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We present a comparative theoretical study of magnetic resonance within the polaron pair re-
combination (PPR) and the triplet exciton-polaron quenching (TPQ) models. Both models have
been invoked to interpret the photoluminescence detected magnetic resonance (PLDMR) results
in m-conjugated materials and devices. We show that resonance lineshapes calculated within the
two models differ dramatically in several regards. First, in the PPR model, the lineshape exhibits
unusual behavior upon increasing the microwave power: it evolves from fully positive at weak power
to fully negative at strong power. In contrast, in the TPQ model, the PLDMR is completely posi-
tive, showing a monotonic saturation. Second, the two models predict different dependencies of the
resonance signal on the photoexcitation power, Pr. At low Pr, the resonance amplitude AI/I is
o« P, within the PPR model, while it is «c P? crossing over to P; within the TPQ model. On the
physical level, the differences stem from different underlying spin dynamics. Most prominently, a
negative resonance within the PPR model has its origin in the microwave-induced spin-Dicke effect,
leading to the resonant quenching of photoluminescence. The spin-Dicke effect results from the spin-
selective recombination, leading to a highly correlated precession of the on-resonance pair-partners
under the strong microwave power. This effect is not relevant for TPQ mechanism, where the strong
zero-field splitting renders the majority of triplets off-resonance. On the technical level, the analyt-
ical evaluation of the lineshapes for the two models is enabled by the fact that these shapes can be
expressed via the eigenvalues of a complex Hamiltonian. This bypasses the necessity of solving the
much larger complex linear system of the stochastic Liouville equations. Our findings pave the way

towards a reliable discrimination between the two mechanisms via cw PLDMR.

I. INTRODUCTION

Over the years, optically detected magnetic resonance
(ODMR) has proven to be a powerful tool for the study
of spin-dependent recombination and dissociation pro-
cesses, both in inorganic!® and in organic* semiconduc-
tors. High sensitivity, exceeding the sensitivity of conven-
tional electron spin resonance by about six orders of mag-
nitude, renders ODMR the tool of choice when it comes
to m-conjugated polymers,* where the density of spin car-
riers is small. Photoluminescence detected magnetic res-
onance (PLDMR), being a subset of ODMR, has an ad-
vantage as it provides the most straightforward probe
of the radiative singlet exciton population and quantum
yield of the material.* 7 Besides, this method is suitable
for probing the bulk of a photoluminescent material with-
out the necessity of device fabrication.

Two different models have been employed to explain
PLDMR results in m-conjugated materials. The double
modulation PLDMR experiment® advocated the quench-
ing model based on the spin-dependent reaction between
triplet excitons and polarons. On the other hand, the
experimental study of the frequency dependence of the
in-phase component of PLDMR” employed the polaron
pair recombination model. Subsequent publications in-
voked both the quenching model®® and the recombina-
tion model,'? for the interpretation of results obtained
for the same material, polymer MEH-PPV.

In order to distinguish between the two models, pulsed

PLDMR experiment were conducted,'' in which Rabi
beats of PLDMR in MEH-PPV and its deuterated vari-

ant were explored. The results appear to reveal the fin-
gerprints of both the recombination and the quenching
mechanisms. Hence, for conclusive discrimination, addi-
tional continuous wave PLDMR measurements revealing
the nature of the underlying spin-dependent processes are
desirable. Equally, theoretical predictions of the differ-
ences in the PLDMR within the two models are highly de-
sirable. That is the goal of the present paper. To achieve
this goal, we employ the stochastic Liouville equations
for the density matrix to calculate analytically the res-
onance lineshapes and saturation within the recombina-
tion and quenching models. We show how the difference
in the underlying spin dynamics translates into very dif-
ferent dependencies of the PLDMR on the optical exci-
tation intensity. Also, within the recombination model,
the lineshape is predicted to be very peculiar, with a
peak precisely at the resonant frequency evolving into a
minimum at higher microwave power.

Our results on the dynamics of the spin pairs within the
polaron recombination model agree with the predictions
based on the analysis of eigenmodes for the calculation
of transport,'?!3 and with a direct analytical solution of
the Liouville equations.'®'® At the same time, Refs. 12
and 13 do not employ the density matrix formalism at
all. Instead, the spin-dependent recombination is incor-
porated into the equation of motion for the amplitude of
the singlet. Refs. 14 and 15 study the dynamics of elec-
tron and hole polaron spins with different g- factors, and
do not consider the random local hyperfine fields at all.
This makes the polaron pair spin dynamics very different
from that considered in the present work, where the elec-



tron and hole g- factors are practically indistinguishable,
and the singlet-triplet interconversion is governed by the
local hyperfine fields.

We consider the regime relevant to fluorescent -
conjugated polymers. According to experiments, this
regime is characterized by very close electron and
hole polaron g- factors,'%16 relatively strong hyperfine
interaction, 1617 relatively slow recombination from
the singlet polaron pair state,”'7 relatively slow anni-
hilation of triplet excitons from doublet triplet-polaron
state,58 relatively long spin coherence times,'%:'7 weak
exchange,'® and weak dipolar interaction between po-
laron pair or exciton-polaron spins,®%!2 etc.

Our analytical results can be directly generalized to
include a broader class of ODMR techniques, as well as
other detection methods, e.g., electrical, reaction yield,
and capacitance measurements. In this connection, no-
tice the similarity between our results for the polaron
pair recombination model and those observed in recent
transport'® and dielectric polarizability?® studies.

The established substantial differences between the
predictions of the polaron pair recombination and triplet
exciton-polaron quenching models can enable the differ-
entiation of the two mechanisms in interpretation of con-
tinuous wave PLDMR results.

II. THE POLARON PAIR RECOMBINATION
(PPR) MODEL

A. Qualitative picture

The PPR model is illustrated in Fig. 1. The pro-
cesses involved are the generation of weakly coupled po-
laron pairs (PP) at rate g, their dissociation with at rate
kg, and recombination from the singlet pair state at rate
k,.2! The latter process constitutes the reaction,

P.+ P, =S, (1)

between the electron and hole polarons, P, and Py re-
spectively, yielding a singlet exciton, S. Thus, the spin-
selective recombination is incorporated as the restriction
that Eq. (1) can occur only for singlet PPs, i.e., for triplet
PPs it is forbidden.

In an applied static magnetic field, By = Bz, the
electron- and hole-polaron spin-up (] 1), and | 1)5) and
spin-down (] J)e and | |)p) states occupy the Zeeman
levels, %i‘wBo and —%hvBo respectively, where « is the
polaron gyromagnetic ratio (we assume equal gyromag-
netic ratios for the electron- and hole-polarons). The
triplet-singlet PP spin states,

ITy) = | T) [ Dhs 1T=) =1 el Pns
To) = 7(| Nel P +1Hel Da),

|S> = (l T>e| J/)h - | J/>e| T>h)7 (2)
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FIG. 1: (Color online) Schematics of the processes underlying
the PPR model. The black arrows indicate the PP generation;
out of g PPs per second, 4 are singlets and 34—9 — triplets. The
brown and green arrows respectively indicate the dissociation
and recombination, Eq. (10). The orange arrows represent
the singlet-triplet beating, induced by the hyperfine coupling
and resonance microwave, Eq. (9), and the spin-lattice relax-
ation, Eq. (11). The yellow background outlines the compo-
nents of the stochastic Liouville equation (8).

form a convenient basis for the discussion of magnetic-
field effects. The resonant microwaves couple the Zeeman
levels of individual spins and, correspondingly, the triplet
PP levels. On the other hand, random hyperfine fields
created by the nuclei (almost entirely hydrogen protons)
at electron- and hole-polaron sites induce interconversion
between the singlet and triplet PP levels. Characteristic
magnitudes of these hyperfine fields bne. and byep are
different in general and define two distinct hyperfine fre-
quencies, wnf,, = Ybuf,u, 1 =€, h.

If the pair spins are uncorrelated the populations of
individual Zeeman levels in the microwave drive field
B, (t) = 2Bj cos(wt)x oscillate with Rabi frequencies

Q, = @/wfb—l—w%,

= vB; is the microwave drive amplitude, and

p=e, h, (3)
where w;

wy =7b.,+0, d=7vBy—w, (4)
are the polaron Larmor frequencies in the rotating
frame and the detuning frequency, respectively. The z-
components of the random hyperfine fields b, , follow a
Gaussian distribution, entailing a Gaussian distribution
of Larmor frequencies:

1
vV 27T(Uhf)u

The most important physics of the PPR model is that
the spin-selective recombination correlates the dynamics
of each of the the spins in the pair. Indeed, if the recom-
bination rate was the same for all four spin-pair states,
then the Rabi beatings of the level populations would not
affect the luminescence, and therefor no PLDMR would
be detectable.

The essence of PLDMR technique is that the intensity
of recombination shown in Fig. 1 exhibits a resonance as

N(Wu) = e_(wu—5)2/2wﬁf,u, I"w=e, h. (5)



a function of §, which becomes progressively pronounced
as the microwave field amplitude w; exceeds wht,. The
PLDMR amplitude is directly related to the singlet ex-
citon density ng. Therefore, the evaluation of resonance
lineshapes reduces to finding ng versus 9, wy, and wy, .
One can naturally distinguish two regimes: weak drive,
w1 K Wiy, and strong drive, wi > whpry. It might
seem that, at weak drive Rabi oscillations do not occur.
However, as the hyperfine fields are random, some spins
will be at resonance. Their fraction can be estimated
as'®2122 ~ o) Jwyg .. Our main result for weak drive is
that these pairs dominate the resonance line shape, lead-
ing to the linear dependence of the resonance amplitude
on wi. This conclusion contrasts with the results ob-
tained from simple rate equations” and from other stud-
ies of PP spin dynamics and recombination that exclude
averaging over local hyperfine fields.'#23

In the strong drive regime, the physics underlying the
resonance line shape is different. In this regime, not only
are the four conventional spin-pair states not eigenstates,
but actually (|T%1) —|T-1))/v/2 is close to an eigenstate,
and it is decoupled from |S). This means it is a long-lived
state. We will see that this decoupling is a consequence
of the spin Dicke effect.'?13 It manifests itself as a mini-
mum in the resonance line shape at zero detuning, which
gradually takes over as the microwave drive increases,
turning the resonance to fully negative.

More formally, under steady state conditions, the pho-
toluminescence intensity, Z, is proportional to the steady
state singlet density, ng. The latter is found from the
rate equation,

Ong = Gs — Reng + a0, wr), (6)

where Gg is the photoexcitation rate of singlet excitons,
Ryg is their decay rate, and «(d,w;) is the rate of singlet
exciton generation due to the PPR, Eq. (1), rendering
the PLDMR within the PPR model. The normalized
PLDMR is then given by

ng(d,wi) —ng(0)  «a(d,wi) — a(0)

B 7is(0) - Gs ()

AI(& wl)
7(0)

where the relation, Gg > «, common for many systems,*

is used in the last equality, and zero arguments corre-
spond to wy; = 0, implying the absence of microwave
drive; a(d,ws) is governed by the spin dynamics of po-
laron pairs, to which we turn next.

B. Spin dynamics of weakly coupled electron-hole
pair ensemble

The spin dynamics of a PP ensemble is analyzed by
solving the stochastic Liouville equation for the spin den-
sity matrix p,

dp .
d_? = i[p, H] + %1 +Rar{p} + Rafp}, (8

where the first term describes the spin dynamics due to
the magnetic interactions governed by the spin Hamil-
tonian H, g is the PP generation rate, 1 is the identity
operator, Rq, represents the pair dissociation and recom-
bination, and Ry — the spin-lattice relaxation processes
(for the discussion of the relation between Eq. (8) and a
more general Lindblad equation see Appendix A).

For simplicity, we neglect the spin exchange and dipo-
lar interactions (generalization for the non-zero spin ex-
change and dipolar interactions will be discussed later).
In the rotating frame, the spin Hamiltonian is given by

H = w52+ wnS7, + w1 (SE + S7), 9)

where w, and wy, are local electron and hole detunings,
see Eq. (4). They are different due to the different on-
site hyperfine fields. S, stand for the electron- and
hole-polaron spin operators (we set h = 1).

Conventionally, the spin-dependent recombination
processes are described within the singlet-triplet basis of
PP. We assume that the pair dissociation occurs at the
equal rate kg4 from all spin states. In terms of the matrix
elements we have

Rar{ptas = %(%S +058)Pass (10)

where «, 8 = +1, —1, 0, and S enumerate the singlet and
triplet spin states |T41), |T-1), |To), and |S), respectively.

For the spin-lattice relaxation we take the form,'*

—(1/Ta) [pus — Bastr(p/4)). (1)

This relaxation tends to equalize the state populations,
with the rate 1/Ty.

As an important step, we introduce the complex
Hamiltonian,

H=H —i(wqg/2)L — i(k,/2)Ig, (12)

—kipas —

Rsl{/’}aﬁ =

where wg = kq+ 1/Ty and IIg = |S)(S] is the projection
operator onto the singlet state. In terms of the complex
Hamiltonian, Eq. (8) for the density matrix takes the
form,

dp
dt

The observable quantities are described by the steady
state density matrix, p, satisfying

i(pH* —Hp) + i (9+ T3 trp)L. (13)

. |
i(pH* — Hp) + 4(g+T1 trp)]l—O (14)

We write the formal solution of Eq. (14) as

1 &0 e
p= 4(g-i-T1 trp)U U= / dt ettt (15)
0
Thus, the matrix structure of p is posed by U. Another
useful relation is found by taking the trace of the right
hand side of Eq. (14):

g — katrp — k.pss =0, (16)
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FIG. 2: (Color online) Sketch of the function, £(0,w:), defin-
ing the PLDMR amplitude at zero detuning [see Eq. (19)], in
units of Lo, Eq. (38). The constant C, Eq. (41), is the satu-
ration value of £(0,w1)/Lo. The inset zooms into the region
indicated in the main panel with a dashed rectangle.

where pgs = (S]p|S) is the singlet polaron pair popu-
lation. Equation (16) is the balance equation between
the generation of PPs and their destruction, taking place
from the triplet and singlet states with the rates k4 and
kq + ky, respectively. From Egs. (15) and (16) we find:

_ 1= (wa/)trU (0, w1)
Frpss = gL(0,w1), L= 1— (1/4Tg)trU (8,w1)

As will be seen shortly, Egs. (15) and (17) are sufficient
for the calculation of «(d, wy), which is the resonance line-
shape. Most importantly, we will need only the eigenval-
ues of 4 x 4 complex Hamiltonian H. This bypasses the
necessity of solving effectively 10 x 10 complex system of
linear equations (14).

The calculation of resonance lineshape, a(d,w;), in-
volves also the averaging over the Gaussian distribution
of hyperfine Larmor frequencies, Eq. (5):

a(d,w1) = kr(pss)nt = g(L(J,w1))n- (18)

Furthermore, for the PP generation rate one has g oc 3,
where np is the steady state density of polarons. Thus,
from Egs. (7) and (18) we write:

(17)

NV

T  Gs
where the constant, Ap, is determined by the PP forma-
tion cross section, proportional to the polaron mobility.

From now on we focus on the regime of weak recom-
bination, k, < wys. Still, before going into the details
of analytical calculation, in Fig. 2 we outline the typical
result obtained by solving Eq. (14) and performing the
averaging in Eq. (18) numerically. Note that the curve
in Fig. 2 is a sketch for model parameters in the regime
of weak recombination [for an actual plot with particular
model parameters we refer to Figs. 3 and 5(a)]. The plot
in Fig. 2 shows a steep increase at weak w; < wyy, a
maximum followed by a moderate decrease at wy 2 wyy,
and a very slow decrease to negative values with satura-
tion at the strongest drives. This picture appears to be

L(O,w1), L={(LO,w)—L0)) . (19)

hf?

quite general for a wide range of model parameters. In
addition, in the limits of weak and strong drive the curve
can be described analytically. This is accomplished in
the next subsection.

C. Perturbation with respect to small k,

In the limit of slow recombination, k, < wy¢, the per-
turbative approach applies. The unperturbed eigenstates
of H are the eigenvectors of the Hamiltonian (9):

H|vo) = €alpa), a=1,..4. (20)
In the absence of recombination the pair partners are
independent, so that the eigenvalues are given by

1 1
€1 = —€4 = 5(98 +Qh>, €y = —€3 = 5(98 - Qh)a (21)

where () j, are defined by Eq. (3).

In the presence of recombination, the eigenvectors are
perturbed by the operator V' = —i(k,/2)Ilg, which is
responsible for this process. The matrix form of this
operator, Vog = (pa|V|ps), is found in Appendix B. It
is conveniently parameterized by the angles,

w1

tan2¢, = —,
W

w=e,h. (22)

The explicit form of the matrix reads:

wo (5505
:_Zim e 11 ¢ | (23)
&£ ¢ —¢ &
where
= tan((beh)v Peh = Qe — P (24)

The leading recombination-induced corrections to the
eigenvalues Eq. (21) are given by the diagonal elements;

el = _i% Sin? gon, €5 = _i% cos? on.  (25)

According to the standard perturbation theory,?* the
eigenstates of H are close to |pq), when |y — €g| > k,
for a # . Here we make a crucial observation that for
certain pairs for which 2. and €2 are anomalously close,
this condition is violated. Such a “softening” of modes
manifests the degeneracy in the perturbation theory. As
a result, the eigenstates of H strongly deviate from |p2)
and |p3), and are determined by the small V.

The condition of softening is progressively satisfied as
the drive increases. This is because |Q. — Q| ~ |w2 —
w?|/2wy decreases with drive. As a result, |p2) and |p3)
are close to

(IT1) = [T-1) £ V2[5)), (26)

N~



whereas the corresponding eigenstates of H are close to
1
V2

This in turn suppresses the overall recombination. It
is important to emphasize that the strong modification
of eigenstates and the entailing lifetime anomaly is the
consequence of the back-action of recombination on the
quantum dynamics of PP spins. As pointed out in Refs.
12,13, there is a close analogy between the long living
states and the subradiant modes in the Dicke effect.?’
In previous studies of spin-dependent recombination this
back-action is neglected (see, e.g., Ref. 26).

The region of strong drive, where |Q. — Q| < ki, is
difficult to access because of the degeneracy. The diffi-
culty is circumvented in the following way. Neglecting all
the off-diagonal elements of Eq. (23), except for Va3 and
V32, induces an error in eigenstates and eigenvalues only
of the order of k,/Q, and k2 /€, respectively, whereas
the result for tr U remains correct to the leading order
(this is analogous to the secular approximation widely
used in the theory of magnetic resonance®”). Therefore
we proceed by replacing V = —i(k,/2)IIg in Eq. (12)
with

(IT41) = |T-1)) and |S). (27)

20 0 0
k1 [0 1 -10
Aire o -1 1 0
0 0 0 ¢

V= (28)

This replacement retains all the eigenvalues and eigen-
vectors of H to the leading order, and allows the direct
evaluation of the operator U from Eq. (15). We find:

4(4wd + kT)
4w? + 2wak, + (k2/4) sin? (2¢.n)
N k7 cos* (den)
[k cos?(¢en ) + 2wq] [4€3 + wa(ky cos?(¢en) + wa))

trU(S,wy) = (29)

(as shown in Appendix B, the replacement of V' by V,
amounts to ~ (k,/€,)? order terms, so that Eq. (29)
is highly accurate). Notably, the §- and w;- dependence
of trU enters in Eq. (29) via the angles, ¢.p, and the
energy, €. Analytical expression Eq. (29) is the main
result of this Section. We emphasize again that it is
derived without solving the 10 x 10 equation (14).

The microscopic origin of the two terms in Eq. (29) is
easy to trace back. The first term comes from the diag-
onals of V' and describes the interplay of spin dynamics
and recombination far from the degeneracy. This term
is dominant at weak and moderate drive, w; < wps. The
second term originates from the off-diagonal elements,
Vo3 and V39, and becomes important with the onset of
degeneracy. It quantifies the microwave-induced Dicke
effect, prevailing at strong drive, wy > wy;.

The first term in Eq. (29) is monotonically decreas-
ing function of sin? 2¢.,. At the same time, the second

term in Eq. (29) is monotonically increasing function of
cos2 ¢en,. This observation yields the estimate,

16 dwq + 3k,
— <ttt —— 30
dwg + k. Y= wd(wd—i—kr)’ ( )

for the upper and lower bounds of trU. For k, < wg,
the left and right sides of Eq. (30) are both close to
4/wq, while they are quite different in the opposite limit,
k. > wy. This means that, in the first case, magnetic
resonance can induce only a weak relative variations of
tr U, and therefore of «, whereas a considerable relative
change in « is possible in the latter limit.

D. Averaging over the random hyperfine fields for
slow spin-lattice relaxation

We defer the discussion of finite spin relaxation to the
end of this Section, and proceed with the case of long
coherence time, Ty > k', k1, From Eq. (30) it follows
that in this case (1/4T4)trU < 1, so that the denomi-
nator of Eq. (17) can be treated perturbatively, yielding

L=1— (kg/4)trU. (31)

Thus, finding the hyperfine average, (L)nf, reduces to
averaging of Eq. (29) over the Gaussian distribution of
Larmor frequencies:

(60 Y = / dwodeon N (we)N (wn) teU (5,01)  (32)

(for simplicity we assume that the mean square devia-
tions of the Gaussian distributions are the same; wye =
whf,p, = whf, unless it is stated otherwise).

1. Zero detuning

For zero detuning, § = 0, the random variables z =
(We + wr) /2wy and y = (we — wp)/2wy have the same
Gaussian distribution,

1

P(‘T) = —0 exp(_$2/68)7 Bo = o1’ (33)

Relevant quantities entering in Eq. (29) are given by

4y2

-2 o
S (2¢8h) - (1+(E2 _y2)2+4y27

(34)

and

o= (Vi@ P -Vir@—yp?). ()

Below, the averaging is performed analytically, in the
limits of weak and strong drive.



2. Weak resonant drive, w1 < wny

In the limit of weak drive the second term of Eq. (29) is
negligible, because the PP realizations with 4¢3 < wqk.,
for which this term is appreciable, have the probability
~ Vwak, /wns < 1. Therefore, in this limit we neglect
the second term of Eq. (29). For typical pairs under a
weak resonant microwave one has |z|,|y| > 1, so the
approximate relation,

4y2

) -
S1n (2¢eh) ~ m;

(36)

can be used with the first term of Eq. (29), leading to

2
Y

ﬁ(wl) = EO/dxdyP(x)P(y) a2 (.IQ — y2)2 ¥ y27 (37)

where
kdk?_ \/ 2wd(2wd + kr)
LO = , 4= .
de(de + k,«)(‘lwd + kT) 4wy + ki
(38)

For afy > 1 (w1 < awns) the integral (37) further simpli-
fies, as in this case it is dominated by the narrow region,
||z] = yl| < 1/a < Bo. Due to the latter relation, the
distribution of |z| — |y| can be replaced by the constant,
1/ V271, and the resulting integral can be calculated.
This gives:

™ W1

L{w1)  /7/2 _

Lo aBo

The linear dependence Eq. (39) of PLDMR amplitude
on wi corresponds to «x v/ Pupw dependence on the mi-
crowave power, Py . This result agrees well with that of
Ref. 13 and differs from the earlier predictions of o¢ Py
dependence.”23

(39)

20,2 Wht '

3. Strong resonant drive, w1 > wys

In the case of strong drive the second term of Eq. (29) is
also important. In this case one typically has |z|, |y| < 1,
and therefore the approximations,

sin?(2¢en) ~ 492, 2 ~ wizy, (40)
can be used in the first and second terms of Eq. (29),
respectively. Also, exploiting 2wz > wgk, (wne >
Vwgk,), in the second term we replace cos?(¢en) by 1,
neglecting a term ~ y2. In terms of the constants,

b v 2wa(2wg + ki) ~ Vwa(wa + k)
B ky. ’ B Whf ’
(dwq + k. )? dwg + k,
B=—"_"" =— 41
kg ’ ¢ 2(wd + kr) ’ ( )
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FIG. 3: (Color online) The PLDMR amplitude at zero de-
tuning, L(w1), found by numerically solving the Liouville
Equation (14), is plotted in black, together with the weak-
driving asymptote, Eq. (39) [green] and the strong-driving
asymptote, Eq. (44) [magenta]. The parameters are set to
wq = ka + 1/Tw = 30 kHz, k, = 230 kHz, and wn¢/27 = 16.8
MHz, corresponding to the hyperfine field of 6 Gauss. Inset:
Plots of the universal functions, Egs. (42), (43).

and the universal functions,

0 2
9 [dp e”*

fl(Z) =z ﬁm = \/;Z exp(zQ)erfc(z), (42)
P =2l = P e ) @

where erfc(z) is the complementary error function, and
Hy(z), Yo(z) are the zero order Struve and Bessel func-
tions, respectively, our result reads:

L(w1)
Lo

= B[l - h (b wl/whfﬂ —Cfa (CCLJ1/(Uhf). (44)

Considering the simple properties of fi(z) and fa(2),
plotted in Fig. 3 inset, this equation explains the de-
crease of L(wq), Fig. 2, in simple terms. First we note
that b <1, ¢ <« 1, and B ~ C ~ 1. Thus, the domain
w1 2 whpe, next to the peak of L, is dominated by the
first term of Eq. (44). The last, Dicke term of Eq. (44)
becomes relevant for wy > wyy, where the first term van-
ishes. Finally, C gives the saturation value of £(w1)/Lo.

The peak of £(w;) occurs between the curves given by
Egs. (39) and (44). For wg < k., entailing small a <
1, this domain is very narrow and the position of peak,
wi"® is very close to the intersection of the two curves.
From this argument one finds wi®®* ~ wyra/2/m. The
frequency w9, at which £ becomes 0, can be estimated
from the condition that f; in Eq. (44) is nearly 1. A
good estimate for f1(z) ~ 1 is z ~ 5, corresponding to
WY ~ Bwpe/b. Thus the characteristic values, w® and
WY, are expressed via wyr and the kinetic parameters,
wg and k,. This is illustrated in Fig. 3, where we plot
L(wy) found by numerically solving Eq. (14), together
with the asymptotes, Eqs. (39), (44). In Fig. 3 we used



the parameters inferred for a semiconducting fluorescent
polymer,'” implying wy < k..

E. Lineshape analysis

As illustrated in Fig. 4, the resonance lines can be di-
vided into four groups by their shapes. At weak drive,
corresponding to the region of initial linear growth in
Fig. 2, the lineshapes are double Gaussian. In the region
near the maximum in Fig. 4, w1 < wyy, the lines de-
viate from double Gaussian and become broader. The
next, third group includes the lines with a minimum
at resonance and two mirroring maxima at the sides, is
found for wy 2 wht, and the fourth type of lines, showing
completely negative resonance, appear at the strongest
drives, wy > wpr. As discussed shortly, the two latter
lineshapes are clear fingerprints of the spin Dicke effect.

The analytical forms of lineshapes can be found from
Egs. (29), (32), where the local Larmor frequencies are
distributed by Eq. (5), with the non-zero detuning §.
At weak drive and for the general case of unequal elec-
tron and hole hyperfine coupling strengths, Eq. (37) is
valid with a modification of the product, P(z)P(y). The
result of the asymptotic evaluation of the corresponding
integral,

L) _mon [ e Mo e Fh (45)
Lo 2a \ V2mwhnge  V2TWhen 7

is the generalization of Eq. (39) for whfe 7 whe,n. The red
curve in Fig. 4 represents such a double Gaussian. Ex-
perimentally, this is the most easily accessible domain of
drive. For stronger microwave strength, while the line-
shapes are still accurately described by Egs. (29) and
(32), only a qualitative analysis will follow.

max
<
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o >
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>>
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FIG. 4: (Color online) Sketch of lineshapes for different mi-
crowave amplitudes. Upon increasing the drive amplitude,
the line (red) broadens and grows (green), and subsequently
evolves to fully negative (magenta). Emergence of minimum
(blue) manifests the onset of the spin-Dicke effect. Note that
the plots are intended to assist the explanation and do not
reflect any actual dependence.

The green curve in Fig. 4 is the line with the largest
amplitude, occurring at w; = W™ < wye. It is broader
than the double Gaussian Eq. (45). Both the red and
green curves in Fig. 4 are well described by the first term
of Eq. (29), meaning that the Dicke subradiant state is
not efficient at this microwave strength.

With the further increase of microwave strength over
wht, the line amplitudes decrease and central dips appear,
as seen for the blue and cyan lines in Fig. 4. This signifies
the onset of the subradiant mode, whose contribution is
negative. The contribution of this mode overruns the reg-
ular term, which in turn becomes progressively smaller,
at yet stronger microwave fields. In Fig. 4, the cyan line
shows the situation where the signal is zero exactly at the
resonance, and the magenta line depicts a fully negative
resonance line. The latter represents the form at which
the lines saturate at the strongest drives.

F. Finite spin-lattice relaxation

From Eqs. (12) and (15) it is easy to see that the op-
erator U depends on the spin relaxation and the non-
radiative decay only through the combination, wg =
kq + 1/Ty. At slow spin relaxation the approximation
Eq. (31) is valid, and therefore, up to an inessential
overall factor, £ also depends on wy, rather than on kg4
or Ty. Thus, in the limit 1/Ty < kg4, we encounter the
conventional property of the additive inverse lifetimes.

To scrutinize the regime of intermediate spin relax-
ation, 1/Ty 2 kg, we perform numerical simulations
based on the exact formula Eq. (17). The results of our
numerical analysis show that, besides the additive feature
of inverse lifetimes, the main effect of the spin relaxation
is the overall reduction of the amplitude of £. However,
the latter effect is inessential because of the overall nor-
malization uncertainty in real experimental conditions.

Figure 5 compares the finite spin relaxation results
from the hyperfine averaged exact equation (17) with the
outcome of the approximation Eq. (31). The parameters
in Fig. 5 are borrowed from Ref. 17, where 1/Ty ~ 5k is
inferred experimentally. The solid lines in Fig. 5 are nor-
malized to ensure the maximal value of 1 for the function,
L(d,w1), which occurs at w; = w** and ¢ = 0, both for
the exact and the approximate solutions.

The plots in Fig. 5(a) and (b) clearly indicate very close
results from the exact Eq. (17) and the approximation
Eq. (31), thus confirming the additive character of spin
relaxation and non-radiative decay rates for w; < wi*®*
and moderate spin relaxation, 1/Ty 2 kq. Deviations be-
tween the exact and approximate lines are noticeable in
the domain of strong drive w; > wi®*, Fig. 5(c). Appar-
ently, this could mean that the effect of spin relaxation
can be resolved from that of the non-radiative recombi-
nation in the limit of strong drive. However, the approxi-
mate lines can be made very close to the exact ones upon
applying different normalization factors for different w;-
values, see Fig. 5(c). Therefore, in order to resolve the
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FIG. 5: (Color online) Illustration of the role of spin-lattice
relaxation in PPR model. Simulation results are shown for
Tq = 40 us, kq = 5 kHz, and k, = 230 kHz (Ref. 17). (a) The
signal at resonant driving is plotted from the exact Eq. (17)
with orange, and from the approximate Eq. (31) with black.
The plots are normalized to reach the maximum value of 1.
(b) and (c) Lineshapes for different microwave strengths are
plotted in colors from Eq. (17), together with the correspond-
ing plots from the approximate Eq. (31) (black lines). The
normalization is the same as in (a). In the domain w1 < W™,
shown in (b), the approximate lines are very accurate, reflect-
ing the additive character of spin relaxation and non-radiative
decay. For wi > wi™™, illustrated in (c), the approximate
curves deviate form the exact ones substantially. Still, ap-
proximate lines can be made very close to the exact ones with
individual normalization for each w; (black dots).

spin relaxation effects, multiple resonance lines at differ-
ent strong drive fields are necessary.

III. THE TRIPLET EXCITON-POLARON
QUENCHING (TPQ) MODEL

Various schemes employing the TP(Q mechanism have
been invoked in the literature to date.%2830 Although
different in many aspects, all these schemes stem from
the spin dependent reaction between a triplet exciton,
TE, and a polaron, P:

TE + P ¢ P* + Sy, (46)

where Sy stands for a singlet ground state and * denotes
a possibly excited state. While the right hand side of Eq.
(46) is spin doublet, the triplet exciton-polaron complex
(TEP) in the left hand side can form two different spin
multiplets, a quartet and a doublet. Hence the spin de-
pendence of the reaction (46), which can occur only from
the doublet state of the initial complex. Furthermore,
under magnetic resonance conditions, the TEP spin mul-
tiplicity, and therefore the reaction yield of Eq. (46), can
be altered by a microwave drive.

The reaction (46) does not involve singlet excitons
(SE), and the SE density, ng, becomes sensitive to the
reaction yield because of a quenching of SEs by TEs and
polarons. Ultimately, this quenching facilitates the opti-
cal detection of the microwave-induced reaction yield of
Eq. (46). For simplicity, we will consider the quenching
by TEs only, described by the the rate equation,

Oins = Gs — Rgns — Rsrnsnr, (47)

where the SE generation and decay rates, Gg and Rg
respectively, are the same as in Eq. (6), whereas Rgr is
the SE — TE quenching rate. For the TE density, nr,
one has:

ont = Gr — Rpnt — Rgpnrng — B(d,wi)nt,  (48)

where G and Ry are respectively the TE generation and
decay rates, and 3(d, w1 ) is the rate of the TE population
decline due to the reaction (46), which depends also on
the polaron density, np.

Under typical conditions, the non-linear terms in Eqs.
(47), (48) are small perturbations, and the steady-state
densities are quite accurately given by the first two terms
in the rate equation right hand sides:

ﬁT ~ GT/RT. (49)

Note that the description Egs. (47)-(49) is valid for not
very strong photoexcitation power Pr, ensuring a linear
regime with ng < P, (Gs x Pr).

In order to describe the magnetic field effects, higher
order corrections to Eq. (49) must be considered. From

Egs. (47), (48) we find:
Gs(Rr + )

_ |(Rr+B  Gr-Gs\®
"S_\/< 2Rsr | 2Rg >+ RsRsr

Rr+pB8 Gr—-Gs
(2RST + ons ) (50)

ns ~ Gs/Rs,

The microwave-induced change of population, Ang =
ng(wy) — ng(0), is found from Eq. (50) to be

ngntRst

AN =
" T T ReRy

[8(8,w1) = B0)], (51)
where we have used the leading order results, Eq. (49),
and the relation, Gg > Gr.

We derive 8(0,w1) in Appendix C from the stochastic
Liouville approach, by assuming that the steady state
TEP generation rate is given by the product, Anpnr,
where A is a constant determined by the TEP formation
cross section. We get:

B(0,w1) = Anpl(d,wr), (52)

where T'(6,w) is governed by the TEP spin dynamics

and recombination. Thus, the (normalized) optically de-
tected signal, AZ/T = Ang/nsg, is given by

AI((S,wl) — fof )\RST

T """RgRy

[T(6,w1) —T(0)].  (53)
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FIG. 6: (Color online) Schematics of the processes involved in
the TPQ model. The specifics of TPQ is that the microwave
drive, together with the hyperfine coupling and spin-lattice
relaxation, couples the TEP spin levels. The color code coin-
cides with that in Fig. 1. The arrangement of the states is of
no importance.

For the following discussion we present the zero-
detuning result for I'(w;) = I'(0,w1), established in the
limit of weak dissociation and recombination, and neg-
ligible coupling between the polaron and TE spins (see
Appendix C). Figure 6 depicts the processes underly-
ing the TPQ model. It includes the TEP generation
rate, g, the dissociation rate, g4, the rate of the reac-
tion Eq. (46) from the doublet manifold, ¢,. Not shown
in Fig. 6 are the TEP spin-lattice relaxation time, Ty,
and the polaron hyperfine coupling magnitude, wps. In
the limit of long spin coherence times, Ty > 1/¢4, and
slow dissociation and recombination, ¢4, ¢, < wnf, We
find I'(wy) — T'(0) = Do f1(w1/ws), and therefore

AI(wl) - o~ /\RSTFQ
L = _ s) 4
T npRT RsBr fi(wi/ws) (54)
where
2qqq}
Ty = r , 55
0 3’Ud(3’Ud + QT)(3vd + 2qr> ( )
6vq(3vg + 2¢,
Ws = Wht va(3va + 29 ), vg = qa + 1/Ty,

3vg + qr

are constants. The function f;(z) appeared earlier in
PPR model, see Eq. (42). It is plotted in Fig. 3 inset. It
grows from zero linearly, and saturates to unity at z > 1.
This translates into the initially linear growth of AZ/Z,
and saturation to npnrtly ()\ RST/RSRT) at w1 > ws.
Note that Eq. (54) represents the contribution from
only one species of polarons. To account for the other,
charge-conjugated species, a term similar to that in the
right hand side of Eq. (54) must be included, with the
corresponding values of A\, I'g, Rsr, Rs, Rr, and ws.

IV. DISCUSSION AND SUMMARY

The present study of the magnetic resonance-induced
variation of singlet exciton recombination is based on

the description of spin dynamics and recombination by
means of stochastic Liouville equations. For the PPR
model, we have demonstrated a solution method yield-
ing the answer in terms of the eigenvalues of 4 x 4 com-
plex Hamiltonian, instead of the solution of effectively
10x 10 complex linear system of stochastic Liouville equa-
tions. Analytical results supported by the direct numeri-
cal solution of stochastic Liouville equations are found in
the limit of weak singlet recombination. The microwave-
induced spin Dicke effect, stemming from the back-action
of recombination on the quantum dynamics of spin pairs,
is identified and described quantitatively.

We have considered a spin-lattice relaxation, uniform
with respect to the spin multiplicity. If the relaxation
time is not too short, the main effect of this relaxation
is additive to that of the dissociation and non-radiative
recombination of the polaron pairs. We have shown that
it can influence the resonance lines only at strong drive,
whereas at weak drive it leads to the overall scaling of
resonance amplitudes. Note in passing that our approach
naturally takes into account the dominant T5- processes,
originating from the random hyperfine interaction.

Our analysis excludes the exchange and dipolar inter-
actions between the spin pairs, although these interac-
tions can be readily included in the presented perturba-
tive scheme. This is done for the sake of simplicity, since
our direct numerical simulations show that the effect of
these interactions is minor, given that they do not exceed
the average hyperfine coupling strength.'®

The TPQ model is treated along the same lines. How-
ever, calculations in this case are greatly simplified due
to the presence of relatively strong zero-field splitting of
triplets, making these states off resonance.

Concurring results are found from the PPR and TPQ
models at weak drive. Namely, if the TPQ reaction
Eq. (46) is equally probable for the electron and hole po-
larons, the lineshapes from the two models are the same
for w; < wpt, and are given by the sum of two Gaussians,
Eq. (45).

More importantly, we uncover two substantial differ-
ences in the predictions of the PPR and the TPQ mod-
els. First and foremost, the dissimilar dependence of the
microwave-induced signal on the steady-state densities,

(TPQ), (56)

cf. Egs. (19) and (54), respectively, leads to the remark-
ably different results for the dependence of AZ/Z on the
photoexcitation power, Pr. Far from saturation at high
Pr, it is reasonable to expect that ng « Pr, np «x P,
and nt o« Pr, crossing over to nt o Pf (the position
of crossover depends on the efficiency of the intersys-
tem crossing from SE to TE and the TE generation from
non-geminate polaron pairs3!). For the TPQ model, this
results in AZ/Z oc P? to P#, in contrast to the PPR
prediction, AZ/7Z x Pr,.

The second important difference between the predic-
tions of the two models comes from the fact that, at the
polaron spin-1/2 resonance, TEs are mainly off resonance

AT x 73 (PPR), AT « hghpivr



because of a relatively strong zero-field splitting. As a re-
sult, the lineshapes and the saturation behavior from the
two models are different at strong drive. Specifically, the
TPQ leads to the resonance lines featuring a single max-
imum, and relatively fast saturation of AZ/Z to positive
values at w1 ~ wpr, much like in the ordinary ESR. In
contrast, the PPR model predicts resonance lines with
two maxima around the central dip at wy 2 whe, evolv-
ing into the completely negative resonance at wi > wyt,
where AZ/Z saturates to negative values (see Figs. 2
and 4). These differences are of relevance for resolving
the contributions of the two mechanisms experimentally,
via continuous wave PLDMR measurements.

Finally, we note that this study did not address the
predictions for the observables which are measured us-
ing the double modulation (DM) PLDMR technique.5®
In this technique the laser excitation power is modulated
at certain frequency fr, and a lock-in amplifier filters
out the delayed photoluminescence that is slower than
fr. Therefore, by the design, the DM-PLDMR measures
only the prompt component of the photoluminescence.
The results obtained using the DM-PLDMRS® are inde-
pendent of fr, up to 100 kHz. In this regard, we would like
to note that our Eq. (56) offers a certain prediction for
DM-PLDMR. Namely, the proportionality of AZ to ng
renders the interpretation of the DM-PLDMR results5:8
in favor of the TPQ model. Further theoretical studies
aimed at more quantitative predictions for DM-PLDMR,
are underway.
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Appendix A

In this Appendix we discuss the relation between the
stochastic Liouville equation (8) and an underlying Lind-
blad equation, as well as elaborate on the rotating-frame
transformation of Eq. (8).

1. Lindblad formulation of the PPR model

The most general Markovian quantum dynamics of an
open system can be describe by a Lindblad equation.3?
In our subsequent consideration of this formalism we will
closely follow Ref. 33. In addition to the four spin-pair
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states Ty, Ty, T—1, S, the full Lindblad description of
the PPR would require the introduction of the radiative
singlet exciton and free polaron states, X;s and Xy, re-
spectively. The Lindblad equation for the corresponding
(6 x 6) full density matrix of the system, g, is given by3?

N,
do ) - 1 1
i ilo, H] +; (CjQC} - §C}Cj9 - gé’c}cj) (AL

with N, system operators, c;. Here, the spin relax-
ation processes involve 16 system operators, co.g =
(4Ty)~?|a)(B|, where a, 8 = T}, Ty, T_1, S. Further-
more, according to the definition of PPR model, Fig. 1,
the recombination, dissociation, and generation processes
involve 9 system operators: one associated with the re-
combination, ¢, s = vVk.| Xys)(S], four with the dissocia-
tion, cg,a = Vka|Xsp)(a|, and four more associated with
the polaron pair generation, ¢y o = 1/go|)(Xgp|.

Now, it is straightforward to check that the action of
the first 16 system operators leads to the spin-lattice re-
laxation term Eq. (11) of the reduced PP spin density

matrix peg = (ao|B):

1 1
(@Y (cr0e) - gelere = gocles )19) = Ralpas

j:a/ 5/
(A2)
For the 9 remaining system operators we have:
P L 1 i
(@> | erock - Ferek0 — socek 18) =
k
Rar{p}as + 9o(Xiplo| Xip)das, (A3)

where the summation runs over k = (r,5), (d,«), and
(9,a). Thus, the stochastic Liouville equation Eq. (8)
emerges from Eq. (A1) as the result of a physically trans-
parent assumption that the free polaron population is
time-independent, and the polaron pair generation rate,
g = 4g0(Xp|0| X1p), is constant.

2. Rotating frame transformation of Eq. (8)

The rotating frame transformation applied while going
from Eq. (8) to Eq. (9) implies the time-dependent uni-
tary transformation with the operator, U = expliwt(SZ+
S7)].  In particular, for the density matrix we have
p=UprUT', where p is the rotating-frame density matrix
used throughout the text and py, is the laboratory-frame
density matrix. For the dissipative terms in the labora-
tory frame we have:

k,
Rar{pr} = —kapr — T{HS,PLL

Rafpr} =~ [or (e /4)1).

where Ilg is the projection operator onto the singlet state
and {-,-} means the anti-commutation. Applying the



rotating frame transformation to Rq{pr} gives:

URa{pr}U" =~ [~ tr(p/ 1),

sl

(A4)

where we have used p = Up U and the invariance of the
trace, tr(pr) = tr(p). In the case of Ra,{pr} we get:

ky.
URar{pr}U" = —kap — 7{UHSUT,P}

= —kap— T {lls.p}, (A)
the last relation following from the invariance of pro-
jection operator, UIlgUT = IIg. The latter invariance
means that the rotating frame transformation does not
alter the spin multiplicity. This in turn can be seen by
writing IIg = 1/4 — S.S;, and using the vanishing com-
mutator, [(SZ 4 57),S.Sx] =0, leading to [U,Ils] = 0.

Equations (A4) and (A5) establish the invariance of
the dissipative terms with respect to the rotating frame
transformation.

Appendix B

In this Appendix we investigate the steady-state Liou-
ville equation for the PPR model, Eq. (14).

Because of the non-Hermitian character of the Hamil-
tonian H, Eq. (12), the calculation of trU is spe-
cific. We introduce the eigenvectors and eigenvalues,
H|a) = €altba), @« = 1,.,4. As the non-Hermitian
Hamiltonian H is symmetric, the conjugated equation
(Ya|H = ea{tha| holds for (o] = |1a)T, where the
superscript 7 means the transpose without a complex
conjugation. We normalize the eigenvectors with re-
spect to this conjugation, so that (¥4l||[tve) = 1. Tt
is also easy to check that the e1genvectors are orthog—
onali (Yolts) = N, Yalm)bs(n) = 0, i ca # 2,
whereas the degenerate case can be handled in the stan-
dard way, by choosing orthogonal vectors in the degener-
ate subspace. Thus {|1),)}%_, can be made a complete
orthonormal set. This ensures the part1t1on of unity,
Za 1 [Ya) (Y| = 1, yielding trU = Za 1{¥alUltba).
The complex conjugate vectors, [¢%) = |1)4)*, obeying
H*|k) = ek |vk), form another ‘orthonormal set, in gen-
eral different from {|[Ya)}4 With these conventions,
from Eq. (15) we write:

a=1"

=Y <%|I¢E><¢Z§H%>.

i(ea —€}) (B1)

a,B=1

Treating the recombination term of the Hamiltonian (12),
V = —i(k,/2)Ilg, as a perturbation, we get:

<¢a||¢}§><¢§||¢a> = 5&,3 + O(kr/ﬂe,h)Q- (B2)

and
(B3)

Ea = €q

— i(wq/2) + Vaa + O(K2/Qep),
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where €, are the eigenvalues of the Hamiltonian H,
Eq. (9). By observing that the ~ k2/Q. ) correction
in g4 is real, from Eqgs. (B1) - (B3) we infer that omit-
ting the inexplicit terms in Eqs. (B2), (B3) induces only
~ (ky/Qen)?tr U error in trU. Therefore, rather accu-
rate results can be found by completely neglecting the
eigenvector corrections and keeping only the leading cor-
rections to .. This is as much as we get from Eq. (B1),
because the degeneracy of H makes the simple perturba-
tion calculation inefficient.

Still, the explicit form of the unperturbed eigenstates
of H, |pa), which are the eigenvectors of H, is needed.
In the absence of the exchange and dipolar interactions,
the individual electron (u = e) and hole (u = h) polaron
eigenstates are:

| ﬂ>,u = COS¢#| T>,u + Sin¢#| ¢>u,

| ) = singu| Ty — cos dul 1w, (B4)
where | 1), | }), are the electron and hole polaron spin
up and down states with the quantization axes along z,
and tan2¢, = wi/w, is introduced. Then we have:

o) = [ Mel M, w2) = [Mel Ln,
[o3) = [ Wel Mns pa) = [ Pel Pn-

The matrix Vog = (va|V]es), Eq. (23) in the main text,
is found by calculating the scalar products of |ps) with
|S).

The degeneracy of H, controlling the strong drive
regime, corresponds to ¢, ~ m/4. Then Egs. (2), (B4),
and (B5) give:

(B5)

1) ~ %(|T+l +IT1) +V2(To))
(o) & 3(1Ts) + IT-1) = VE1S))
|03) ~ %(|T+l +[To1) + V2189))
lon) 5 (ITea) + |70 —VEIT)),  (B6)

The vectors |¢1) and |¢4) are always the eigenstates of H
to the leading order, whereas |p2) and |p3) are not such
in the vicinity of the degeneracy of H. On the other hand,
the eigenvectors of H = H — i(wq/2)1 + V, where V is
given by Eq. (28) in the main text, are always the leading
order eigenstates of H. In addition, % and # have the
same eigenvalues within the first subleading order. Thus,
by virtue of the arguments presented after Eq. (B3), one
can replace % by H in Eq. (15) of the main text and
calculate tr U with a satisfactory precision, regardless of
the degeneracy. The calculation of tr U is facilitated by
fact that H is diagonal in the (1, p4) subspace, whereas
the contribution of the (¢2,3) subspace can be found
by using the formula,

@0 tyo2) — cosr 4 i(xo, + yo.)sinr/r, (B7)



where o, , are the Pauli matrices, and r = /22 + y2.
This gives:

4 4
trU = + B8
' Esin®(gen) +2wg  kr cos?(¢en) + 2wq (BS)
k2 cos*(¢en)

ky co8?(Gen) + 2wa] [4€3 + wa(ky cos?(Pen) +wa)|’

B

where the first term comes from the (o1, ¢4), and the last
two terms — from the (@2, ¢3) manifolds. Combining the
first two terms gives Eq. (29) of the main text.

Appendix C

In this Appendix we derive the rate 5(J,w;), intro-
duced in Eq. (48) of the main text, in the limit of negli-
gible exchange and dipolar coupling between the TE and
polaron spins, and weak dissociation and recombination.

The basis spin states of a TEP complex can be given
through the direct product of a triplet and doublet states,
as well as through the direct sum of a quartet and doublet
multiplets, via the Clebsh-Gordan coefficients. In terms
of the components, Ty, T'11, representing triplet exciton
with spin projection 0 and =+1, respectively, and 1, | for
polaron spin +1/2,

|T+1 T) = Q3/2=

T4 1) = \/1/_3Q1/2 + \/%Dl/%
ITo 1) = V/2/3Q1/2 — /1/3 D1 2,
To ) = \/2/_3Q—1/2 + \/WD_W,

IT-1 1) =V1/3Q_1/2—/2/3D_1)2,
IT-1]) = Q_3/2,

where @ and Dy, are the quartet and doublet states with
the spin projection k.

The 6 x 6 spin density matrix of an ensemble of TEP
complexes, o, can be treated by a stochastic Liouville
equation. Formally, the Liouville equation for g is found
by rewriting Eq. (8) with the following modifications:

(7) The rotating-frame spin Hamiltonian H is given by

(C1)

H = wpS, +H07T+OJ1(I;E —I—Sm), (02)
where wp is the polaron Larmor frequency, S = 1/2 and
I =1 are the polaron and TE spin operators, and
Hyr =wrl, +D(IZ - I(I +1)/3), (C3)
is the free TE spin Hamiltonian with the TE Larmor
frequency, wr = yrh(By+b%)—w, and the axial zero-field
splitting parameter, D (the transverse zero-field splitting
is neglected in the secular approximation). We take equal
gyromagnetic ratios? of TEs and polarons; y7 = e 5.
(#5) The generation rate, second term in Eq. (8), is re-
placed by (g/6)1, implying equal probability of the TEP
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generation in 6 different spin states. Similarly, the fac-
tors of 1/4 in the last terms of Eqs. (11) and (13) are
replaced by 1/6.

(#4) The dissociation - recombination rates are denoted
respectively by gq and g, so that Eq. (10) goes into

Rar{o}tas = —qa0ap — q—; > (ban, +0D,5)0as: (C4)

41
o=%3

implying a recombination from the doublet TEP states.

(i) The second term in Eq. (12) is written as
—i(vq/2)1, where vqg = q4+1/Ty, and, more importantly,
the operator Ilg is replaced by the projection operator
onto the doublet,

Op = [Dy1j2)(D1ya| + [D_1/2)(D_1 /2| (C5)

We further assume that the TEP generation rate is
proportional to nt and np; g = Anrnp, and that after
dissociation of a TEP complex, the constituent TE re-
turns into the state described by nrt (see Fig. 6). The
latter assumption allows us to write the TEP counterpart
of Eq. (16): Bt = g — qatro, where g gives the rate of
the decrease of nT due to the generation of TEP, and the
last term reflects the increase of nt because of dissocia-
tion. By virtue of the full analogy with PPR model, see
Eq. (17), we write:

1 —
1-— mtrU

_ v
[3(5, wl) = A’INIPF((S, wl), I'= <ﬂ> 5 (06)
hf

where U is given by the TPQ counterpart of Eq. (15).

Despite the TE and polaron gyromagnetic ratios are
taken to be the same,* the majority of TE spins are off
resonance because of the relatively strong zero-field split-
ting. In Eq. (C2) we have D = Dg(3 cos? §—1)/2, where 0
is the angle between the zero-field tensor principal z- axis
and z, and Dy 2 500 G is measured for several polymer
PPV derivatives.* The portion of near-resonance TEs is
~ w1/Dy, and most of these TEs are still off resonance
because of the non-zero TE hyperfine coupling. There-
fore, we calculate trU to the leading order in wy /Dy and
wne/ Dy, corresponding to the perturbation,

V= _i(QT/2)HD + wq (Iz + Sm) (07)

The left-hand side states in Eq. (C1) are then the unper-
turbed eigenstates. Because of the ~ Dy energy splitting
between |Ty1 1,]) and |Tp 1,]), and between [T—1 1,)
and [Ty 1,/), the matrix elements of V, relevant to the
leading order, are those between the same T;-states, ex-
plicitly given by

w1
U
w4
2 3
_ S e wr
Ve~ w3 (C8)
2 6

Ow|§ .



The structure of the matrix (C8) indicates that the sys-
tem reduces to three two-level subsystems, which are de-
coupled in the leading order. Further calculation of trU is
done by using Eq. (B7) for each of the three subsystems,
yielding

_ 2 2v4r [vﬁr +wd + w%]
trtU = — + ,
U v g+ R R, — a2/9] + g

(C9)

where vg, = vq4+¢./3. The hyperfine average in Eq. (C6)
is over the Gaussian distribution of wp, given by Eq. (5).
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By expanding the denominator in Eq. (C6) over the small
trU /Ty and using Eq. (C9) we get

w 2 7 z ex —22
F(wi) =T(0) =T (w—i> %%a (C10)

found by neglecting v3,/2w; < 1 in the denominator.
This integral happens to coincide with Eq. (42) for f1(z),
leading to the result, Eq. (54).
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