the
screening is weak enough to permit a long-range cou-
pling between the constituent parts of the system. We
show that the temperature dynamics and steady-state
profile of the system depend strongly on geometric pa-
rameters such as the system density, which imply dif-
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ferent heat-transport regimes. In particular, we prove
the existence of a nonmonotonic transition between a
superdiffusive regime, previously observed in Ref. [31],
and a ballistic regime that appears in denser media and
that also leads to dramatically faster relaxation dynam-
ics. We also show that this transition is associated with a
change in the polarization of the dominant modes in the
transport. In contrast to heat exchange in two-body ge-
ometries, where near-field heat transfer is dominated by
transverse-magnetic (TM) modes, we found that trans-
port in dense, many-body systems can have a significant
contribution from transverse-electric (TE) modes.
The rest of the paper is organized as follows. In Sec. II,

we introduce the system under consideration and discuss
a procedure to characterize the regime of heat trans-
port. In Sec. III, we study the relaxation dynamics of
the system for different configurations. For comparison
purposes, in Sec. IV, we evaluate the large-distance be-
havior of the heat-transfer coefficients in a metal. Finally,
our conclusions are summarized in Sec. V.

II. HEAT TRANSPORT REGIMES

Let us consider a system composed of N planar slabs
separated by vacuum, orthogonal to the z axis and as-
sumed to be infinite in the x and y directions, as sketched
in Fig. 1(a). The thicknesses δj of the bodies are as-
sumed to be equal, δj = δ for j = 1, . . . , N , and below
we take δ = 200 nm. The temperatures of slabs 1 and
N , referred to as external slabs, are held constant at
T1 = 400K and TN = 300K, respectively, via contact
with an external reservoir, while all the other internal
slabs are allowed to reach their own equilibrium temper-
ature T eq

j (j = 2, ..., N − 1). We also consider that the
system is immersed in an environment (thermal bath)
at temperature T0 = TN+1 = TB = 300K. Below D
denotes the distance between slabs 1 and 2, as well as
slabs N − 1 and N , whereas d is the distance between
adjacent, internal slabs. Furthermore, in our numerical
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simulations we assume that all the bodies are made of
silicon carbide (SiC), whose permittivity at frequency ω
can be described by the Drude-Lorentz model [33]

ε(ω) = ε∞
ω2
L − ω2 − iΓω
ω2
T − ω2 − iΓω , (1)

where ε∞ = 6.7 is the high frequency dielectric constant,
ωL = 1.83×1014 rad/s is the longitudinal optical phonon
frequency, ωT = 1.49× 1014 rad/s is the transverse opti-
cal phonon frequency, and Γ = 8.97 × 1011 rad/s is the
damping rate (for comparison purposes, in Sec. IV we
also consider gold slabs). As shown in Ref. [32], the net
radiative flux per unit surface received by any given slab
j can be written as a sum over the energy exchanged with
every other body ϕ`,j , with

ϕj =
∑
` 6=j

ϕ`,j =
∑
` 6=j

∫ ∞
0

dω

2π

∫ ∞
0

dk

2πk
∑
p

~ω n`,jT `,j , (2)

where ` 6= j runs from 0 to N + 1 (including the ex-
ternal environment). In this expression p = TE,TM
denotes the two polarizations, k is the parallel com-
ponent of the wave vector, and n`,j ≡ n` − nj , with
nj =

(
e~ω/kBTj − 1

)−1 denoting the Bose distribution.
The Landauer coefficient T `,j = T `,j(ω, k, p), which can
vary between 0 and 1, describes the contribution of each
mode (ω, k, p) to the energy exchange and depends on the
geometrical and material properties of the slabs [32]. The
local equilibrium temperatures T eq

j of the internal slabs
can be calculated by requiring that in the steady state,
the net flux received by each slab is zero, that is by solv-
ing the system of transcendental equations, ϕj = 0 for
j = 2, . . . , N − 1. The steady-state temperature profiles
inside the system are shown in Fig. 1(b) for N = 60 slabs
and for several separation distances d ∈ {5, 40, 500}nm
and fixed D = 500 nm. We first observe that, while
for d = D = 500 nm the temperature profile decays
smoothly, the configurations having a smaller d reveal
a more dramatic jump between the external and the ad-
jacent (T2, TN−1) temperatures, in which case the inter-
nal slabs become much more thermally isolated from the
reservoirs. Moreover, the shape of the profile clearly de-
pends on d, becoming nonlinear for d = 500 nm, close to
linear for d = 40nm, and nearly constant for d = 5nm.
We now describe how the main features characterizing

heat transport in this geometry, i.e. the temperature
profile near the boundary and within the bulk, depend
on both D and d. As far as the former is concerned,
the main parameter of interest is the relative coupling
strength of boundary versus internal slabs, quantified by
defining an effective, thermal conductivity

κj = ϕj,j+1dj
(Tj − Tj+1) , (3)

where d1 = dN−1 = D and dj = d for j = 2, . . . , N − 2.
The ratio κj/κ1, which can be interpreted as a measure of
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FIG. 1. (a) Schematic of an N -body system comprising N−2
planar slabs (purple) interacting with one another and with
two external slabs at fixed temperatures T1 (red) and TN
(blue). All internal separation distances d are identical while
the coupling to the external thermostats depends on the sep-
aration distance D. In the steady state, each internal slab
reaches a local equilibrium temperature T eq

j . (b) Steady-state
temperature profile as a function of the normalized position
zj/zN for a system of N = 60 SiC slabs of thickness 200 nm,
for different d and fixed D = 500 nm. The inset shows the
ratio of the effective internal conductivities κj/κ1 (see text).

the boundary thermal resistance, is plotted in the inset of
Fig. 1(b), showing that κj is almost constant within the
chain of internal slabs and that κj/κ1 is close to unity for
d = 500 nm, increases with decreasing d, and reaches two
orders of magnitude when d = 5nm. As illustrated in
Fig. 3 below, the smoothness of the temperature profile
near the boundary only depends on the ratio d/D. We
next focus on the shape of the temperature profile within
the bulk, which is closely related to the transport regime
and requires a more nuanced description of the problem.
As shown in Ref. [31], to understand and classify the

various transport regimes in this kind of system, it is use-
ful to study the power exchanged between layers in the
limit of large N . For convenience, we make the simplify-
ing assumption that the temperature differences involved
in the system are small enough to allow a linearization of
n`,j . Under this assumption, the net flux on slab j reads,

ϕj '
∑
` 6=j

h`,j(T` − Tj), (4)

where we have introduced the heat-transfer coefficients,

h`,j =
∫ ∞

0

dω

2π

∫ ∞
0

dk

2πk
∑
p

~ω
∂nj
∂Tj
T `,j . (5)

Assuming that h`,j ∼ 1/zγ`,j , for some exponent γ = 1+α,
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FIG. 2. Heat-transfer coefficients h`,j (see text) with respect to the normalized separation z`,j/zN , for fixed values of j and
D = 500 nm, and three values of (a) d = 500 nm, (b) d = 40nm and (c) d = 5nm. Dashed lines indicate the asymptotic behavior
of h`,j ∼ 1/zγ`,j at large separations. The value of γ indicates the nature of the heat-transport regime, from superdiffusive
(1 < γ < 3) to ballistic (γ → 1). The insets decompose h`,j for j = 30 into TE and TM polarization contributions. (d)
Exponent γ as a function of d.

where z`,j ≡ |z` − zj | and zj denotes the position of the
j-th layer, one finds that in the thermodynamic limit
N → ∞, total length L → ∞, and N/L fixed (see the
Appendix for details), Tj → T (z) and

ϕj → ϕ(z) ∼ (−∆)α/2T (z), (6)

where (−∆)α/2 is the fractional Laplacian defined in 1D
systems as (0 < α < 2)

(−∆)α/2T (z) = cα PV
∫ ∞
−∞

T (z)− T (z′)
|z − z′|1+α dz′, (7)

with cα a constant [34, 35] and where PV denotes the
principal value. As we discuss below, Eq. (7) can be used
as a tool to relate the asymptotic, large-distance behav-
ior of h`,j to the regime of heat transport. It follows from
Eq. (7) that the regime of heat transport is superdiffu-
sive when 1 < γ < 3. In the limiting case γ → 3, the
fractional Laplacian degenerates into its classical form
and the regime of transport is diffusive. On the other
hand, as γ → 1, the fractional Laplacian approaches the
identity operator and the transport becomes ballistic.

Figure 2 shows h`,j for multiple values of j as a function
of `, for the same system of Fig. 1. When d = 500 nm,

corresponding to a SiC volume fraction of 28.5% (dilute
system), h`,j asymptotically decays as 1/z2

`,j , showing
that indeed the heat transport is superdiffusive, as in
simple dipolar systems [31]. Note that the small vari-
ations in h`,j at the extreme end of the curves come
from finite-size effects and are therefore not taken into
account in the scaling analysis. When d = 40nm [see
Fig. 2(b)], the exponent in the scaling of h`,j increases,
but the transport regime remains superdiffusive. On the
other hand, when d = 5nm, corresponding to a SiC vol-
ume fraction of 97.5% (dense system), h`,j ∼ 1/z`,j , in
which case the transport is ballistic and the system expe-
riences an effectively weak thermal resistance within the
bulk. Figure 2(d) shows γ as a function of d, illustrating
a nonmonotonic behavior as the system transitions from
a superdiffusive to a ballistic regime. Furthermore, as
illustrated on the insets of Fig. 2, which show the con-
tributions of TE and TM modes to h`,j , we find that
TE modes dominate and hence determine the (ballistic)
transport regime at small d; in contrast, TM modes are
the main heat carriers in the superdiffusive regime, which
is the case in typical two-body geometries involving po-
laritonic resonances. This surprising result is a clear in-
dication of the complexities and richness of heat trans-
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FIG. 3. Heat-transfer coefficients h`,j as a function of the
normalized separation z`,j/zN , for D = d = 5nm, along with
the corresponding steady-state temperature profile (inset).
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FIG. 4. Temporal evolution of the temperature profile for a
system (N = 60) interacting with a thermal bath at TB =
T0 = TN+1 = 300K. At t = 0, all bodies have temperature
TB except the two central slabs, which have TN/2 = TN/2+1 =
400K. (a) Ballistic regime (D = d = 5nm). (b) Superdiffusive
regime (D = d = 500 nm). (c) Temperature of slab N/2 as a
function of time in the two previous cases.

port in many-body systems. We remark that for metals
at room temperature (far from the plasmon resonance),
the screening is so strong that interactions in the struc-
ture can be effectively short-ranged. As a consequence of
the screening, the heat-transfer coefficients may exhibit
an exponential decay rather than a power-law decay (see
Sec. IV), and therefore our model for anomalous diffusion
does not apply in this case.

Figure 3 shows h`,j along with the temperature profile
(inset) for d = D = 5 nm. Comparing the former to
the results in Fig. 2(c), one confirms that the transport
regime is independent of D and therefore only depends
on the density within the bulk, determined by d. On the

other hand, comparing the temperature profile in Fig. 3
to those in Fig. 1, one infers that indeed only the ratio
d/D (or thermal resistance) controls the smoothness of
the profile near the boundaries.

III. THERMAL RELAXATION

We now investigate the impact of the previously con-
sidered transport regimes on the relaxation dynamics of
the system. Given an initial temperature distribution
T (0) =

(
T1(0), ..., TN (0)

)
, the temperatures of the bod-

ies T (t) =
(
T1(t), . . . , TN (t)

)
at any give time t > 0 are

solutions of the energy balance equation,

∂tT = K · T + S, (8)

where K = H/(Cδ) is a stiffness matrix defined in terms
of the heat-transfer matrix H, with elements [H]`,j = h`,j
(`, j = 1, . . . , N), and C = 8.15 J·cm−3·K−1 is the
SiC heat capacity per unit volume [36]. Here, hj,j =
−
∑
` 6=j h`,j quantifies the emission rate of body j in

the presence of the other slabs, while S = TB

Cδ (h0,1 +
hN+1,1, . . . , h0,N +hN+1,N ) denotes the source term cor-
responding to power supplied by the baths to each layer.
Equation (8) is simply a discrete form of the fractional
diffusion equation, the fractional exponent being related
to the scaling of h`,j , whose solution in the steady state
reads

T eq = −K−1 · S = (TB , . . . , TB). (9)

Since h`,j depends weakly on Tj , we assume that K is a
time-independent matrix, in which case the time evolu-
tion of the temperature profile is given by

T (t) = exp(Kt) · [T (0)− T eq] + T eq. (10)

Figure 4 shows the temporal evolution of the system
in both superdiffusive and ballistic regimes, assuming
an initial temperature profile corresponding to heating
of the two central slabs to a temperature of 400K. We
observe a strong increase of the relaxation dynamics in
the ballistic regime compared to the superdiffusive case,
showing a difference in characteristic equilibration scales
of nearly three orders of magnitude (from microseconds
to milliseconds for a reduction of about half the initial
overheating). We also observe that, as previously ob-
served in dilute media [17], the relaxation process occurs
in two distinct timescales. First, all layers thermalize at
the same temperature through near-field interactions in
about 5ms in dense media (seconds in the diluted case).
Subsquently, all layers collectively cool down to the am-
bient temperature through far-field interactions with the
thermal bath.
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FIG. 5. Heat-transfer coefficients h`,j for gold slabs with respect to the normalized separation z`,j/zN for fixed values of j.
Here D = 500 nm and (a) d = 500 nm, (b) d = 100 nm , (c) d = 40nm, and (d) d = 5nm. At large z`,j , an exponential decay
is clearly observed. The insets decompose h`,j for j = 15 into TE and TM polarization contributions.

IV. HEAT-TRANSFER COEFFICIENTS FOR
GOLD SLABS

In this section we analyze the heat-transfer coefficients
for the same geometrical configurations discussed previ-
ously, but now taking gold (Au) as the material consti-
tuting the slabs. The permittivity of Au is described with
a Drude model

ε(ω) = 1− ω2
P

ω(ω + iΓ) , (11)

with plasma frequency ωP = 1.37 × 1016 rad/s and dis-
sipation rate Γ = 5.32 × 1013 rad/s. The width of the
bodies is assumed δ = 200 nm, the separation distance
between bodies 1 and 2 and between bodies N − 1 and
N is taken as D = 500 nm, with N = 60. In Fig. 5,
we show the heat-transfer coefficients with respect to the
normalized separation z`,j/zN for fixed values of j and
several values of the internal spacing d, where, as before,
z`,j = |z` − zj |. As shown in the plots, the heat-transfer
coefficients for this metal exhibit an exponential decay
at large separations, which contrasts with the power-law
behavior observed in the polar material. The reason for
that is the strong screening taking place in the metal. For

this material and under these conditions, our model for
anomalous diffusion does not apply; in this case, the ra-
diative heat transport is driven by effective, short-range
interactions. We emphasize that the dependence of the
decay on z`,j may be different for thinner slabs, since in
this case the electromagnetic field is less attenuated.

d (nm) α0 (nm−1) δ0 (nm)
5 1.74× 10−2 115
40 1.48× 10−2 135
100 1.19× 10−2 169
500 5.08× 10−3 394

TABLE I. Calculated values of the absorption coefficient α0
and skin depth δ0 as a function of d for Au slabs.

According to our numerical results, assuming a contin-
uous distribution of bodies, for the metal the heat trans-
fer coefficients can be written as

h ∼ e−α0z, (12)

where α0 can be interpreted as an absorption coefficient.
Thus, we can define a skin depth [37]

δ0 = 2
α0
, (13)
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which for bulk metals at room temperature is typically
about 100 nm. In Table I, we report the values of the ab-
sorption coefficient α0 and the skin depth δ0 for d = 5nm,
d = 40nm, d = 100 nm, and d = 500 nm. The values
of α0 are obtained by fitting the large-distance behavior
of the heat-transfer coefficients shown in Fig. 6(a). In
Fig. 6(b), we show that d and δ0 follow a linear relation.
The expected value of δ0 for the bulk can be obtained in
the limit d→ 0, which can be extrapolated from a linear
fitting [see Fig. 6(b)]. In this limit, we get δ0 ≈ 112 nm,
which is consistent with the previously mentioned typical
value.

V. CONCLUSIONS

We have studied a many-body geometry of planar slabs
which exhibits a transition in the regime of radiative heat
transport, from ballistic to superdiffusive, with respect to
slab density. This transition has been found in a polar
material, where the screening is weak and a long-range
photon-mediated heat exchange takes place through the
system. Because of the long-range coupling, the decay
of the heat-transfer coefficients through the structure is
characterized by a power law whose exponent determines
the anomalous regime of heat transport. In many-body
systems composed of metals, on the contrary, we have
shown that the heat transfer coeffcients can decay expo-
nentially and hence anomalous diffusion is not observed.
In this case, the radiative transport is driven by short-
range interactions. Furthermore, our predictions reveal
complex, many-body effects in addition to dramatically
different relaxation dynamics, depending on the trans-
port regime. These effects could have important impli-
cations for thermal management at nanoscale in devices
involving multiple, interacting elements thermally cou-
pled in the near field.
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Appendix: Thermodynamic limit

Here we perform the derivation of the energy balance
equation (4) in the thermodynamic limit which leads to
Eq. (6). We assume that the system is large enough so
that we can take the total length L → ∞ and the num-
ber of bodies N → ∞, with the linear density λ = N/L
fixed. In doing so, the positions of the bodies can be
continuously described by zj → z, and the flux, tem-
perature, and heat-transfer coefficients become functions
of the position such that ϕj → ϕ(z), Tj → T (z), and
h`,j → h(z, z′), respectively. In addition, in the thermo-
dynamic limit, the summation over the bodies in Eq. (4)
can be expressed as

lim
N→∞

∑
` 6=j
→ lim

N→∞
L→∞

N

L
PV

∫ L/2

−L/2
dz′ = λ PV

∫ ∞
−∞

dz′,

(A.1)
where PV denotes the principal value which needs to be
used because the sum does not include ` = j. Equation
(4) then becomes

ϕ(z) = −λ PV
∫ ∞
−∞

h(z, z′) [T (z)− T (z′)] dz′. (A.2)

Identifying the heat-transfer coefficients in the thermo-
dynamic limit from their discrete counterpart could be a
difficult task. However, here we are only interested in the
asymptotic, large distance behavior of these coefficients,
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namely, when |z − z′| is large. As an ansatz, we assume
that h(z, z′) = q/|z − z′|1+α, where q is some constant
and 0 < α < 2. According to the numerical simulations
shown in Sec. II, this assumption is well justified since
the system exhibit anomalous diffusion. Therefore

ϕ(z) = −qλ PV
∫ ∞
−∞

T (z)− T (z′)
|z − z′|1+α dz′. (A.3)

Finally, introducing the fractional Laplacian (−∆)α/2 for
1-dimensional systems through the identity (7), the heat
flux can be written as

ϕ(z) = −qλ
cα

(−∆)α/2T (z), (A.4)

with the constant cα = 2αΓ(α+1
2 )/[π1/2|Γ(−α2 )|], Γ(x)

being the Gamma function.
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